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TWO RESULTS ON THE HOMOTHETY CONJECTURE
FOR CONVEX BODIES OF FLOTATION ON THE PLANE

M. ANGELES ALFONSECA, FEDOR NAZAROV, DMITRY RYABOGIN, ALINA STANCU,
AND VLADYSLAV YASKIN

ABSTRACT. We investigate the homothety conjecture for convex bodies of
flotation of planar domains close to the unit disk B. We show that for every
density D € (0, %), there exists v = (D) > 0 such that if (1 —~v)B C K C
(1 +4)B and the convex body of flotation KP of an origin symmetric body
K of density D is homothetic to K, then K is an ellipse. On the other hand,
we also show that if the symmetry assumption is dropped, then there is an
infinite set of densities accumulating at % for which there is a body K different
from an ellipse with the property that K is homothetic to K.

1. INTRODUCTION

Let K be abody in R?, i.e., K # @, K is compact, the interior of K is connected,
and K is the closure of its interior. For every § € R and the corresponding unit
vector e(f) = (cosf,sinf) and for every ¢ € R, define the half-planes

WH0,t) ={x: (zr,e(0)) >t} and W (0,t) = {z: (z,e(0)) <t}
If 0 < D < 1, then for every § € R | there is a unique #(0) such that
voly(WT(6,t(0)) N K) = Dvoly(K).
The corresponding convex body of flotation KP is defined as

KP = (Y W (0,10)).
0cR
Note that KP = @ for all D € (1,1). The body K? can be viewed as the set of
points that stay above the water level when a solid with shape K of uniform density
D floats in any orientation. For technical reasons, it will be more convenient for us
to view KP as the intersection of half-planes bounded by the lines cutting from K
a fixed area § € (0,vola(K)) as it is usually done in the literature on convex bodies
of flotation (also known as “floating bodies”, see [2] and [3]). In this case, we shall
use the notation Ks. We obviously have Ks = K? for § = Dvoly(K).
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The homothety conjecture in R? says that if a convex body is homothetic to one
of its convex bodies of flotation, then it is an ellipse. To the best of our knowledge,
the question was first raised in 1994 (see [4]). The homothety condition means that
KP = \K for some D € (0,1), A > 0. While the full homothety conjecture looks
too strong to be true (we will show that it is actually false in R?), one can also
consider various restricted versions of it, imposing additional assumptions on K,
D, and/or .

In this paper we will prove two theorems. The first one, roughly speaking, says
that on the plane the homothety conjecture holds for origin symmetric convex
bodies in a small neighborhood of the unit disk. More precisely, we have

Theorem 1.1. For every compact interval I C (0, %), there is v > 0 such that

if KP = MK for some D € I and A\ > 0, K C R? is origin symmetric, and
(1—7)B C K C (1+7)B, then K is an ellipse.

Here B = {x € R? : |z| < 1} is the unit disk.

We remark that instead of restricting the density D away from its extreme values,
we can just as well restrict the homothety coefficient A to a compact subinterval
J C (0,1) in this theorem. Also, since the problem is affine-invariant, the condition
(1—%)B C K C (1++)B can be replaced by the condition that the Banach-Mazur
distance from K to B is less than v at no extra cost.

The second theorem shows that in the asymmetric case, the full homothety
conjecture fails rather drastically, at least on the plane.

Theorem 1.2. The equation KP = AK has infinitely many affinely non-equivalent
asymmetric convexr solutions K C R?. Moreover, these solutions can be chosen as
small perturbations of the unit disk with the corresponding densities D and homo-
thety coefficients A accumulating at % and 0 respectively.

2. QUASI—DIFFERENTIABILITY PROPERTIES OF THE MAPPING pg — Pk, -

We shall consider the homothety problem in the class of the star-shaped (but
not necessarily convex!) bodies K C R? with continuous radial functions

p(0) = pr(0) = max{t > 0: te(d) € K}.

For the mapping px — pk;, which we will abbreviate to p — ps, the homothety
condition is equivalent to the equation Ap — ps = 0. Note that this equation holds
for the unit ball B (p = 1) with any § € (0, %) and A = cosa, where o € (0, F) is
the angle for which the shaded disk segment BNW ™ (6, cos a) on Figure spanned
by a circular arc of length 2« has area J.

We shall show that when K is sufficiently close to the unit disk, the mapping

p — ps is quasi-differentiable with the quasi-differential equal to

0+

1
Ap ZSina/Ap(T)dT'

60—«
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B

FIGURE 1. Relation between o and 9.

