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CANONICAL DISTRIBUTION ON ISOPARAMETRIC
SUBMANIFOLDS III

CRISTIAN U. SANCHEZ

ABSTRACT. The present paper is devoted to show that on every compact,
connected homogeneous isoparametric submanifold M = G/K of codimension
h > 2 in a Euclidean space, there exist canonical distributions which are
generated by the compact symmetric spaces associated to M (i.e. those
corresponding to the group G). The central objective is to show that all
these distributions are bracket generating of step 2. To that end, formulae
complementary to those in are obtained.

1. INTRODUCTION

The present paper can be considered a sequel and extension of the papers [9] and
[10]. In those papers, it was established the existence (in any compact, connected,
homogeneous, isoparametric submanifold M of codimension h > 2 in a Euclidean
space) of a smooth, completely non-integrable, step 2 distribution © (Q).

Here we indicate, on the family of isoparametric submanifolds M mentioned
above, the existence of new distributions having the same property as © () that
is, they are all completely non-integrable of step 2. It is important to mention here,
that these distributionsare “associated” to symmetric spaces of Type 1. In fact, for
our isoparametric submanifold M = K/Kpg, the symmetric spaces corresponding
to the group K (which are of the form K/L) ”induce” on M, smooth distributions
which, similarly to @ (), are completely non-integrable of step 2.

Recall that a distribution ® of r-planes (n > r > 2) in a compact, connected
manifold M™ is smooth [12] p. 41] if for any p € M™ there are r smooth vector fields
{X1,...,X,} defined on an open set A C M™ containing p such that X; (¢) € © (¢)
and © (q) = spang {X; (¢)}, (1 < j <r, Vg € A). The distribution ® is said to
be completely non-integrable of step 2 if for every point p € M"™ the above vector
fields defined in A satisfy (Vg € A):

Spang {X; (q), [Xi, X;](q) : 1 < k,j <r} =Ty (M)
i.e. the generated real vector space coincides with the corresponding tangent space.
The mentioned homogeneous isoparametric submanifolds M™ of codimension
h > 2 in Euclidean spaces are obtained as principal orbits of the tangential repre-
sentation (at a basic point) of a compact (or non compact dual) symmetric space. A
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way to obtain explicitly these submanifolds is to consider a real simple noncompact
Lie algebra gy with Cartan decomposition go = €9 @ po and Cartan involution 6.
Then £ is a maximal compactly embedded subalgebra of go [5, Pr.7.4 p.184]. Let
K be the analytic subgroup K of Int (go) corresponding to the subalgebra adg, (¢)
of adyg, (go) which is compact and let By be the positive definite, symmetric bilinear
form on gy defined by

BG (xay) = <.’Il,y>9 =-B (.’17,92/) . (11)

where B is the Killing form of gg.

The principal orbits of the representation of K on p( are isoparametric subman-
ifolds M™ of R"*" = py. Let ag be a maximal abelian subspace of po and consider
the set ® (go,ap) of roots "restricted” to ag (see [9] for the required details and
notation). Let A(go,a0) be a corresponding system of simple roots in @ (go, ag).
For A € ® (go, ap), it is usual to define the subspaces:

for = {x €t : (ad ()2 x =N (h)x, Vh e ao}
Po,x = {x € po: (ad(h))Qx =\ (h)x, Yh € ao}

for which obviously €5 x = €y (—x), Pox = Po,(—») and with them, respect to By
(1.1), we have orthogonal decompositions,

B =mo @ Z B, Po=a0® Z Po,x (1.3)

)\E<I>+(go,a0) )\E‘t‘+(go,a0)

(1.2)

where ®* (go, ag) is the set of roots written with non-negative coefficients in terms
of A(go,ap) and mq is the centralizer of ag in €y El As usual, the height of a root
in ®* (go,ap) is defined as the sum of its coefficients with respect to A (go, o).
Let © C ®* (gg,a0) be the set of positive roots of odd height. As in [9] and [10],
associated to ) we define the subspace:

D(2) = pox C po.
AeQd
Let us fix a regular element E € ag C pg, call M = Ad(K) E C pg its orbit and
let Kg be the isotropy subgroup of K at E. The regularity of F implies that the
isotropy subalgebra (corresponding to) Kg is €y g = mg. Furthermore the tangent
and normal spaces of M at E are:

Tp(M)= Y [oxEl= > poxand Ty (M) =a (1.4)

AEPT(go,a0) AEQF(go,a0)

Since the subspace D () is contained in T (M) and it is invariant by the action
of K, by translation with K, we obtain in M a distribution which we also call
D () and is contained in the tangent bundle of M. The main result of [9] and
[10] is that this distribution is completely non-integrable of step 2. The difference

IThe subspaces defined in (1.2)) are also defined in [l p-57] and are related to the eigenspaces
of the shape operator as in [I} p-70-71].
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between [9] and [10] resides in the nature of the system of restricted roots, reduced
in [9] and non-reduced in |[10].

As indicated above, in the present paper we show the existence, on M =
Ad(K) E of other distributions all with the same property as © (£2). These
distributions are associated to two classes of compact symmetric spaces. The first
one is that of symmetric R-spaces i,e. extrinsic symmetric spaces (these are the
compact Hermitian symmetric spaces and their real forms, as indicated in [, p.
427-8]). The way in which symmetric R-spaces are presented is well known but
it may be convenient to recall it. Let gg be a real simple noncompact Lie algebra
with Cartan decomposition gg = €ty @ pg and Cartan involution 6. The subalge-
bra £ is a maximal compactly embedded in gg. Let K be the analytic subgroup
of Int(go) corresponding to the subalgebra adg, (£9) of ady, (go) which is com-
pact. Let us consider the Euclidean space po with the inner product By . Let
ao C po, P(go,a0) and A (go,ap) have the same meaning as above and assume
that there exist an element H € ag such that the eigenvalues of ad (H) on go are
{(=1), 0, 1} (these elements are called ” extrinsically symmetric”) then the orbit
N = Ad(K)H C po is a symmetric R-space. On the other hand the principal
orbits of the representation of K on pg are the isoparametric submanifolds that
support the associated distribution (one of them is chosen by taking a regular el-
ement E € ap and considering its orbit M = Ad (K)E C po by the adjoint action
of K on pg). A particular subset of symmetric R-spaces is that of the Hermitian
ones and they are presented as follows: Let 1y be a compact simple Lie algebra
and consider the real Lie algebra g® = uy @ iug. This is a Cartan decomposition of
g® [Bl, p.185]. Let us take a Cartan subalgebra ty C ug so ity C iug is a mazimal
abelian subspace of iug and h = (ty @ ity) C ug @ iuy = g¥ is a Cartan subalge-
bra of g®. We have the roots in ® (gR, b) and the restricted roots are those in
® (g, itg). They are just the roots of uy with respect to to. Let us take a compact
connected Lie group K (without center) corresponding to ug, the compact Hermit-
ian symmetric space can be realized (isometrically embedded) as orbit of an
extrinsically symmetric element H € ity C iug C g® by the adjoint action of K on
(iug). For Hermitian symmetric spaces the associated isoparametric submanifolds
are the manifolds of complete flags of the group K. These are the principal orbits
of the adjoint representation of K.

