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FROBENIUS PROPERTY FOR FUSION CATEGORIES OF

DIMENSION 120

LI DAI

Abstract. In this paper we prove that fusion categories of Frobenius-Perron

dimensions 120 are of Frobenius type. Combining this with known results in

the literature, we get that all weakly integral fusion categories of Frobenius-
Perron dimension less than 126 are of Frobenius type.

1. Introduction

There is a classical result in group theory that the dimension of a simple module
of a finite group divides the order of the group. This result was first proved by
Frobenius. In honor of Frobenius for his work, we call a fusion category C is of
Frobenius type if, for every simple object X of C, the Frobenius-Perron dimension

of X divides the Frobenius-Perron dimension of C, i.e., the ratio FPdim(C)
FPdim(X) is an

algebraic integer. In [7, Appendix 2], Kaplansky conjectured that the representa-
tion category of a finite dimensional semisimple Hopf algebra is of Frobenius type.
Although some results on the conjecture have been obtained, the conjecture is still
open.

In [5], the authors introduced the notion of a weakly group-theoretical fusion
category and proved that this class of fusion categories have the Frobenius property,
see [5, Theorem 1.5].

In [1], Dong, Natale and Vendramin proved that fusion categories of dimension
84 and 90 are of Frobenius type. Combining the results in [5] they obtained that
every weakly integral fusion category of Frobenius-Perron dimension less than 120
is of Frobenius type.

In the present paper, we prove that a fusion category of dimension 120 is also of
Frobenius type. Together with the results in the literature, we obtain that every
weakly integral fusion category of Frobenius-Perron dimension less than 126 is of
Frobenius type.

The paper is organized as follows. In Section 2, we recall some basic definitions
and results on fusion categories. Some of them have appeared in the context of
category of representations of a semisimple Hopf algebra. We also get some useful
lemmas in this section. In section 3, we prove our main result on fusion categories
of dimension 120.
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Throughout this paper, we shall work over an algebraically closed field k of
characteristic 0. We refer to [3] for the main notions about fusion categories.

2. Preliminaries

Let C be a fusion category over k and let Irr(C) be the set of isomorphism classes
of simple objects of C. Then the set Irr(C) is a basis of the Grothendieck ring K0(C)
of C.

The Frobenius-Perron dimension FPdim(X) of X ∈ Irr(C) is the largest eigen-
value of the matrix of left multiplication by X in K0(C) with respect to the basis
Irr(C). The Frobenius-Perron dimension of C is defined as the number

FPdim(C) =
∑

X∈Irr(C)

FPdim(X)2.

A fusion category is weakly integral if FPdim(C) is an integer. If FPdim(X) is
an integer for every X ∈ Irr(C) then C is integral.

A fusion subcategory of C is a full tensor subcategory D such that if X is an
object of C isomorphic to a direct summand of an object Y of D, then X is in D.
By [4, Proposition 8.15], if D is a fusion subcategory of C then FPdim(D) divides

FPdim(C), i.e. FPdim(C)
FPdim(D) is an algebraic integer.

A simple object X of C is invertible if FPdim(X) = 1. We use G(C) to denote
the group of isomorphism classes of invertible simple objects of a fusion category C.
All invertible simple objects of C generate a fusion subcategory Cpt of C. It is the
largest pointed fusion subcategory of C. A fusion category is pointed if all simple
objects are invertible.

Let 1 = d0 < d1 < · · · < ds be positive real numbers and n0, n1, · · · , ns be
positive integers. We say C is of type (d0, n0; d1, n1; · · · , ds, ns) if ni is the number
of the non-isomorphism simple objects of Frobenius-Perron dimension di, for all i.

Lemma 2.1 and Lemma 2.2 below are proved by Nichols and Richmond in the
setting of semisimple Hopf algebra. Their proofs also work in the fusion category
setting because their proofs only make use of the properties of the Grothendieck
ring.