The latter means that for any continuous 27-periodic p;, p2 close to 1, we have

0+«
p1a(0) = p25(0) ~ 5 [ (nlr) = pa(r)ir (21)
60—«

with an error whose size is substantially smaller than the size of p; — po.
The idea of the proof is very simple: given § € (0, 5 ) and two star-shaped bodies
K, and K, close to the unit disk, for every § € R, define ¢;(6) by

volo(K; NWH(0,¢;(0)) =06, j=1,2. (2.2)
Then, up to a small boundary effect, the difference
VOlQ(Kl N W+(9, tg(e))) — VOIQ(KQ N W+(9, t2(6)))
is determined by the difference of the boundaries of K; and K5 in the angle
Co(0) = {z €R?: L(z,e(0)) < a}.
O+«
So in the first order approximation, this difference is [ (p1(7) — p2(7))dr. To
0—a
compensate for this difference, we need to move ¢t away from ¢2(6). Since all cross-
sections at the relevant levels are close to those of the unit disk, moving ¢ by At units

changes the area voly(K1 N W™ (6,t)) by approximately —2sin a At. Thus, to get

0+
voly (K1 NWT(6,t)) = &, we need to increase t5(f) by the amount w—— [ (p1(7)—
0—a
pZ(T))dTv ie.,
1 0+a
0(0) - (0) ~ o [ (pa() - palrar
0—a

Note also that the quantity on the right hand side changes very little if we replace
0 by a close angle 0": the corresponding domains of integration have a huge com-
mon part and only short boundary intervals that are included in one but not the
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other one. Thus, when switching from K> to K, all boundary lines of the half-
planes W~ (¢',t2(0")) determining Ko 5 move out by pretty much the same amount
O+

J (p1(7) — pa2(7))dT as long as 0" is close to 6. Since the value of the radial
0—a
function pg, (6) of the convex body of flotation Ks of the body K close to the unit
disk is determined by #(6") with 6" close to 6, this last observation translates into
(2.1) as desired. As usual, the devil is in the details, to which we now turn.

Let T' > 0 be small. Consider the disks (1 +I')B and (1 —T')B, and let ¢1 be

defined by

1
2sin o

voloy(1£T)BNW™T(0,ty)) = 6.

Claim 2.1. If 7l 1+Fa < cosa, then ty are well-defined and satisfy |[t+ — cosal <

2 sin
7l 21-}-1“ .
sSin o«

Proof. Observe that
vola((1+T)BNWT(6,cosa)) < vola(BNWT (6, cosa))
+vola(((1+T)B\ B)nW™(6,0))
<§+m(1+D).

Note also that if ¢ > cos « is so large that the length of the intersection of (1+1I")B
with the boundary line of W (6,¢) is less than or equal to 2sin «, then we already
have
vola((1+T)BNWT(0,t)) < voloa(BNW(,cosa)) =6
(the area of the segment of a bigger disk spanned by a not longer chord is smaller).
Thus, to completely compensate for the increase in area of B N W (6, cos )
when replacing B by (1+T') B, we need to move the initial ¢ = cos & up within the
region where the cross-section of (1 + I')B by the boundary line of W+ (6,t) has
length at least 2sin . But within this region, the move by At units results in the
loss of area not less than 2 sin o At, whence t; — cosa < WF%, as claimed.
The bound for ¢_ is even simpler. Just notice that if we move ¢ by me units

down from the initial value ¢ = cos @, we will have voly(BNW™T(0,t)) > § + «T.
But when replacing B by (1 — I') B here, we can remove the area not exceeding

voly((B\ (1 —T)B) N W*(6,0)) < xT,

so we went too far and the estimate t_ > cosa — ﬂFm follows. O
Let us now introduce the angles a— and a by (1+T") cosay = cosaF 7l ;Jnra.
Their geometric meaning can be seen on Figure
Their importance comes from the fact that for every t with |t—cosa| < #T 2ls'itlra,

we have
(1+D)B\ (1 -=T)B)N (WT(0,)AC,(0)) C Ca, (0)\ Co_(0).

Indeed, the shaded area on the right shows the largest possible piece of WT(6,t)\
Cy(0) within (14+T)B\ (1 —T")B for such ¢ and the shaded area on the left shows
the largest possible piece of C,(0) \ W (6,1).
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FIGURE 2. Angles a; and a_.