The other set of symmetric spaces to be considered contains some of the so called
quaternionic symmetric spaces and also the space EVIII = Eg/Spin (16) /Z
which is not a quaternionic one. These are not R-spaces.

The symmetric spaces: Gry (C"*2) = SU (n+2) /S (U (n) x U (2)) (n > 1) are
quaternionic symmetric and Hermitian symmetric so we exclude them from the
present considerations and take the space EVIII instead. Then they are:
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classical
Gry (R"™) = SO (n+4)/SO(n)xSO(4) n>3 (1.5)
HP" = Sp(n+1)/Sp(n)xSp(l) n>1
exceptional
EIX = Es/E7Sp (1) FI=F,/Sp(3)Sp(1)

EVI = E;/Spin (12) Sp(1) G = G2/SO (4) (16)

EII = Eg/SU (6) Sp (1) EVIII = Eg/Spin (16) /Z>
The distributions for this class of symmetric spaces K/H are defined (as for Her-
mitian ones) in the manifolds of complete flags of the group K.

The paper is organized as follows. The next Section contains the two results
that are the objectives of the present paper; they are Theorem which involves
symmetric R-space and Theorem [2.2]concerning the other type of symmetric spaces
considered here.

The paper goes along the lines of [9] and for that reason, notation and some
results from that paper have to be recalled. They are contained in Appendix
[6] which is divided into five short sections recalling: basis, smooth local fields,
known identities and finally, formulae (6.16)), (6.19) and (6.20) obtained in [9] and
corresponding to the sums of roots. Standard facts and notation from Lie Theory
are taken from [7], [5], [], [8], [2] as in [9]. On the other hand in Appendix [7]
we get the new formulae expressing the vectors of the basis associated to the
difference of roots as combination of brackets of local fields in the distribution
(evaluated at the basic point E of M). The reader shall certainly notice that
formulae in Appendix [7] are " dual” to those in Appendix[f] Section [3| contains the
construction of the distributions, required notation and the necessary lemmata.
It contains two subsections, reflecting the differences of the situations considered.
Section [4] contains some examples that illustrate the way in which the distributions
are generated and hopefully shall clarify their meaning. Finally Section [5] contains
the proof of Theorem [2.1] and [2.2] where the formulae given in Appendices [6] and [7]
are essentially used.

2. OBJECTIVES

Here we indicate the results contained in the present paper, namely Theorems|2.1
and[2.2] Since the large majority of the compact, connected, irreducible symmetric
spaces are extrinsic symmetric (nowadays called symmetric R-spaces) we indicate
first the result associated to them, keeping the notation indicated in the previous
sections.

Theorem 2.1. Let E € ag be a regular element and assume that there exist an
element H € ag such that the eigenvalues of ad (H) on go are {(=1), 0, 1} (we
call these elements extrinsically symmetric) then the orbit N = Ad (K) H C po
is a symmetric R-space. The tangent space Ty (N) of the symmetric R-space N at
H, 7induces” a distribution © (N) in T (M) (M = Ad(K) E) which is completely
non-integrable of step 2.

Proof. The proof is contained in Section (]
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We shall describe the construction of ® (N) in the next section. Let us consider
now the situation for those symmetric spaces in (|1.5)) and (1.6).

Theorem 2.2. Let uy one of the compact simple Lie algebras corresponding to
the compact simple groups generating the spaces in and @ and consider
the real Lie algebra gt = uy @ iug. With &g = ug and po = iuy this & ® po is
a Cartan decomposition of g¥. Then € = ug is a mazimal compactly embedded
subalgebra of g®. Let K be a compact, connected, adjoint Lie group K corresponding
to uy. Let us consider the Euclidean space iug = po with the inner product given
by the Killing form B. Let ity C iuy = po, while D (go,a9) and A (go,ap) have
the above meaning. The principal orbits of the representation of K on iug = pg
are isoparametric submanifolds. Let us choose a regular element E € ay and set:
M = Ad(K)E C po. The symmetric space K/H in or (1.6) induces a
distribution © (©) in T (M) which is completely non-integrable of step 2.

Proof. The proof of this Theorem is also contained in Section [f] O

Recall a that a Lie group with trivial center is called an adjoint group.

3. CONSTRUCTION OF THE DISTRIBUTIONS

3.1. Distribution generated by Symmetric R-spaces. Let us assume that
there exists H € ag C po extrinsically symmetric (i. e. ad (H) has only eigenvalues
{(~1), 0, 1}). Then (ad (H))* has cigenvalues {0, 1} and determines two subsets
of ®* (go, ap) namely

Uy ={A€ @ (go,a0) : A (H) =0}
© ={\€ ®" (go,a0) : A(H) =1}
Note that ®* (gg,a9) = Yo U O and consider the orbit N = Ad (K)H C po. N is

a symmetric R-space (see for instance [3]) whose isotropy subalgebra and tangent
space at H are respectively:

bty = Z €.\ C &
XSV

Ty (N) = [to,H]= Z [Eo,x, H] = Z Pox C o (3.2)
AEDT (go,a0) PYLC)

(3.1)

Now we observe the following:

Lemma 3.1. If the system of roots ® (go,ap) is irreducible [0, p.52] and there is
an H € ag C pg extrinsically symmetric then there is one and only one simple root
n € A(go,ao) such that n € © in (3.1)).

Proof. This is clear. See Remark [3.4] bellow. O

The roots in ¥y (written in terms of A (go,ap)) are those without the term 7
while those in © have the term 7 (with coefficient 1).
Let us consider now the following;:
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Lemma 3.2. Let us assume that the maximal root € ® (gg,a0) has a simple
root term with coefficient 1. Then for each v € Wo C ®* (gg,a0) there are two
roots ¢ and v in © such that v = ¢ — 1 and (¢ + ¥) is not a root. The simple root
systems considered in this lemma are A,., B, C., D,, Eg, Er.

Proof. The proof is by inspection on the systems of roots. See Remark [3.4] bellow.
d

We have then two subspaces of pg namely (3.2) and (1.4]). We may now define
D (0) CTp (M) by D (©) = > .o Po,x and have the obvious inclusion:

D)= poaC > pox=Tg (M) (3.3)

AEO APt (go,a0)

The subspace D (0) is invariant by the isotropy subgroup Kg of K at F and
hence, by translation with K, we get the distribution ® (©) on M.

3.2. Distribution generated by the other spaces. We indicate now how to
construct the distributions associated to the spaces in and (1.6).

Recall the notations indicated in Theorem and take a regular element E €
ag = ity C iug = po, while @ (go, a0) and A (go, ap) have the above meaning. The
orbit M = Ad(K) E C po (a principal orbit) is a ” manifold of complete flags of K”
(the isotropy group of M at E is a maximal torus of K). This is our isoparametric
submanifold in the present case.