Lemma 2.1. [8, Theorems 9,10] Let C be a fusion category and X ∈ Irr(C). Let
m(X,Y ) = dimHomC(X,Y ) denote the multiplicity of X in an object Y . Then

(1) m(X,Y ⊗Z) = m(Y ∗, Z⊗X∗) = m(Y,X⊗Z∗) and m(X,Y ) = m(X∗, Y ∗).
(2) Assume Y ∈ Irr(C) and g ∈ G(C). Then m(g,X ⊗ Y ) = 1 if Y = X∗ ⊗ g,

otherwise m(g,X ⊗ Y ) = 0.

In particular, part (2) implies that m(g,X ⊗Y ) = 0 if FPdim(X) ̸= FPdim(Y ).
Moreover, m(g,X ⊗ X∗) > 0 if and only if m(g,X ⊗ X∗) = 1 if and only if
g ⊗X = X.

The set of isomorphism classes of invertible simple objects in the decomposition
of X ⊗X∗ will be denoted by G[X]. It is a subgroup of G(C) whose order divides
FPdim(X)2, see [1, Lemma 2.2].
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Lemma 2.2. [8, Theorem 11] Assume that the integral fusion category C contains
a 2-dimensional simple object X. Then one of the following holds:

(1) G[X] ̸= {1}.
(2) C has a fusion subcategory D of type (1, 2; 2, 1; 3, 2) such that X /∈ Irr(D).

Moreover, D has an invertible simple object g of order 2 such that g ⊗X ̸= X.
(3) C has a fusion subcategory of type (1, 3; 3, 1) or (1, 1; 3, 2; 4, 1; 5, 1).
In particular, if G[X] = {1} then C has a fusion subcategory of dimension 12, 24

or 60.

A fusion category C is called a G-extension of a fusion category D if it has a
faithful grading C = ⊕g∈GCg such that the tensor product of C maps Cg × Ch to
Cgh, (Cg)∗ = Cg−1 and the trivial component Ce is equivalent to D.

It is known that any fusion category C has a canonical faithful grading C =
⊕g∈U(C)Cg whose trivial component Ce is the adjoint subcategory Cad which is
generated by all simple objects in X ⊗X∗, X ∈ Irr(C). The group U(C) is called
the universal grading group of C, see [6].

Let C be a fusion category and let Z(C) be its Drinfeld center. Consider the
group homomorphism F0 : G(Z(C)) → G(C) induced by the forgetful tensor functor
F : Z(C) → C. Let N be the kernel of F0. By [1, Lemma 2.1], C is faithful graded

by the group N̂ . Moreover, if U(C) is trivial then the group homomorphism F0 is
injective. These results implies the lemma below.

Lemma 2.3. Let I : C → Z(C) be the right adjoint functor of the forgetful functor
F : Z(C) → C. If I(1) contains a nontrivial invertible simple object g then C
has a nontrivial faithful grading. Moreover, Z(C) contains a nontrivial Tannakian
subcategory.

Proof. Since I is the right adjoint functor of F , we have 0 ̸= HomC(F (g),1) =
HomZ(C)(g, I(1)). Hence F (g) = 1. Thus the kernel of F0 : G(Z(C)) → G(C) is
not trivial. By [1, Lemma 2.1], C is faithfully graded by some finite group. Then
Z(C) contains a nontrivial Tannakian subcategory by [5, Proposition 2 9(ii)]. □

For the the existence and the structure of the right adjoint to the forgetful
functor, the reader is directed to [5, Section 3]. The following lemma will be
frequently used in our proof. It is contained in the proof of [5, Lemma 9.17].

Lemma 2.4. Let C be an integral fusion category. If C has a fusion subcate-
gory D then I(1) has a subalgebra B corresponding to D such that FPdim(B) =
FPdim(C)/FPdim(D).