Claim 2.2. For every compact interval I C (0, 3), there existy = v(I) € (0,1) and
L=1L(I) € (0, —I—OOE such that if « € I and 0 < T' < 7, then ay are well-defined
and satisfy 0 < a_ <a<ay <F, ap —a_ < LT

Proof. This is tantamount to the claim that the function 7 +— arccost is well-
defined and Lipschitz on

cosa — wv%& cosa+ Tyz L

1+
2sin o
1+~ 1—7

)

when a € (0, §) is separated from 0 and 7 and v > 0 is small enough. O

Now we are ready to prove the main lemma of this section.

Lemma 2.1. For every compact interval I C (0,5), there exist v = v(I) € (0,1)
and L = L(I) € (0,400) such that if « € I, 0 < T < v and Ky, Ky are two
star-shaped bodies with continuous radial functions py, ps respectively satisfying
lpj — 1l < T, j = 1,2, then the radial functions p1s, pa,s of the corresponding
convez bodies of flotation K 5 and Ko 5 satisfy

0+«

p150)-p250)~ 52— [ (pr(r)=pa(r))ar| < L[Tllor—pall 4@yl —ral(8)].
60—«
where, for o >0,
0—a+to 0+a+to
Qo f(0) = / f(r)dr + / f(r)dr.
0—a—o 0+a—o

1In this paper we shall denote by L various constants whose values may change from line to
line.
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Proof. Note that for every body K and every ¢t > 0, we have
volog (K NWT(6,1)) = vola(K N Cy(0)) + vola(K N (WT(0,t) \ Cu(8)))
—vola(K N (Cu(8) \ WT(80,1))).
Subtracting these identities for K; and K5 and using the “triangle inequality”
[vola (K1 N E) —vola(Ke N E)| < volo (K1 AK) N E)
valid for every set E C R2, we get
volo (K1 N W (6,t)) — vola (Ko NWT(6,1))
< voly (K1 N Cy(B)) — vola (Ko N Cy(0)) + vola (K1 AKs) N (WT(6,8)AC,(0))).
Note now that if (1 —T')B C K1,Ks C (1+T)B, then K1AKy C (14+T)B\
(1-T)B, so for |t — cosa| < 7' HL

2sina?

(KlAK2) N (WJr(g) t)ACa(g))
= (K AK) N (WH0,8)ACL(0) N (1+T)B\ (1 —T)B)
C (K1 AK3) N (Ca, (6) \ Ca_(6)).

At last, for |t — cosa| < 7l 218?;11;, the length of the cross-section of any body K
satisfying (1 —T')B C K C (1 + T') B by the boundary line of W (0,t) is between
2sina — LT and 2sina + LT for some L = L(I), provided that the upper bound
~(I) for T is small enough.

Now we are ready to approximate the difference t;(6) — t2(6) where ¢;(0), j =
1,2, are defined by (2.2). Since t15(f) € [t—,t4] for all §, we can use all the
above observations for them or any ¢ in between. For ¢2(0), we have voly(K3 N

W*(6,12(0))) =9, so
V012(K1 N W+(9, tg(@))) S 6 + VOlg(Kl N Ca(G)) - VOIQ(KQ n Ca(e))
+voly (K1 AK3) N (Ca, (6) \ Co_(6))).

The difference
voly (K1 N Cy(0)) — vola (Ko N Cy(0))

is

1 0+a
3 | G0 = srnar
e 1 O+ 1 0+
=5 [ =) 2dm 45 [ 01(0) = pao)01(7) + patr) - 20
o o
< [ (1(7) = pa(r)ir + Tllps =
60—«

because |p1 + p2 — 2| < 2T.
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On the other hand, the area of the intersection (K1 AK2) N (Co, (0)\ Co_(0)) is

—a_  O4ag —a_  O+aq
1
: / | )ide) - i < / [ o) = pa(oiar
—ay O+o_ —og O0+a_

because [pf — p3| = |p1 — p2|(p1 + p2) < 4|p1 — p2l, so we obtain
0+«
volo (K1 NW™(0,2(0))) < 8+ / (p1(7) = p2(7))dr + Tllp1 — p2| 12

0—a
O—a_ O+ay

+ 2 / / lo1(T) — pa(T)|dT.