Let us write the roots in ® (go, ag) in terms of A (go, ag) as:

5= > 507 (3.4)

YEA(go,a0)

and assume that we can choose a simple root A € A(gp,ag) such that for the
maximal root p we have sy (1) = 2. The chosen root A € A (ug, to) splits &+ (go, ao)
into three sets namely:

Wy = {6 € & (go,a0) : 51 (6) =0}
Uy = {6 € &F (go,a0) : 51 (6) = 2} (3.5)
O ={6 € " (go,a0) : 51 (6) =1}

The subspace D (©) = > 5.0 Po,5 of T (M) in associated to © C ®T (go, ap)
is invariant by the maximal torus T' of K which is the isotropy subgroup of K at
E and so, by translation with K, defines a distribution © (©) on the manifold M.

Let us consider the symmetric spaces in and . All these spaces have
the property that there is a simple root A € A (ug,ty) such that all roots in the
tangent space (written in terms of A (go,ao)) have a term A with coefficient 1 and
sx (1) = 2. Then, the tangential roots in these symmetric spaces are those in ©.

In the following tables (3.6)) and (3.7 we indicate, for each one of them, the simple
root that defines © (as in (3.5))). The subindexes of the indicated roots are those in
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the notation from [Bl, p. 477-8].

space root

Gry (R™) = SO (n+4) /SO (n) x SO(4) n>3 {Zj Zi;ﬁﬂ

HP" = Sp(n+1)/Sp(n)xSp(l) n>1 a,
(3.6)
space root space root
EIT Qg EIX ag
EVI (e %1 FI ay (3.7)
EVIII Qaq G (65

A glance at the table in [B, p. 477-8] shows that for these choices the coefficient
s (u) for these simple roots is sy (1) = 2. Tables and indicate the
existence of at least one such root for each of these spaces. It is important to
mention that there is no orbit of the type of these symmetric spaces in
the corresponding adjoint representations of their groups. The set O, for
each of the indicated symmetric spaces, is defined by with the roots in
and (3.7).

We have the following Lemma which replaces Lemmal[3.2]in the present situation.

Lemma 3.3. For each v € ¥g C & (go,ap) there are two roots ¢ and v in ©
such that v = ¢ — ¥ and the sum (o + 1) is not a root of ® (go, ag). Also for each
n € Wy C T (go,a0) there are two roots § and w in O such that n = § +w and
|0 — w| is not a root of @ (go, ap).

Proof. The proof is by inspection on the systems of roots. O

Remark 3.4. The reader can find complete proofs of Lemmata[3.1] and [3.3]in
1]

At this point, it seems convenient to present some examples to illustrate the
construction of the distributions considered in Theorems 2.1] and

4. EXAMPLES

Let us consider the extrinsic symmetric spaces which are real forms of the Her-
mitian symmetric space EV I, they are:

Hermitian: EVII = B/ (EsU (1))
real forms: EIV = (Eg.U (1)) /Fy AII =SU(8)/Sp(4)

Each one of them is realized as orbit in the tangential representation of the sym-
metric spaces indicated in the following table.

space dim ambient dim
EIV =(E¢.U(1))/Fy 27 < EVII=EF;/(EsU(1)) 54
AIT=SU(8)/Sp(4) 27 — EV =E;/SU(8) 70
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We have Cartan decompositions and restricted root system (RRS) for the corre-
sponding ”ambient” spaces.

space RRS
EVII e¢;=(e6 ®R) @ po c3
EV e7 = su(8) @ po e7

4.1. The space EIV = (Eg.U(1))/Fy. Let us consider the symmetric space
EVII and the associated Cartan decomposition:

¢7 = (e6 ©R) @ po

and the maximal abelian subspace ag in pg.The Dynkin diagrams of e; and cs,
indicating the coeflicients of the corresponding highest roots are:

2
[e5)
© 2 2 1
N , 0 —0 <= o0 (4.1)
1 2 3 4 3 2 A As A7
o — O — O — O — o — o
(e %4 Qg as (e} [0 %:3 [e5]
The restriction rule [5l, p. 534] of the roots is:
s
[ )
‘I/ —> 0O — O <— O
o —0 —e —e— e— O Al Ae A7

oy Qg (673 (e} e %:3 (e}
with the notation in [5, p. 534] this is: a; — A;, for j =1,6,7 and o — 0 for
Jj =2,3,4,5. The multiplicities of the simple roots are: m (A;) = 8 for j = 1,6 and
m (A7) = 1. For convenience, we change the names of the simple roots of
¢z to {1, A2 := Xg, A3 := A;}. The 9 positive roots of ¢z are:

61—62:>\1 61+€2:>\1+2>\2+)\3 261:2>\1+2)\2+)\3
e1—e3 =AM+ Ay est+e3= A+ A3 2e9 = 2X9 + A3 (42)
€2 — €3 = Ao e1+e3 =M+ X+ A3 2e3 = A3

with maximal roots:
long: pt=2(A\ + A2) + As, short: 7= A1 + 22 + A3

The following table indicates the corresponding multiplicities for all the positive

roots of c3.
m(>\1) = 8 m(>\2) = 8 m(/\g) =1
m()\1 +>\2) = 8 m()\2+>\3) = 8 m(2)\2+)\3) = 1
m()\1+)\2+>\3)= 8 m()\1+2)\2+)\3): 8 m(2)\1—|—2)\2+)\3)= 1

We have the subset Q C ®T (go, ag) of roots of odd height with respect to the simple
roots {A1, A2, Az}. The set Q has the 6 roots:
A1 A2 A3
A+ X+ A3 2X 4+ A3 2X1 +2X + A3
we see that the dimension of ® () is dim (D (2)) = 27.
We can take the dual basis {vi, v, v3} of {A1, A2, A3} defined by A (vj) = &g 5
and consider the vector £ = vy 4+ vo + v3 which is clearly a reqular element (no

(4.3)
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root vanishes on E). So the orbit of E by EgU (1) is a principal orbit which we
can take as our isoparametric submanifold M in this example. The dimension of
M is the sum of the multiplicities of all the positive roots so dim (M) = 51. Then
we have (see (L.3)) that dim (mg) = 28. In order to get the symmetric R-space,
namely ETV = (Eg.U (1) /Fy), we just have to take the vector vz € ag just defined
and evaluating the roots on vs we see that

A1 (’U3) =0 ()\1 +2X9 + )\3) (’1}3) =1 (2)\1 +2Xo + )\3) (’1)3) =1
()\1 + )\2) (’03) =0 (/\2 + )\3) (’U3) =1 (2)\2 + /\3) (1]3) =1
)\2 (’03) =0 (/\1 + )\2 + /\3) (Ug) =1 )\3 (1)3) =1

So w3 is ” extrinsically symmetric” and its orbit is in fact a symmetric R-space. We
see that the orbit of vg by Eg.U (1) has dimension 27 which is that of Eg.U (1) /Fj.
Now O is the set of roots with A3 with coefficient 1 and it defines the subspace

Dp(EIV) =) poax
AEO
of dimension 27 in the tangent space T (M) at M at the point E which in turn
extends to a distribution of this dimension in the isoparametric submanifold M of
dimension 51.