Lemma 2.5. Let C be a fusion category. If the Drinfeld center Z(C) has a nontriv-
ial symmetric category E and the order of G(C) is odd, then Z(C) has a nontrivial
Tannakian subcategory

Proof. The proof is by considering the universal grading of C. If C has a nontrivial
universal grading then [5, Proposition 2.9(ii)] shows that Z(C) contains a nontrivial
Tannakian subcategory.
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If C has a trivial universal grading then the group homomorphism F0 : G(Z(C)) →
G(C) is injective by [1, Lemma 2.1]. Hence the order of G(Z(C)) is odd since the
order of G(C) is odd. It follow that Z(C) can not have fusion subcategory of di-
mension 2. This implies that the dimension of E is bigger than 2. Thus E contains
a nontrivial Tannakian subcategory by [2, Corollary 2.50]. □

Lemma 2.6. Assume that C has type (1, n1; d2, n2; · · · , ds, ns). Then C has a
fusion subcategory of type (1, n1; d2, n2; · · · , dk, nk) if one of the following holds:

(1) d2k < dk+1;
(2) d2k = dk+1 and G[X]∩G[Y ] ̸= {1} for all simple object X and Y of dimension

dk.

Proof. (1) The assumption d2k < dk+1 means that the tensor product of two simple
objects of dimension ≤ dk is a sum of simple objects of dimension ≤ dk. Hence all
simple objects of dimension ≤ dk generates a fusion subcategory.

(2) By [1, Lemma 2.5], G[X] ∩ G[Y ] ̸= {1} means that the tensor product of
two simple objects of dimension dk can not be a simple object, and hence it is a
sum of simple objects of dimension ≤ dk. Hence, all simple objects of dimension
≤ dk generate a fusion subcategory. □

3. Fusion categories of dimension 120

Lemma 3.1. Let C be an integral fusion category of dimension 120. If the Drinfeld
center Z(C) has a nontrivial Tannakian subcategory Rep(G) then C is weakly group-
theoretical. In particular, C has the Frobenius Property.

Proof. If the dimension of Rep(G) is a power of 2 then G is a solvable group.
Hence Rep(G) has a subcategory Rep(H) of dimension 2. Under the forgetful
functor F : Z(C) → C, the image of Rep(H) is either Vec or Rep(H), where Vec
is the trivial category. Then C is an H-extension of a fusion category of dimension
60 or C is an H-equivariantization of a fusion category of dimension 60, see [5,
Propositions 2.9, 2.10]. By [5, Theorem 9.16], a fusion category of dimension 60 is
weakly group-theoretical. Hence C is weakly group-theoretical by [5, Proposition
4.1].

If the dimension of Rep(G) has prime factor 3 or 5 then we consider the de-
equivariantization Z(C)G of Z(C) by Rep(G). Set D = Z(C)G. Then D = ⊕g∈GDg

is faithfully graded by G. The dimension of the trivial component De is 120
|G|2 , see

[2, Proposition 4.56]. Under our assumption, FPdim(De) has at most 2 prime
factors. Hence De is solvable by [5, Theorem 1.6]. It follows that De is also weakly
group-theoretical. Thus C is weakly group-theoretical by [5, Proposition 4.1]. □

Lemma 3.2. Let C be an integral fusion category of dimension 120. Assume
that C has a fusion subcategory D of dimension ≥ 4. Then Z(C) has a nontrivial
symmetric subcategory.

Proof. By Lemma 2.4, I(1) contains a subalgebra B corresponding to the fusion

subcategory D such that FPdim(B) = FPdim(C)
FPdim(D) ≤ 30. By Lemma 2.3, we may

assume that B contains no nontrivial invertible simple objects.
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In view of [5, Theorem 2.11], the Frobenius-Perron dimensions of simple objects
of Z(C) divide 120. Hence the possible decomposition of B as an object of Z(C)
shows that B must contains simple objects with prime power dimension. Then
Z(C) contains a nontrivial symmetric subcategory by [2, Corollary 7.2]. □

Theorem 3.3. Let C be an integral fusion category of dimension 120. Then C has
the Frobenius property.

Proof. Assume that C does not have the Frobenius property. Then C has simple
objects of dimension 7 or 9. The result then follows from the Lemma 3.4 and
Lemma 3.5 below. □

Lemma 3.4. Let C be an integral fusion category of dimension 120. Then C can
not have simple objects of dimension 7.

Proof. Assume on the contrary that C has simple objects of dimension 7. Then C
has one of following types:
(1,1;3,1;5,1;6,1;7,1),(1,1;3,2;4,1;6,1;7,1), (1,1;3,5;5,1;7,1),(1,1;3,6;4,1;7,1),
(1,2;2,1;4,1;7,2),(1,1;2,m;· · · ;7,1).