—ag 04—

Moving ¢ from t5(6) to t1(#) diminishes the left hand side by some quantity between
2sina (t1(0) —t2(0)) — LT'|t1(0) —t2(0)| and 2sin a (t1(0) —t2(0)) + LT'|t1(6) —t2(6)].
Since voly (K1 N W (6,t1(0))) =, we must have the inequality

2sina (t1(0) — t2(0)) — LT[t1(0) — t2(0)]

O+« O—a_ O+ay

S/@d)pﬂﬂm+mm pallis +2 / / Ip2(7) — palr)dr,

0—a —ag O+a_

whence
1 O+«
1(0) - (0) < 55— [ (o) = pa(r)d
0—«

—a_ O+a

£ L(Tllpr — pollr +2 / [ )i = pariar)
—oy O+a_

with some slightly bigger L = L(I) € (0, +o00), provided that (I) is chosen small
enough. In the last implication we used the elementary fact that if ax —blz| < y+2z
with 0 <b< £, 2 >0, then z < ¥ + 2% [y| + Z2. Indeed,

b b 1 b
ar —y < blz| + 2 < ~lax —y[+ ~|y| + z < Slaz —y| + —|y[ + 2,
a a 2 a

soar —y < 2(% ly| + z), which is equivalent to the inequality claimed.
To switch from t1(0), t2(6) to p1.5(6), p2,5(6), we observe that

t1(0")
9’1‘305189130»0 cos(6' — )’ p2,5(0) =

min t2(8")

0) = :
pl’é( ) 0’: cos(@’ 0)>0 COS(H/ — 9)
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Note now that t_ < t;(6') < ty for all @, so when 0 < cos(d — ') < =, we
certainly have

ti (0 t_ 10

;(0) > =t+zL, j=12
cos(f—0") — t_/ty cos(f — 6)
Thus, in the minimization problem we may restrict ourselves to the angles ¢’ with
cos(f —0') > i—; >1—LI,ie., |0 -0 < LVT.

Let now 6’ be an angle for which py 5(0) = L0 Then

cos(0—07)
p1,6(0) — p2,5(0) < %~
As we have shown above,
0/ +a
0@~ 60) < 5o [ (o1l - palr)ir
0'—a

T 9'+a+

%
+L(Cle—palv2( [+ [ )i = palrlar).

0'—ay O 4a_

Note that
6"+ 0+a
[ @)= paoir < [ o1() - patrisar
0 0 a

0—a+|0—-0"|  O+a+|0—0|

s+ [ )@ -mlan
9—a—10-6'| O+a—|0—0|

so, taking into account that 1 < m < 1+ LT, we finally obtain

0+
p1o(0) = p250) < 5 [ (a(r) = g
0—a

0—a_  O—a+|0—0'| O+ar O+a+]|0—0'

Lol ( [+ [+ [+ [ ) m@-nmr).

0'—ar  O—a—|0—-0'| O0'4+a_  O+a—[0-0'|

It remains to notice that all intervals of integration in the last term on the right
hand side are contained in the union of intervals centered at 6 & a of length L/T,
so the corresponding integrals can be bounded by Q; /|p1 — p2/(0) yielding a one-
sided bound in the desired inequality. Exchanging the roles of p; and pa, we get
the bound from the other side. ]
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3. HOMOTHETY CONJECTURE FOR ORIGIN-SYMMETRIC BODIES
NEAR THE UNIT DISK

Once the quasi-differentiability property of the mapping p — ps has been estab-
lished, we can apply our usual routine, see [I], to obtain a positive result for origin-
symmetric bodies near the unit disk. The argument will go along the following lines.
At the first step we shall put the body K into the isotropic position (its definition
and properties will be discussed below in detail) and normalize its radial function

2m
by % f p(0)d6 = 1. Both these operations will keep the body that originally was

close tg the unit disk close to the unit disk. We write p = 1 + ¢ and decompose ¢
into its Fourier series ¢ = ¢a + @4 + ..., where @), € span(cos(kf),sin(kd)). Due
to the isotropic position assumption, ||¢z|/2 is much less than o]l p2.

Now assume that K5 = AK. Then A\ =~ cosa and, applying Lemma [2.1] with
K1 =K, Ky = B, we get

O+«
[ etriar] < LTlellos + Quyrlel©)

0—a

ps(0) — cosa —

2sin «

with T' = ||¢||lc < 7. Projecting to non-zero frequencies, we obtain

0+«

[ o), < 1vTlelie.