4.2. The space AII = SU (8) /Sp (4).
AIT=SU(8)/Sp(4) 27 — EV =E;/SU(8) 70
Let us consider the symmetric space

space dim rank @ (go,a0)

This is an inner split symmetric space. We have the associated Cartan decom-
position
e7 = su(8) & po

The restricted root system is e7. The Dynkin diagram of e; (with coefficients of
the highest root) is in . Let us consider the maximal abelian subspace ag in
po of dimension 7. The orthogonal complement as in has dimension 63 which
is the dimension of the principal orbits. Now we take the duals to the simple roots
of ez namely &; such that oy, (§;) = 0x,; and take the vector {7 € ag C po C e7. By
Looking at the table of roots of in [4, p.529] we see that evaluating each positive
root in &; we get either 1 or 0 so this vector is ” extrinsically symmetric” since all
the roots in ey evaluated in the vector &7 give either 1,0 or (—1).

It is important to observe that there are 27 roots with coefficient one in asz
(a7 is the extreme of the long arm of the above Dynkin diagram) and since the
multiplicities of the roots are all m = 1 we get that the orbit of {7 by the adjoint
action of SU (8) has dimension 27.

We include now some examples referring to the distributions considered in the-
orem

Submitted: March 20, 2023
Accepted: December 22, 2023
Published (early view): August 26, 2024


https://doi.org/10.33044/revuma.3993

Revista de la Unién Matematica Argentina Accepted article - Early view version

This peer-reviewed unedited article has been accepted for publication. The final copyedited version
may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite
using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.3993.

10 CRISTIAN U. SANCHEZ

4.3. The space EII = Eg/SU (6) SU (2). Let us consider the Quaternionic sym-
metric space EII. It generates a distribution of dimension 40 in the isoparametric
submanifold is M = Eg/T° of dimension 72. M is any chosen principal orbit in
the adjoint representation of Ejg in its Lie algebra.

We have:

space dim rank @ (go,ao)
EII Eg/SU(6)SU(2) 40 4 fa

The maximal root p of eg is: a1 + 29 + 2a3 + 3ay + 2a5 + g so we have three
simple roots with coefficient 2. But, as indicated in ([3.7]), we take the root ay. Let
us consider now the subsets of roots

Wo (ag) = {A € D (go, ag) : sx (a2) = 0}
Wy (az) = {\ € T (go, a0) : sx (a2) = 2}
O (ag) = {\ € ®T (go,a0) : 51 (a2) = 1}

There are 36 positive roots in ¢ and by taking a look at the table of roots we see
that

[Wo (0r2)| =

W3 ()| =

|© (a2)] = 20

since we are considering the adjoint representation of Fg the multiplicities of all
the roots are m (A) = 2 we see that by considering the roots in the set © we get in
the tangent space to the principal orbit Eg/T° the subspace © (©) which generates
a distribution of dimension 40 which is the dimension of ETI. If we take a5 instead
we have

Wo (as)| =

W2 (as)] =

10 (as)| =

and similarly for aiz. With the three simple roots of eg we get distributions D (©)
of rank (dimension) 40 in the tangent bundle of Fg/T.

4.4. The space EVI = E;/SO (12) SU (2).

space dim rank @ (go,a0)
EVI E./SO(12)SU(2) 64 4 Fa

dim E7 = 133, |positive roots| = 63

For this space we take the root ; with the notation in [5l p.477] . (In this notation
aq is the exterior root in the short arm of the diagram of E7). We have 63 positive
roots in ¢7 and 32 of them have coefficient 1 on «1. Since the roots have multiplicity
m = 2 we see that we have subspace of dimension 64 in the tangent space to the
isoparametric submanifold E7/T" of dimension 126. On the other hand, the set
generates a distribution of dimension 70.
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4.5. The space FI = F,/Sp(3) SU (2).

space dim rank @ (go,ao)
FI F,/Sp(3)SU(2) 28 4 fa

This is split symmetric space and the roots that we have to consider by the table
are those involving the root . Again here we consider the adjoint representation
(in this case of Fy) and choose a principal orbit which if of the form Fy/T* and
has dimension 48

With the notation in [Bl p. 477], ay is the first root at the left (extreme long).in
the diagram. The algebra f4 has 24 positive roots and 14 of them have coefficient
of a; equal to 1. Since in the adjoint representation the roots have multiplicity
m = 2 we see that we have subspace of dimension 28 in the tangent space to the
isoparametric submanifold F,/T*.

5. PROOF OF THEOREMS [2.1] AND

In the present Section we shall prove Theorems Iland 2.2} To that end we are
going to use formulae ( ), D and ( recalled in Appendix @ and also
their ”dual versions” ‘, and that are obtained in Appendlx

Let us start with a general observatlon In order to prove each one of the
Theorems [2.1] and 2.2] it suffices to show that: for each positive root A which
does not belong to © each vector of the basis Z, () of pox C Tr (M) may be
computed as a linear combination of brackets (evaluated at E) of local fields defined
around E that belong to the distribution © (0). It is important to mention that the
vectors in are associated to the roots in p™' (A) = p~' (A\)g Up~ (A)¢ and
that in p~* (X)¢ we have only one element of the pair {a, a”} for each a € p~! (\).

Now we start the proof of Theorem Here our space N = Ad(K)H C pg
is a symmetric R-space and the vector H is dual to a simple root 7 in A (go, ag)
which appears with coefficient 1 in the maximal root of ®% (go,a9). We have
Pt (go,a0) = PoUO and the roots in ¥y (written in terms of A (go,a0)) are
those without the term 7 while those in © have the term 7 with coefficient 1.

Let us take then A € ¥y C T (gg, ag) and recall the basis of pgy given in .
We start by taking v € (p*1 ()\)E) for our A and consider U, V,, for our chosen 7.
By Lemma [3.2] there exist two roots § and ¢ in © C ®* (go, a9), such that

A=0—¢
and § + ¢ is not a root of ® (go,ap). Furthermore, for the root v € p~! (\), there
exist roots a € p~1(d) and B € p~!(¢) such that v = o — 3. So we consider

Uy = Ua-p); V4 = Via—p). Then, we are to use formulae (7.13), (for the present
subindices). We have:

L0 Ua—p) + Blogas = |Us US| (BE)+ |V, VS| (E)

%(6,4;,@,,8)‘/(@—/3) + %l(é,cp,a,ﬂ) = Uf’ VﬁF (E) - VaFa UﬁF (E)

Let us consider the terms B1(s, q,5) and B2, o ) Which, except by non-zero
factors, are By (o, 8) and Bs (a, 8). Since § + ¢ is not a root of ®* (go, ag) then
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a + f is not a root either because p(a+ ) = § + ¢ and furthermore, by the
same reason, neither a® 4+ 8 nor a + 37 are roots of ®* (g, ). Thus B; (o, 8) and
Bs (, 8) vanish and then the formulae above reduce to:

E(é,cp,a,ﬁ)U(a—ﬁ) = U(f) Ug (E) + VaF7 V,BF (E)
S(&Lp,a,ﬂ)‘/(a—ﬂ) = U£7V5F (E) - Vof" Ué:‘ (E)

so we see that Uq_g), Via—p) are linear combinations of brackets (evaluated on E)
of local fields defined around E and belonging to the distribution D (©).