Type (1, 1; 3, 1; 5, 1; 6, 1; 7, 1): Let Xi be simple object of dimension i, where
i = 3, 5, 6, 7. Then X3 ⊗X3 = 1⊕X3 ⊕X5. From m(X5, X3 ⊗X3) = m(X3, X5 ⊗
X3) = 1, we can write

(i) X5 ⊗X3 = X3 ⊕ 2X6 or (ii) X5 ⊗X3 = X3 ⊕X5 ⊕X7.

Case (i): From (X6, X5 ⊗X3) = m(X5, X6 ⊗X3) = 2, we can write X6 ⊗X3 =
2X5⊕W , where W does not contain simple objects of dimension 5. In other words,
W is a direct sum of simple objects of dimension 3, 6 or 7. It is impossible since
FPdim(W ) = 8.

Case (ii): From (X7, X5 ⊗X3) = m(X5, X7 ⊗X3) = 1, we can write X7 ⊗X3 =
X5 ⊕ W , where W does not contain simple objects of dimension 5. In addition,
W does not contain simple objects of dimension 3. In fact, if m(X3, X7 ⊗X3) ≥ 1
then m(X7, X3 ⊗X3) ≥ 1. This contradicts the decomposition of X3 ⊗X3. Hence
W is a direct sum of simple objects of dimension 6 or 7. It is also impossible since
FPdim(W ) = 16.

Type (1, 1; 3, 2; 4, 1; 6, 1; 7, 1): Let X3 be simple object of dimension 3. Then
X3 ⊗X∗

3 = 1 ⊕ 2X4, where X4 is the unique simple object of dimension 4. From
m(X4, X3⊗X∗

3 ) = m(X3, X4⊗X3) = 2, we getX4⊗X3 = 2X3+X6, whereX6 is the
unique simple object of dimension 6. From m(X6, X4⊗X3) = m(X4, X6⊗X∗

3 ) = 1,
we get X6⊗X∗

3 = 2X7+X4, where X7 is the unique simple object of dimension 7.
From m(X7, X6 ⊗X∗

3 ) = m(X6, X7 ⊗X3) = 2, we can write X7 ⊗X3 = 2X6 +W ,
where FPdim(W ) = 9. The possible decomposition of W is W = aX3+bX ′

3, where
a+b = 3 andX ′

3 is another simple object of dimension 3. But a = m(X3, X7⊗X3) =
m(X7, X3 ⊗ X∗

3 ) = 0 and b = m(X ′
3, X7 ⊗ X3) = m(X7, X

′
3 ⊗ X∗

3 ) ≤ 1, which
contradicts a+ b = 3.

https://doi.org/10.33044/revuma.4390
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Type (1, 1; 3, 5; 5, 1; 7, 1): Let X3 be a simple object of dimension 3. Then
X3 ⊗X∗

3 has the unique possible decomposition;

X3 ⊗X∗
3 = 1⊕X ′

3 ⊕X5.

where X ′
3 is a simple object of dimension 3 and X5 is the unique simple object of

dimension 5.
From m(X5, X3⊗X∗

3 ) = (X3, X5⊗X3) = 1, we have X5⊗X3 = X3⊕X, where
FPdim(X)=12. If X contain a simple object X ′′

3 of dimension 3 then m(X ′′
3 , X5 ⊗

X3) = (X5, X
′′
3⊗X∗

3 ) = 1. This shows thatX ′′
3⊗X∗

3 = X5⊕Y , where FPdim(Y )=4,
which implies that Y must contain the unique invertible simple object 1. This is
impossible since X ′′

3 ̸= X3. Hence we have

X5 ⊗X3 = X3 ⊕X5 ⊕X7,

where X7 is the unique simple object of dimension 7. Without loss of generality,
we get X5 ⊗ Z = Z ⊕ X5 ⊕ X7 for any simple object Z of dimension 3. From
m(X5, X5 ⊗ Z) = m(X5, Z

∗ ⊗X5) = m(Z∗, X5 ⊗X∗
5 ) = m(Z,X5 ⊗X∗

5 ) = 1, we
know

X5 ⊗X∗
5 = 1⊕X1

3 ⊕X2
3 ⊕X3

3 ⊕X4
3 ⊕X5

3 ⊕ U

where FPdim(U)=9 and X1
3 ,X

2
3 ,X

3
3 ,X

4
3 ,X

5
3 are all simple object of dimension 3.