00—«

Ao —
H v 2sin

However, the left hand side squared is at least

Z </\— S;I;(iﬁz))2||gok|\%2 ~ Z (cosa— s;igﬁ?)ﬂk%”é

k>2 k>2
k even k even
1
>c(a) Y lewllze > S@llellzz, (3.1)
k>4
k even
where

sin(ka) ) 2 >0

c(a) = min (| cosa —
(a) ( k sin o

k>4
k even

If T is small enough, this will imply ¢ =0, so K is a disk.
Now the details. First of all, we will remind the reader the isotropic position

trick. Let K be an arbitrary star-shaped body. Consider the integral Ix(z) =

[(z,y)*dy. Opening the parentheses, we see that I (z) = (Az,z) for some positive
K
definite self-adjoint matrix A in R?. Now if we replace K by SK where S is a linear
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transformation in R?, then we will get

Tsx(z) = / (2, y)2dy = / (2, 52)?| det S|d=

SK K

= |det S| /(S*x,z)de = |det S|k (S*x) = | det S|{(SAS™z, ).
K

Choosing S = |det A|T A~ 2, we get Igx (x) = |det A|2 |z|2.

There are two important points here. The first one is that, since the quadratic
form Isg (z) is proportional to |z|?, equating the coefficients and switching to polar
coordinates, we obtain

27
%/pSK(9)4(COS2 0 — sin® 0)dh = /(y% —y3)dy =0
0 SK
and .
;l/pSK(G)4 cos 0 sin 0df = / y1yady = 0,
0 SK

i.e., pky is orthogonal to span(cos(26),sin(26)). The second point is that if K was
close to the unit disk, then so is SK. More precisely, if (1-T)B C K C (1+1)B,

then 1 T2 L4+ T2
(1—r)(1+—r) BCSKC(1+F)<ﬁ) B.

Indeed, since
In-typ(z) < Ix(2) < Iniryp(z) and Ip(z) =z,
we have
c(1-T)"1d < A <c(1+T)*1d,
so|[Al € c(1+D)4 A7 <11 —T)7% and ¢*(1 —T)® < det A < 2(1 +T)8.
Hence, [|S]], |S71|| < (%J_F—F) , and the claimed inclusions follow.

So, from now on, we will assume that our body K is in the isotropic position.
2T
We can also normalize K by the condition % J p(0)dd = 1, which can be achieved
0

by a pure dilation and also increases I' at most 3 times if it is small enough.
Now write p = 1+ ¢ and decompose ¢ into its Fourier series ¢ = oo+ @4+ .. ..
Since p* has no second order Fourier component and

Ip" = (1+49)| = 6% + 49” + o] < 11T],
we conclude that the second order Fourier component —4¢p, of p* — (1 + 4¢) has
the L?2-norm at most 11T||p|| 2, i.e., ||p2]lr2 < 3T|¢l L2-

Assume now that K = AK for some D € I C (0, 3) and A > 0. Since the area
voly (K) is squeezed between (1 —T")27 and (1+1")?7, we see that the corresponding
area § = Dvoly(K) is separated from both 0 and 7 if T" is not too large. Let a be
the angle associated with § as above, i.e., volo(BN W™ (0, cosa)) = 6. Noting now
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that in this case (1-T')B C K C (14T")Bandt_B C Ks C t4 B with |t1 —cosa| <
7l we conclude that [A — cosa| < LI' with some L = L(I) € (0,400). This

observation justifies the approximate equality in (3.1) and, thereby, completes the
proof of Theorem

4. ASYMMETRIC CONVEX BODIES HOMOTHETIC TO THEIR CONVEX BODIES OF
FLOTATION

This section is devoted to the construction of asymmetric bodies homothetic to
their convex bodies of flotation. We use the basic technique from the bifurcation
theory that we borrowed from [3], Theorem 3.2, page 171. We believe that this
example could have been found long ago if the bifurcation specialists had paid more
attention to convex geometry problems or convex geometers were more familiar
with the bifurcation theory.

Again, before diving into technicalities, let us (try to) explain the general idea.
We are trying to solve the equation F'(p) = Ap — ps = 0 with some positive A and
d. We have the trivial solution p =1, A = cosa and § = §(«) (the unit disk). Note
that if pg is the solution of this equation, then tpg is the solution of the equation
Ap — pizs = 0. Also, the equation F(p) = 0 is invariant under rotations. These two
degrees of freedom are not so interesting: if we start with a disk, using them will
produce nothing but disks.