It remains to consider the case of real roots. So take v € (p=! (\)y) for X €
Uy C ®F (go,ap), then we have the vector W,. Again there exist two roots ¢ and
¢ in © C T (go,ap) such that A = § — ¢ and roots a € p~1 (d), B € p~! (p) such
that v = a — 8. Then we have the the following possibilities

(i)  « and B are both real roots of ® (g,h)

(ii) « and B are both complex roots of @ (g,h) (5.1)

Considering first the case (i) in (5.1), we have to use formulae (7.15)). Here the
notation (subindices) in (7.15]) should be changed as follows:

A—d, pr—p, d—a, @—f (5.2)

Then, by the same reason indicated above, B1(5 , o,8) and B2(; , o g) Vanish in
all cases. This shows that W, = W(,_g) is a bracket (evaluated at E) of local
fields defined around E that belong to the distribution © (©). On the other hand,
in case (ii) of (5.1), we may apply formulae (also with (5.2)) and here again
BLs,pa,p and B2, 5 vanish. We see, again in this case, that W, is a sum
of brackets (evaluated at E) of local fields that belong to the distribution © (©).
Then we have the proof of Theorem [2.1]

Let us do now the proof of Theorem[2.4 Here the positive roots not contained
in © are those w € ¥y and A € ¥y, defined in . Here ¥y has here the same
meaning that in the previous theorem, but here we must apply Lemma [3.3] which
says that for each w € ¥y C & (gg, ag) there are two roots ¢ and ¢ in © such that
w = p—1 and the sum (¢ + v) is not a root of ® (go, ag). By taking a € p~* (¢)
and 8 € p~! (1) we see again, as above,that o + 3 is not a root and neither a® +
nor o + 3% are roots of % (g, h).

Then, for w € Wy, the proof just given yields that each vector of the basis =, (w)
of po,, C Tr (M) may be computed as a linear combination of brackets (evaluated
at E) of local fields defined around E that belong to the distribution D (©).

It remains to consider the case in which A € Wy. Again we start by taking
v € (p~t(N)g) for X € Uy C @ (go, ap) and consider U, and V, for our chosen 7.
By Lemma there exist two roots d and ¢ in © C ®* (gg, ag), such that A = 6+
and |§ — ¢| is not a root of ® (go,ag). Furthermore we have roots o € p~* (§) and
B € p~t(p) such that v = a + B and |a — S| is not a root and, as in the above
proof of Theorem [2.1] neither |a — 37| nor |a® — 3| are roots and so H («, 3) and
T5 (a, ) in and (on roots «, ) vanish and we may write formulae
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(6.16) as:
O Uiars) = |Ua U§ | (B) = |V, V5| (B)
OomapVats) = [Uas Vi | (B) + Vo' Us | (E)
Then we have that U, = Uw+pg), V,; = Viatp) are sums of brackets (evaluated
on E) of local fields defined around E and belonging to the distribution D (0).
Now we see that the case of real roots is managed by using formulae (6.19) and/or

(6.20)) in similar fashion to the procedure applied above. This completes the proof
of Theorem 2.2

6. APPENDIX: NOTATION AND PREVIOUS RESULTS

We shall use the notation in [9] and for that reason, we hope that the reader will
have opportunity to take a look at the second section of [9]. On the other hand, we
recall here parts of the fourth section of that paper which are needed in the proof
of the theorems.

6.1. Basis for go. Let us take the o and 7 adapted Chevalley basis for (g,h) from
[9] (also [7]). In [9], we defined k, for each o € ® (g, h) by:

0 () = kaZao, ko = %1 (6.1)

and observed the identities:
kakar =1, koo =ka, k_o=kq (62)

0 () = ka®_ge 0 (xar) = kat_q (6.3)
Keeping the o and 7 adapted Chevalley basis for (g,h) let us consider, for a €
(g, b), the vectors:

Xo=2a+0(2a), Ya=i(za—0(24)), Za=Xa+Ya
They are fized by o so they belong to go. Now setting

P,=(Xo+0Xs) Qo= Ya+0Y,) Ry=(Zo+02Z,)

Uy =(Xa—0X,) Voa=a-0Y,) W,=(Z,—-0Z,)
we see that the vectors in the first row of belong to €y and those of the second
one to pg. Using (6.3) and the definitions, we observe that:

(6.4)

Py =(Xo+0Xs) = (@a + kaZac) + (kaZoge +2_4)
Uy = (Xa —0X,) = (X0 + kaar) — (kal—qe +2_4)
Qo= Y, +0Y,) =i(xq — kaar) +i(ka®_ne —T_q)
Vo= (Yo —0Y,) =i(2q — kaar) — i (kaTeaer —x_4)
On the other hand the vectors R, and W, shall be considered only for « real
(i.e. a? = ) and we have the equalities:

ifkg =1 R,=P,, W,=U,
ifky =-1 R,= Qaa Wo =V

(6.5)

(6.6)
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For o € ®¢ and B € Pr we see that P, Qn, Rg € ¥y and Uy, Vo, Wg € pg. We
must notice also that by (6.2) we have

P.o=Py, Qua=-Qa U_oa=-Us V_o=-V, (67)

Now as in [9], setting p (o) = p(8) = A, for o € D¢, B € Py the vectors, in (6.4])
are such that:

P., Qa, Rg € €y and Uy, Vo, Wg € pon. (6.8)

6.2. Basis for €, and pg x, A € D1 (go, ag). Consider now for A € T (go, ap) the
set p71 (\) = {a € @ (g,h) : p(a) = A} and split it separating the real roots from
the complex ones. So we set p~! (A)g = p~1 (A)N@g and p~ (A) = p~! (A) N Dc.
For a root o in p~! ()¢ we have a” # « then we define, as in [7], the set p~! (X)
where we place one of the two elements in {a, a°} for each a € p~* (\). Now for

A, b € D1 (go, ag) take the sets

Ee(\) = {Ry, P5, Qyin€p ' (Ng, 6y €p  (Ve} (6.9)
Ep ()= {Wa, Us, Vora€p ™ (W, By €p (W} '

By Ee (N) C £ox and = (1) C poy, and each set is linearly independent over

R. Since the equal cardinalities of Z¢ (A) and =, (A) coincide with the dimensions

of £ and pox we have a basis for each of these subspaces. Obviously, there is

a one to one correspondence between Z¢ (A) and =, (A). For the members of the
basis Z¢ (A) and =, () we have:

[R,,E] = —n(E)W,, [Ps,E]=—-6(E)Us, [Qs,E]=—6(FE)Vs (6.10)

which is coherent with their one to one correspondence.