This is impossible since U is a direct sum of simple objects of dimension 5 or 7.

Type (1, 1; 3, 6; 4, 1; 7, 1): Let X3 be a simple object of dimension 3. Then

X3 ⊗X∗
3 = 1⊕ 2X4,

where X4 is the unique simple object of dimension 4.
From m(X4, X3 ⊗ X∗

3 ) = m(X3, X4 ⊗ X3) = 2, we haveX4 ⊗ X3 = 2X3 ⊕ X,
where FPdim(X)=6 and X is a direct sum of simple objects of dimension 3. Let X ′

3

be a summand of X. Then m(X ′
3, X4 ⊗X3) = m(X4, X

′
3 ⊗X∗

3 ) ≤ 2, which shows
that X ′

3 ⊗X∗
3 = aX4 ⊕ Y where a = 1 or 2, FPdim(Y )=9-4a. This is impossible

since X ′
3 ⊗X∗

3 can not contain 1.

Type (1, 2; 2, 1; 4, 1; 7, 2): Let X2 and X4 be simple objects of dimension 2 and
4, respectively. Then X2⊗X4 = 2X4 which means that X4⊗X∗

4 = 1⊕g⊕2X2⊕X,
where G(C) = {1, g}, FPdim(X)=10. This is impossible since X is a direct sum of
simple objects of dimension of 4 or 7.

Type (1, 1; 2,m; · · · ; 7, 1): By Theorem 2.2 C has a fusion subcategory of di-
mension 6 or 12 or 60. It follows from Lemma 3.2 that Z(C) contains a nontrivial
symmetric subcategory. By Lemma 2.5, Z(C) has a Tannakian subcategory. Then
C is weakly group-theoretical by Lemma 3.1. By [5, Theorem 1.2], C has the Frobe-
nius property. This is a contradiction. □

Lemma 3.5. Let C be an integral fusion category of dimension 120. Then C can
not have simple objects of dimension 9.

Proof. Assume on the contrary that C has a simple objects of dimension 9. Then
C has one of following types:
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(1, 1; 2, 1; 3, 1; 5, 1; 9, 1),(1, 1; 2, 1; 3, 2; 4, 1; 9, 1), (1, 1; 2, 5; 3, 2; 9, 1),
(1, 3; 3, 4; 9, 1),(1, 3; 2, 9; 9, 1), (1, 3; 6, 1; 9, 1).

Types (1, 1; 2, 1; 3, 1; 5, 1; 9, 1), (1, 1; 2, 1; 3, 2; 4, 1; 9, 1), (1, 1; 2, 5; 3, 2; 9, 1): C has
a fusion subcategory of dimension 6, 12 or 60, by Theorem 2.2. Then Z(C) has non-
trivial symmetric subcategory by Lemma 3.2. Since the order of G(C) is odd, Z(C)
has a nontrivial Tannakian subcategory by Lemma 2.5. Hence C is weakly group-
theoretical by Lemma 3.1. By [5, Theorem 1.2], C has the Frobenius property, a
contradiction.

Types (1, 3; 3, 4; 9, 1), (1, 3; 2, 9; 9, 1): By Lemma 2.6, C has fusion subcategory
of dimension 39 which does not divide 120. This is also impossible.

Type (1, 3; 6, 1; 9, 1): Let X6 and X9 be simple objects of dimension 6 and 9,
respectively. Consider the action ofG(C) on Irr(C), we getG[X6] = G(C) sinceX6 is
the unique simple objects of dimension 6. Similarly, we have G[X9] = G(C). Then
X6⊗X6 = 1⊕g1⊕g2⊕X6⊕3X9, where {1, g1, g2} = G(C). Fromm(X9, X6⊗X6) =
m(X6, X9 ⊗ X6) = 3, we get X9 ⊗ X6 = 3X6 + 4X9. From m(X9, X9 ⊗ X6) =
m(X9, X6⊗X9) = m(X6, X9⊗X9) = 4, we get X9⊗X9 = 1⊕g1⊕g2⊕4X6+6X9.
Hence the matrices of left tensor product by g1, g2, X6, X9 are

Mg1 =


0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

 ,Mg2 =


0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 ,

MX6 =


0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
1 1 1 1 3
0 0 0 3 4

 ,MX9 =


0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
1 1 1 1 4
0 0 0 4 6

 .