However, we know also that we can change the disk to an ellipse. Where does this
degree of freedom come from? Note that on the Fourier side the quasi-differential

0+
1
dFy: Ap +—  cosa Ap— o / Ap(r)dr
in
0—a

of the mapping F, (p) = cosa p — ps is the multiplier operator acting on the k-th
frequency (i.e., on the space span(cos(kf),sin(kf))) as the multiplication by

sin(ka)
Hi(a) = cosa ksin a
(for k = 0, po(a) = cosar — z2—). This multiplier operator is degenerate on the
second frequencies regardless of a (ua(a) = cosa — % =0).

Locally, it allows one to shift away from the radial function py = 1 of the unit
disk along this kernel and, by adjusting other frequencies appropriately, to obtain
a one-parametric family of solutions (ellipses) once the rotations and dilations are
factored out.

The idea now is to remove the second frequency out of the game entirely and
to make another frequency [ play its role. Note that while us(a) = 0 for all «,
making the differential degenerate on some other frequency requires choosing very
special angles. We cannot make /(o) = 0 with even [ > 2 for any a € (0, 7), but
we have our chance with odd [ = 4k + 1 > 5. In this case, the curves a — cos«

in(la) - . .
and a — S50 intersect once near T, the corresponding angle being oy = Z — B
lsin 27 2 [
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jus

where (3 is the unique on (0, §) solution of the equation cos f; = ésin 2lﬂ, which,
as | = +00, tends to the unique solution 8 of cos 8 = S.

So the idea is to consider the set of all star-shaped bodies with the symmetries
of the regular I-gon, i.e., with continuous 2T”—periodic even radial functions p (the
class that is preserved by the mapping p — ps), take @ = ; and try to move
away from the radial function 1 of the unit disk by adding scos(l0) to it. The
result will be that the equation F, (1 + scos(lf)) = 0 will hold in the first (in s)
order, but there will be higher order errors in all frequencies divisible by [ (no other
frequencies can appear due to the symmetry conditions).

To eliminate the errors in all frequencies except the I-th one, we can try to apply
(dF,)~! to the error without the I-th frequency, which is a well-defined multiplier
operator with the multiplier sequence vy, = ux(a;)~!, I|k, k # I, and subtract the
result from the argument of F,, just as it is done in the classical proofs of the inverse
or implicit function theorems. This will reduce the size of the error (except for the
I-th frequency) and we can do it again and again until only the I-th frequency term
remains in the error. The final outcome will be some radial function

p = po + scos(18) + pay cos(210) + ps; cos(310) + . ..
with po = 14 o(s), pai, pai, ... = o(s) as s — 0, which solves the equation
F,,(p) = E(s,q) cos(l6)

with £(s,a;) = o(s) as s — 0. This is almost what we want, but not quite. To
remove the error entirely, we will choose « close to «;, but not exactly «;. Note

in(l ..
slm.( %) cross transversally at oy. This is easy
sin &

that the curves o — cosa and o —

to see in terms of B € (0, %) given by % = 5 — «, when the equation for f
becomes cos f = % sin # with the left hand side decreasing and the right hand side
increasing in # on (0, 5). So, with such choice of «, the initial first order error at

the [-th frequency will become
wi(a)scos(10) = (c(a — o) + o(a — «y))s cos(10)

with some ¢ = ¢(I) # 0, and then it will change only by o(s) during the rest of the
scheme. Thus, for sufficiently small s, we can make the final £(s, ) both positive
and negative by moving « slightly away from . Since & (s, «) depends continuously
on «, there exists some « close to a; for which it is exactly 0 and, voila, we have
our solution; actually even a countable set (indexed by ) of one-parametric (with
parameter s) families of solutions.

Now we turn to the pesky details.

We fix an odd number [ = 4k + 1 > 5 and consider the space C; of continuous
even 2T’T—periodic functions. All functions in C; are represented by pure cosine
Fourier series with frequencies divisible by I. We endow C; with the usual norm

Ifll = [rglgx} |f]. Let C] be the subspace of C; consisting of all functions orthogonal

to cos(l8) (in general, for any function space X, we denote by X; the subspace of
2T’T—periodic even functions from X and by X] the subspace of functions from X
that are orthogonal to cos((6)).
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Let P : C; — C] be the usual orthogonal projection “forgetting” the Fourier
coefficient at the frequency I. Note that || P||c,—c, < 3 regardless of [ (just because
P can be written as the identity operator minus the projection to the I’th frequency,
and the norm of the latter is not greater than 2).