6.3. Smooth local fields. Proceeding as in [9] we may extend the vectors of the
basis UxcoZp (M) to local fields defined in some open set Ap containing F in M,
We use for them the same notation as in [9], that is:

{UF v WE:Be(p ' (W), ac(pt(Ng), A€O} (6.11)

At the point E € M, they coincide with the vectors {Wy, Ug, V3} of 5, (A) for
A € ©. We have then a local basis for © (©) in the open set Ag containing F and
these fields are smooth in Ag. Now at any other point p € M there is a ¢ € K such
that p = Ad(g) E and we may consider the open set Ad(g) Ag containing p. On
such open set, we have a local basis of smooth vector field defined by translation
of those on Ag with Ad(g). Hence by the usual definition, [12, p.41, 1.56]), the
distribution © (©) on M is smooth.

In [9 we computed the brackets of the fields in © (O) constructed above by
using the Levi-Civita connection on M. We recall the resulting formula [9]. The
bracket of the fields U} and U at E, for v € p=' (X) and ¢ € p~! (), evaluated
at F, is:

UF U] (B) = (ﬁ)) Ta ([P, U,]) - (%)) Ta([P,U)  (612)
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In this formula, we have brackets of fields (evaluated at E) on the left side and prod-
ucts in gg on the right one. We use the words " brackets” for fields and ” products”
for vectors in gg.

For A, 1 € ©, we have the basis =, (A) for pox and Z, (i) for po, respectively as
indicated in (6.9). To fix notation we set them as:

2 (\) = %UA,, Vy, Ws: yep! ()\)E*, jept ()\)]R} C Pox (6.13)
Zp ()= {Ups Vo, Wy w€p ™ (e, n€p™ (g } C Pop

Each of these tangent vectors at &' generates a corresponding field {U,f , VWF , ng }
and {UL, VF, W{} around E . So we have nine possible brackets of these fields.

6.4. Known identities. We need to mention some important identities proven in
[9] that are to be used in the required computations. First recall that we have

C5,3 = C—5,—p3 (6.14)

Since 0 (2(a+p)) = K(at)T(atp)r and [T, 2] = Ca pT(atg) With real coefficients
Ca,8, the following identities hold:

0 [ta,xp] = 0 (Caplats) = Cap0 (Ta+p) = Capk(ats)T(a+8)"

0[Ta, 2] = [0%0,02p] = [kaTar, kgrge] = kakpCar poT(ao447)
By repeating this computation for [z, x_g], [*—a,zs] and [x_q,z_g] (using (6.14)
and (6.2)) we get the four equalities:

kakgCas polastpo = Capk(ats)T(ats)”

kakgcar,—geTar—pr = Ca,—pk(a—p)T(a—p)” (6.15)

kakpC oo pol—aripe = C—a,pK(—atp)T(~a+p)" '

kakpC—ar,—prT—ar—pgr = Ca,ph(atp)T—(atp)
6.5. Formulae for the sum of roots. We need to recall now the formulae, ob-
tained in [9] and used there and also in [I0]. Those formulae give expressions for
the vectors:

Uste) Viste), Wiore)y i Tr (M)

(for the roots A\, u € Q C @1 (go,a9) with § € p~ (A and ¢ € p~* (u)¢) in terms
of brackets, evaluated at E, of local fields defined around E. They are:

O s Uise) + Acvo (T (H) = [UF.UF] (E) ~ [VF VE] (B)
@(A,M,é,i)‘f(é-ﬁp) + A(>\7M) (Ta (TQ)) [U;’ fo] ( ) [V; ’ Uﬁ] ( ) (616)

with:
Hy (67 90) =
6.17
=2 (kscso,—p (T—s04p — Tso—yp) — KpCs,—po (Ts—po — T—64¢7)) ( )

= 2i (kscso,—p (Tso—p + T—s744) — kpCs,—pr (Ts—pr + T_5447))
We have to consider also the case in which (6 4 ¢) is real and both § and ¢
complex. Again A, yu € Q C ®* (go,a0), § € p~ ' (A\)g and ¢ € p~! (u)¢. In this
case from and having in mind we have:
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ko) =1

Q(A,u,é,ap)W(é—Ha) + A()\,H) (Ta‘ (Hl)) = [U5F7 Uf] (E) - [V:SFa V<pF] (E)
k(stp) = (—1) R -
G(A,u,é,ap)W(é—Ha) + A()x,;t) (Ta‘ (TQ)) = [U(S 7V¢ ] (E) + [‘/;5 ’ng] (E)

(6.19)

and it is necessary to consider also the case in which both § and ¢ are real. That
is A\, p€QC P (go,a0), 6 € p (N and ¢ € p~! (u)p. Furthermore, the first
line in (6.15) in the present case clearly yields ksk, = k(54,) and then formulae

(6.19) becomes:

koro) =1, ks = ky =1

O us,0)Wiste) + A (Ta (Hy)) = [WéF’ st] (E)
Kty =1, ks = kp = —1

O s, Wis+e) + Ao (Ta(Hy)) = — [WéF? an] (E)
kore)y = (=1), ks =1, kyp = —1

O us,0)Wiste) + A (Ta (1)) = [WrSFv Wj] (E)
korg)y = (=1), ks = =1, kp, =1

Ot us.0)Wiere) + Aoa) (Ta (T)) = [Wi W (E)

(6.20)

7. APPENDIX: FORMULAE FOR THE DIFFERENCE OF ROOTS

In this Appendix we give a proof for the new formulae (7.13)), (7.14]) and (7.15)),
used in the proofs of Theorems 2.1 and [2.2] They are ” complementary” of those in

(6.16)), (6.19) and (6.20)) (obtained in [9]) because the last ones give vectors corre-
sponding to sums of roots while the former give those associated to the difference
of roots.

By (6.12)), to get the brackets of tangent fields we take the basis Z¢ (\) and
Ep (1) , for £ » and po,, respectively. There are nine ”possible” products.
Namely:

(1) [an Wa] (2) [Rn» U,B] (3) [Rna ch]
(4) [Ps,Wa] (5) [Ps,Usg]l (6) [P, V] (7.1)
(7) [Q% Wa] (8) [vi UB] (9) [Qw Vw]

However, we shall need only (1) (for 7, « real) and (5), (6), (8), and (9) for
complex roots (4, ¢, 8 and 7). Now we compute the products (5), (6), (8), and (9)
mentioned in . By reasons of space, we shall not perform all these computations
in full detail; however it is straight forward to complete them. We take a pair of
complez roots §, B in ®T (gg, ag). Let us start computing the product (5) with the
expressions in :

(5) [Ps,Ug] =

[((ws + kswse) + (ksw 5o + x-5)), (x5 + kpape) — (kgr_po +x_p)]