Let A = I5 + Mg1Mg2 + Mg2Mg1 + M2
X6

+ M2
X9

. The eigenvalues of A are
120, 8, 5, 3, 3. These eigenvalues are called the formal codegrees of C in [9].

It is known that I(1) is an algebra in Z(C), and hence 1 is a summand of
I(1). Since K(C) is commutative and semisimple, it either has five 1-dimensional
irreducible representations, or has one trivial representation and one 2-dimensional
irreducible representation. If the later case holds true then I(1) contains 2 simple
objects: one with multiplicity 1 and another one with multiplicity 2 by [9, Theorem
2.13]. But 3 different formal codegrees implies that I(1) contains at least 3 simple
objects with distinct dimensions, also by [9, Theorem 2.13]. Hence only former
case holds true. It follows from [9, Theorem 2.13] that the object I(1) is a sum of
5 simple objects and every object has multiplicity 1. So we can write

I(1) = 1⊕A⊕B ⊕ C ⊕D.

Again by [9, Theorem 2.13], we have

FPdim(A) = 15,FPdim(B) = 24,FPdim(C) = FPdim(D) = 40.
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By [4, Proposition 5.4], we have

F (I(1)) = F (1)⊕ F (A)⊕ F (B)⊕ F (C)⊕ F (D)

=
⊕

T∈Irr(C)

T ⊗ 1⊗ T ∗

= 5 · 1⊕ 2g1 ⊕ 2g2 ⊕ 5X6 ⊕ 9X9.

Assume F (A) = 1+a1g1⊕a2g2⊕a3X6⊕a4X9, F (B) = 1+b1g1⊕b2g2⊕b3X6⊕
b4X9, F (C) = 1+c1g1⊕c2g2⊕c3X6⊕c4X9, F (D) = 1+d1g1⊕d2g2⊕d3X6⊕d4X9.
Applying FPdim on both sides, we have a system of equations:

1 + a1 + a2 + 6a3 + 9a4 = 15, a1 + b1 + c1 + d1 = 2,

1 + b1 + b2 + 6b3 + 9b4 = 24, a2 + b2 + c2 + d2 = 2,

1 + c1 + c2 + 6c3 + 9c4 = 40, a3 + b3 + c3 + d3 = 5,

1 + d1 + d2 + 6d3 + 9d4 = 40, a4 + b4 + c4 + d4 = 9.

It is easy to check that this system of equations does not have solutions. This
completes the proof. □

Theorem 3.6. Let C be a weakly integral fusion category of dimension less than
126. Then C has the Frobenius property.

Proof. If FPdim(C) = paqb then C is solvable by [5, Theorem 1.6], where p, q are
prime numbers, a, b ≥ 0. If FPdim(C) = pqr, then either C is integral and thus
group-theoretical [5, Theorem 9.2], or C is a Z2-extension of a fusion subcategory
D by [6, Theorem 3.10]. We may assume that p = 2 and FPdim(D) = qr. Then D
is solvable by [5, Theorem 1.6]. Hence C is solvable by [5, Proposition 4.5]. In all
cases, C is weakly group-theoretical and hence has the Frobenius property.

By the main result of [1], every weakly integral fusion category of dimension
less than 120 has the Frobenius property. It remains to consider the cases when
FPdim(C) = 120. If C is integral then the result follows in this case from Theorems
3.3. If C is not integral then C is a G-extension of a fusion subcategory D by [6,
Theorem 3.10], where G is an elementary abelian 2-group. Then FPdim(D) = 60,
30, or 15. Hence C is weakly group-theoretical by [5, Proposition 4.1]. Thus C has
the Frobenius property by [5, Theorem 1.5]. □
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