Note that the convex body of flotation preserves all symmetries of the original
body, so we can view the function F,(p) = cosap — ps as a mapping from Cj to
itself defined on all functions p € C; sufficiently close to 1. We shall choose « close
to oy defined above. Let

0+

(TF)(0) = — / f(r)dr

2sin a
0

be the quasi-differential of the mapping p — ps near the unit disk. The result of
Lemma [2.T] implies that

lp1,5 — p2.6 — T(p1 — p2)llc < LVT||p1 — pollc

with I' = max(||p1 — 1|, |lp2 — 1ll¢), say. The quasi-differential of F, is then
cosa Id —T'.

Claim 4.1. The linear mapping dF, = cosa Id =T is invertible on C| and the
norm of the inverse (as an operator from C| to itself) is uniformly bounded for o
sufficiently close to «y.

Proof. On the Fourier side, dF,, acts as a multiplier operator with the multiplier
_ sin(ka) _

sequence jux(a) = cos a— 3 —. We note now that yo(a) = cos a—

and is bounded away from 0 as long as a € (0,

When k£ =ml (m=2,3,...), we have

o - .
Sno 1s negative

) is bounded away from 0.

sin(mla)
i () = cosa — ——=.
ml sin a
Recall that «; is defined by
sy — sm.(loq)
{sin o
and that loy mod 27 is neither 0, nor m. Thus, for every m = 2,3,..., we have
| sin(mlag)| < m|sin(lay)|, so
Sln(mlal) sm.(loq) — cosar,
ml sin o lsin oy

i.e., pmi(ag) > 0, and for every fixed m, this inequality persists in some neighbor-
hood of a;. On the other hand, for all a € (%, §), we have the uniform bound

sin(mla) 1 Cos

ml sin «

~ mlsin % 2

when m is large enough. Thus, in a sufficiently small neighborhood of «;, for all
m=2,3,..., we have () > ¢; > 0 with some ¢; depending on [ only.
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Now it is clear that for all o in that neighborhood, dF,, = cosa Id =T is invert-
ible in (L?)" and the norm of its inverse S is uniformly bounded there. To get the
bound for the norm of S in C], we shall use the resolvent identity

(cosa Id=T)"* = (cosa)™* (Id +T(cos 1d —T)_1>.

Note that the second term in the sum in parentheses can be viewed as the
composition of the trivial imbedding C] < (L?)’, the resolvent (cosa Id —T)~! :
(L) — (L?)" of norm uniformly bounded for « sufficiently close to oy, and the
convolution operator T' : (L7)’ — Cj], whose norm is bounded for @ € (0, %)
separated from O. O

For small s > 0, consider the mapping
Hy: ¢ — p— SPF,(1+ scos(l0) + ¢)
in the closed ball ||¢||c <T in Cj.

Claim 4.2. When s is small enough, the mapping H,s sends the closed ball in C]
of radius comparable to s% to itself and is a contraction in that ball.

Proof. First, let us estimate the norm of H(0). By Lemma[2.1] for small enough s,
we have

Fo(1+ scos(l)) = dF,(scos(18)) + &,

where
3

|€llc < L(a)y/ss = L(a)sz.
Note now that dF,(scos(10)) = u;(a)scos(18) and P annihilates it entirely, so
|HsO)lle = || = $PE|lo < L(a)s*.

To show the contraction property, we notice that for s+I" < v(«) and ||¢12]|c < T,
we can write

Fa(1 4 scos(lf) + ¢1) = Fu(1 + scos(l0) + pa) = dFa(pr — @2) + E(e1, 2),
where
1E(p1, 2)lle < L(@) Vs +Tller = paf -
Observe now that SPdFy, is the identity operator on Cj, so when ||¢1]|c, [|¢2llc <
I', we have

[1Hs(p1) = Hs(p2)llo = [[SPE(p1, p2)llc < L{a,1)Vs + g1 — wallc-

In order to make H; a contraction, it suffices to demand that L(a,l)v/s +T < %,
say. Note that L(a, 1) stays bounded and v(«) stays separated from 0 as long as «
stays close to «;. Finally, to ensure that H, acts from the ball ||p]|c < T to itself,
we can write

1H (@)l < [1Hs(0)le + Lia, )Vs +Tllglle < L(a,D)(s? + Vs +TT)

and take I' = 2L(a,1)s? and s so small that L(, 1)\/s + 2L(a, 1)s? < L. O
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Let now ¢, be the fixed point of Hy. Then |l¢4]|c = O(s2) as s — 0 and
SPF,(1+ scos(10) 4+ ps) =0,

ie.,
PF,(1+ scos(I0) + ¢,) = 0,
S0
Fo(1 4 scos(l8) + ¢s) = E(s, &) cos(10)

with some £(s,a) € R. It remains to discern the dependence of E(s,«) on the
parameter « of the mapping F,.