We obtain:
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(5) [Ps, U] =
= C5,8T5+8 + kgCs 80 Ts4 50 + ksCso gTso 4 + kskgCss goTso 4o
—kﬁc(;,_gox(;_go — C5,—-BT5—3 — k5k56507_50$5a_5a — k565o7_5x50_g
+ksc_so gx_so45 + kskgCc_so gox_so g0 +C_58T 545+ kpc 58T 5457
—k}(skgcfga’,ga:v,(sa,ga — k(gc,(sa’,g:v,gafg - k’gcfg’,ga:v,(s,ﬁa —C_§5,—BT—5—p
There are four terms with the product ksks which can be replaced using the
above identities (6.15)); by doing this we get:
(5) [Ps,Ug] =
= C5,p%5+p + kpcs peTorpr + KsCse pTse v + C5 pK(548)T(548)7
—kpCs—pos—pe = C5—pTs—p = C5,—pk(5-p)T(5-p)7 — KsCso,—pTso—p
Fhsc—se, 6T 545+ C—6,6K(—548)T(~5+p)7 T C—5,6T—5+p + KgC—5,57T 5157
—C5,6k(548) T —(548)7 — K6C—57,—pT—b7—p — KpC—s5,—prT_5-po — C—5,-pT—5-p
Let us consider now that the expression for U, in (taking o = (6 — 3)). If
we multiply by (—1) cs,—p it takes the form:

(=1) ¢s,—Us—p) (7.2)
= —c5,-p (2(5-p) + k(5-p)T(5-p)7 — k(G-p)T—(6-6)" — T—(5-p))

and observe that the four terms conforming (—1)cs_gUs—py are present in the
product (5). By placing those terms at the end (recalling that c¢53 = c_s5,_3 and
k((s_ﬁ) = k‘(g_(;)) we have
(5) [Ps,Us] =
= C5,p%5+p + kpcs prTstpe + KsCse pTse v + Cs pR(5 1)L (548)7
—kges —goxs—_po — kscso,—gxso—g + ksc_so pr_so48 + kgc_5 0T 5487
—C5,6k(548)T—(548)7 = K6C—57,—pT b7 = K5C—s5,—prT—5-po = C—5,-pT—5-p
—Co,~pT5—p — C5,—pK(5-p)T(6-p)7 T C=6,8k(—545)T(~5+p)" + C=5,8T—5+5
Then, replacing them, the product (5) can be written as:
= C5,p%5+p + kpcs peTspr + KsCse pTsovp + Cs pR5 )T (548)7
—kgc(;’_gax(;_ga — kscso,—gxso—g + kgc_(;a,@x_go_Fﬁ + kBC_(;“@oﬁ_(;_;'_Ba
—C5,6k(618)T —(548)7 — K6C—57,—pT—b7—5 — KpC—s,—prT—5-po — C-5,-pT—5-5
+(=1) cs5,-sUs-p)
We may "repeat” the computation just performed but with the product (9) and
the same pair of roots § and f.
(9) [Qs, V3]
[i (1‘5 — kgl’&”) +1 (k5$_5a - :l?_5) ,i (xg - k‘gxga) —1 (kﬁx_ga — :L‘_B)]
We get
(9) [Qs, V3] =
= —C5,6T5+p + kpCs oot pe + KsCse 56015 — C5,5K(548) T (5+8)
‘HCﬁcfsy_,gal‘(s_ﬁcr + k50507_5x5a_5 - k:(sc_(;o’ﬁl’_(;a+5 - kﬁc_5760'x_5+60
+C5,8K(548)T—(5+p)7 — K6C—57,—pT—b7—p — KpC—5,—prT—5-po + C—5,-pT—5-p
+ (=1 ¢cs-sU(s-p)
Now, by computing the sum (that is (5)+(9)) line by line of the two final
expressions, we observe that the second lines in (5) and (9) cancel each other and

the sum is:
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[Ps,Usl + [Qs, V] =

= 2(kgcs postpe + ksCso pse 1)

+2 (—k(sc_ga’_gx_(;o_ﬁ — kgc_,s,_,gax_(s_go) +(=2) 057_,3U(5_,3)
Which we may write as:

(5)+9) (=2)cs,—pUi—p) + B1(9,8) = [Ps,Up] + [Qs, Vsl (7.3)
where:
By (8, 8) = 2kpcspo (5467 — T—(5467)) + (7.4)
+2kscse 5 (L6745 — T (5745)
and observe that:
By (8,6) = (—1) B1 (4, 8) (7.5)

Now, with the pair of roots {w,¢} and in the same way as above, we may
compute the products (6) and (8) and then observe that in both of them appear
(with opposite signs) the terms of:

Cu,—p Viw—p)
=i (Co, () — K(w—p) O T(w—)7) ~
=i (F(og) Co o) = CopT (=)
Then, by computing the difference (6)—(8), we get:

(6)=(8) 2cw,—pViw—yp) + B2 (w,9) = [P, Vo] — [Qu, U] (7.6)
and, similarly to (7.4]), we find that:
B (w,9) = —2ikyCu,pr (Twtpr + T (wiepn)) (7.72)
+2kwcwa’w (xw"-i-tp + x,(wa+¢)
and B (w, ) has the property:
Bs (p,w) = Bz (w, @) (7.8)

In this fashion, we have formula (7.3 with its companion (|7.4) for the complex
roots (0, 8) and ([7.6)) with (7.7a]) for the pair of complex roots (w, ¢).

7.1. Brackets of fields. Recalling ([7.1) and the definitions (6.4) we take the
following basis of pg x and po , respectively:

(N = an, Us, Vyin€p™ (Nas 67 €p7 (N}
Ep ()= {Wa, Us, Vora€p™t(n)g, By €p (1)}

With these two basis we may obtain the corresponding local fields and with

them form the nine brackets corresponding to the products in (7.1). However we
shall need only those indicated in the following formulae. Using (6.12)) (for 7, «

real and v, d, 8 and ¢ complex) they are:

{n,a} real {5, ¢} complex; p € p™" (A), € p" (1)
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W) [(WEWENE) = (5y) TallRy, Wal) = (58 ) Ta (Ra Wy))
6) [UFUE)E) = (53) Ta(Ps,UL) ~ (55 Ta (P, Us)
6) (U VENE) = (53) Ta (P Vo)) = (5 ) Ta (@ Us)) - (7.9)
®) [VFUETE) = (st ) Ta((Qs. U)) — (5 ) Ta Py, Vi)
O VI B = (i) Tal@s Vo)) ~ () Ta Qo Vo)
Let us consider now the following two vectors in T (M) for § € p~' (u)¢ and
pept Ve
TG0y = [0.UZ] (B)+ [V VE] (B) 10
Considering equalities (5) and (9) in (7.9) and we have:
16,9) = (5t ) {TalPs, U] + TalQs, Vi ]} +
~ (5 ) (70 P, Us] + TalQq. Vi)
and, by (7.3)), we may write:
-1
I(é,¢) = <m) {(=2)¢s5,-oUs—) + B1(8,9)}
-1
- (m) {(=2) cp,—6U(p—s5) + B1 (#,9)}
Now since U_,, = —U, and ¢5_p = C_g,p = —Cyp s, to simplify notation, we
may set:
1 1
s =20+ (35 i85
B1 — <_—1>B(5 )_(__1)3( 8) =
(e X)) T iy
-1 —1
- + B, (&,
(@) + () 0
by and recalling the definition of I (4, ¢), we may finally write:
16.0) = [UFUE) (B) + [V VE] (B) = _—