Let us now prove that the mapping («, ¢) — H(p) is uniformly continuous in
a when @ stays in a small closed ball in C] and « stays close to a;. To this end, we
can first observe that p;25 = t(t~1p)s, so when ||p — 1||c and |t — 1| are less than T’
and I' > 0 is not too large, Lemma [2.1] implies the estimate

lpezs = pslle < 1t =111t p)slle + llps — (™ p)sllc
<2t =1+ Lllp—t7plle < Lit = 1] < L|t* 1],

or, equivalently, ||ps — ps|lc < %16’ — 6| for some L > 0. However, d is a Lipschitz
function of « that is bounded away from 0 in a small neighborhood of «;, so ps
and, therefore, F,,(p) are uniformly Lipschitz in « there when p stays close to 1.
Next, we need to show that S depends continuously on « as an operator from
C] to itself. First, observe that S depends continuously on a as an operator from
(L?) to (L?). Indeed, if we take two angles o’ and o close to oy, the norm of the
difference of the corresponding operators S’ and S” is
15" = 8" lzay @2y = sup (@)™ = pr(a”) 7Y
ke U]k, k£l

< sup u(a) = pr(a”),
ki 1|k, k7l
where ¢; > 0 is the uniform lower bound for |ug(«)| with Ik, k # [, in a small
neighborhood of «;. However, ux(c) is continuous for each k and py(a) — cosa
uniformly as £ — oo in that neighborhood, so the supremum becomes small when
the difference |/ — /'] gets small.
Since S = (cosa)~!(Id + T'S), in order to finish, we just need to show that

. 0+«
the convolution operator T, f(#) = [ f(7)dr depends continuously on « as an
0—a

operator from (L?) to C;. However,

| Tor f = Tor flle < /2 — ]| f|z2

by Cauchy—Schwarz and we are done. The other components of the mapping H
do not depend on « at all, so the proof is complete.
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Thus, the fixed point ¢y also depends on « continuously. Next, F, is Lipschitz
in its argument as long as the latter remains close to 1, so

Fo(1+ scos(l0) + ps) = Fa(1 + scos(18)) + O(||¢s|lc)
= dF,(scos(10)) + O(s?) = m(a)s cos(16) + O(s?).
The conclusion is that
E(s,a) = m(a)s+O0(s2) (s — 0),

where the implicit constant in O() stays bounded as long as « stays sufficiently
close to a; (how close exactly depends on [, but not on s).

Since p;(a) changes sign at «;, we see that £(s, «) also changes sign in a short
interval around ¢« if s is small enough. But then, by the intermediate value theo-
rem, for any sufficiently small s, there exists a = a(s) in a small neighborhood of
ay for which £(s,a) =0, i.e.,

Fo(1 4 scos(l8) + ¢s) = 0.

Then ps; = 1+ scos(10) + 5 is a continuous radial function of a star-shaped body
K, that is homothetic (with the coefficient ——) to its convex body of flotation
and, therefore, convex as well.

At this point, it is already clear that it cannot happen that the K corresponding
to very different values of s (differing 10 times or more) are affine equivalent.
Indeed, since K, has the symmetries of the regular I-gon, it is centered at the
origin and is in the isotropic position, so the only chance to map it to another
K, (which also is centered at the origin and is in the isotropic position) affinely
is to use a combination of rotation and dilation (any other affine transformation
will destroy the isotropic position or shift K off center, or both). However, both
rotations and dilations preserve the ratio of the total size of the component of p
at the [-th frequency to the size of the component at the 0-th frequency, and that
ratio for Ky is between 5 and 2s.

It is reasonable to expect that we have actually obtained a continuous in s
continuum size family of pairwise affinely non-equivalent bodies here, but showing
it rigorously goes well beyond the scope of this short paper, so we leave it to the
interested reader.
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