= Lovns ) Ue-¢) + BLub.0)
Proceeding similarly with (6) and (8) we see that:

J6.9) = (50k) {TalPs, V]~ TalQs, UL}
~ () {TalQy: Us) — Ta [P, Vil}
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and by the definition (7.10) and the equality (7.6]), we see that:

-1

J(6,0) = <m> {2¢5,-oVis—p) + B2 (8,9) }

-1
— | —= ] 12¢4,—-sV(p—s) + B2 (¢, 9)
(M (E)) { (% (¢p—9) }
Now, again by , V_a = =V, and since ¢5,_, = —c, 5 We may set:

1 1
= —2 _ — —
‘S(A,y,,&,(p) Co,—¢ ()\ (E) + m (E))
and, recalling (7.8)), we may also set:

B2 wse) = (%) By (8, ) — (ﬁ;)) B; (,6)

(@) - (7)) 09

This notation allows us to finally write:
J(8,0) = (U V] (B) = [V, U]] (B)
= S(A’P"‘;’Lp) VY((S*‘»D) + %Z(AJ“#&W)

(7.12)

7.2. Resulting formulae for the difference of roots. We may now write
formulae (7.11) and (7.12), for the roots X, u € ®* (go,a0), & € p~' (N)¢ and
pept(u)g, as:

U5 UG 1 (B) + [V VET(E) = L0660 Uts—) T Bl i)

S VINE) = [VIE UL (B) = S mso)Vio—g) + B2(a o)

(7.13)

It is also necessary to consider the case in which (§ — ¢) is a real root and both
& and ¢ are complex. Again \, 1 € ®T (go,a0), § € p~' (\)¢ and ¢ € p~! (u). It
follows from ([7.13)) due to that we have:

k) =1
][ch UG ]((E))+ Vi Vo T (B) = Loumsp Wis—e) + Biouuse) (7.14)
(5-¢)

(U5 Vo] (B) = [V U1 (E) = Sy Wio—p) + B2 i)
Considering also the case in which both § and ¢ are real, that is A\, u €
Dt (go,a0), 6 € p7 1 (N)g and ¢ € p~'(u)p. The second line in in the
present case clearly yields ksk, = k(5_,) and then formulae (7.14) become:

ko) =1, ks = kyp = 1
Lonms)Wis—g) + Blovuse) = (Wi W] (E)
kisog) =1, ks = kyp = —1

Lonms)Wis—g) + Blouse = (Wi W] (E)
kG_p)y = (1), ks =1, kp = —1
Founso)Wie—g) +B2ose) = (Wi WE] (E)
k(5_¢) =(-1), ks = -1, ky,=1
Foumso)Wi—g) +B20use) = — (W W (E)

(7.15)

Submitted: March 20, 2023
Accepted: December 22, 2023
Published (early view): August 26, 2024


https://doi.org/10.33044/revuma.3993

Revista de la Unién Matematica Argentina Accepted article - Early view version

This peer-reviewed unedited article has been accepted for publication. The final copyedited version
may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite
using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.3993.

CANONICAL DISTRIBUTION ON ISOPARAMETRIC SUBMANIFOLDS III 21

Acknowledgement. The author expresses his appreciation to the reviewer. The
comments made lead to improvements in the presentation of the paper.

REFERENCES

[1] Berndt J., Console S., Olmos C. Submanifolds and Holonomy. Chapman & Hall/CRC Re-
search Notes in Mathematics 434 (second edition).
Burstall F. E. Rawnsley J. H. Twistor Theory for Riemannian Symmetric Spaces. Lecture
Notes in Math. 1424 Springer-Verlag.
[3] Ferus D. Symmetric submanifolds of euclidean space. Mat. Ann. 247 (1980) 81 - 93.
[4] Freudenthal, H. de Vries, H. : Linear Lie Groups, Academic Press, 1969.
[5] Helgason S. Differential Geometry, Lie Groups and Symmetric Spaces Academic Press, New
York and London 1978.
[6] Humphreys, J. E.: Introduction to Lie algebras and representation theory. Graduate Texts
in Mathematics 9. Springer-Verlag, New York-Heidelberg Berlin 1972.
[7] Kammeyer H. An explicit rational structure for real semisimple Lie algebras. Journal of Lie
Theory 24 (2014) #2, 307-319.
[8] Knapp Lie Groups, beyond and introduction. Second Edition Birkhauser 2002.
[9] Sanchez Cristidan U. A canonical distribution on isoparametric submanifolds I Revista de la
Unién Matemética Argentina Vol 61 #1 2020, 113-120.
[10] Sanchez Cristidn U. A canonical distribution on isoparametric submanifolds II Revista de la
Unién Matemética Argentina Vol 62 #2 2021, 491-513.
[11] Sdnchez Cristidn U. The Lemmata in “Canonical distribution on isoparametric submanifolds
II1.” https://ciem.conicet.unc.edu.ar/wp-content/uploads/sites/78,/2022/03/OTRA-A.pdf
[12] Warner G. Foundation of Differentiable manifolds and Lie Groups. Scot, Foresman and Co.
[13] Wolf Joseph A. Spaces of Constant curvature. Publish or Perish Boston Mass. Third edition.

2

(Cristidn U. Sénchez) FA.M.A.F. UNIVERSIDAD NACIONAL DE COrRDOBA AND CONICET,
ARGENTINA
Email address: csanchez@famaf .unc.edu.ar

Submitted: March 20, 2023
Accepted: December 22, 2023
Published (early view): August 26, 2024


https://doi.org/10.33044/revuma.3993
https://ciem.conicet.unc.edu.ar/wp-content/uploads/sites/78/2022/03/OTRA-A.pdf

	1. Introduction
	2. Objectives
	3. Construction of the distributions
	3.1. Distribution generated by Symmetric R-spaces
	3.2. Distribution generated by the other spaces

	4. Examples
	4.1. The space EIV=( E6.U( 1) ) /F4
	4.2. The space AII=SU( 8) /Sp( 4) 
	4.3. The space EII=E6/SU( 6) SU( 2) .
	4.4. The space EVI=E7/SO( 12) SU( 2) 
	4.5. The space FI=F4/Sp( 3) SU( 2) 

	5. Proof of Theorems 2.1 and 2.2
	6. Appendix: notation and previous results
	6.1. Basis for g0.
	6.2. Basis for k0, and p0,, +( g0,a0) .
	6.3. Smooth local fields.
	6.4. Known identities
	6.5. Formulae for the sum of roots

	7. Appendix: formulae for the difference of roots
	7.1. Brackets of fields.
	7.2. Resulting formulae for the difference of roots.

	References

