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TWO RESULTS ON THE HOMOTHETY CONJECTURE

FOR CONVEX BODIES OF FLOTATION ON THE PLANE

M. ANGELES ALFONSECA, FEDOR NAZAROV, DMITRY RYABOGIN, ALINA STANCU,

AND VLADYSLAV YASKIN

Abstract. We investigate the homothety conjecture for convex bodies of

flotation of planar domains close to the unit disk B. We show that for every
density D ∈ (0, 1

2
), there exists γ = γ(D) > 0 such that if (1 − γ)B ⊂ K ⊂

(1 + γ)B and the convex body of flotation KD of an origin symmetric body
K of density D is homothetic to K, then K is an ellipse. On the other hand,

we also show that if the symmetry assumption is dropped, then there is an

infinite set of densities accumulating at 1
2
for which there is a body K different

from an ellipse with the property that KD is homothetic to K.

1. Introduction

LetK be a body in R2, i.e., K ̸= ∅, K is compact, the interior ofK is connected,
and K is the closure of its interior. For every θ ∈ R and the corresponding unit
vector e(θ) = (cos θ, sin θ) and for every t ∈ R, define the half-planes

W+(θ, t) = {x : ⟨x, e(θ)⟩ ≥ t} and W−(θ, t) = {x : ⟨x, e(θ)⟩ ≤ t}.
If 0 < D < 1, then for every θ ∈ R , there is a unique t(θ) such that

vol2(W
+(θ, t(θ)) ∩K) = D vol2(K).

The corresponding convex body of flotation KD is defined as

KD =
⋂
θ∈R

W−(θ, t(θ)).

Note that KD = ∅ for all D ∈ ( 12 , 1). The body KD can be viewed as the set of
points that stay above the water level when a solid with shape K of uniform density
D floats in any orientation. For technical reasons, it will be more convenient for us
to view KD as the intersection of half-planes bounded by the lines cutting from K
a fixed area δ ∈ (0, vol2(K)) as it is usually done in the literature on convex bodies
of flotation (also known as “floating bodies”, see [2] and [5]). In this case, we shall
use the notation Kδ. We obviously have Kδ = KD for δ = D vol2(K).
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The homothety conjecture in R2 says that if a convex body is homothetic to one
of its convex bodies of flotation, then it is an ellipse. To the best of our knowledge,
the question was first raised in 1994 (see [4]). The homothety condition means that
KD = λK for some D ∈ (0, 1), λ > 0. While the full homothety conjecture looks
too strong to be true (we will show that it is actually false in R2), one can also
consider various restricted versions of it, imposing additional assumptions on K,
D, and/or λ.

In this paper we will prove two theorems. The first one, roughly speaking, says
that on the plane the homothety conjecture holds for origin symmetric convex
bodies in a small neighborhood of the unit disk. More precisely, we have

Theorem 1.1. For every compact interval I ⊂ (0, 1
2 ), there is γ > 0 such that

if KD = λK for some D ∈ I and λ > 0, K ⊂ R2 is origin symmetric, and
(1− γ)B ⊂ K ⊂ (1 + γ)B, then K is an ellipse.

Here B = {x ∈ R2 : |x| ≤ 1} is the unit disk.
We remark that instead of restricting the densityD away from its extreme values,

we can just as well restrict the homothety coefficient λ to a compact subinterval
J ⊂ (0, 1) in this theorem. Also, since the problem is affine-invariant, the condition
(1−γ)B ⊂ K ⊂ (1+γ)B can be replaced by the condition that the Banach–Mazur
distance from K to B is less than γ at no extra cost.

The second theorem shows that in the asymmetric case, the full homothety
conjecture fails rather drastically, at least on the plane.

Theorem 1.2. The equation KD = λK has infinitely many affinely non-equivalent
asymmetric convex solutions K ⊂ R2. Moreover, these solutions can be chosen as
small perturbations of the unit disk with the corresponding densities D and homo-
thety coefficients λ accumulating at 1

2 and 0 respectively.

2. Quasi-differentiability properties of the mapping ρK 7→ ρKδ
.

We shall consider the homothety problem in the class of the star-shaped (but
not necessarily convex!) bodies K ⊂ R2 with continuous radial functions

ρ(θ) = ρK(θ) = max{t ≥ 0 : te(θ) ∈ K}.

For the mapping ρK 7→ ρKδ
, which we will abbreviate to ρ 7→ ρδ, the homothety

condition is equivalent to the equation λρ− ρδ = 0. Note that this equation holds
for the unit ball B (ρ ≡ 1) with any δ ∈ (0, π

2 ) and λ = cosα, where α ∈ (0, π
2 ) is

the angle for which the shaded disk segment B∩W+(θ, cosα) on Figure 1 spanned
by a circular arc of length 2α has area δ.

We shall show that when K is sufficiently close to the unit disk, the mapping
ρ 7→ ρδ is quasi-differentiable with the quasi-differential equal to

∆ρ 7→ 1

2 sinα

θ+α∫
θ−α

∆ρ(τ)dτ.
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αα

e(θ)

B ∩W+(θ, cosα)

Cα(θ)

B

W+(θ, cosα)

Figure 1. Relation between α and δ.

The latter means that for any continuous 2π-periodic ρ1, ρ2 close to 1, we have

ρ1,δ(θ)− ρ2,δ(θ) ≈ 1

2 sinα

θ+α∫
θ−α

(ρ1(τ)− ρ2(τ))dτ (2.1)

with an error whose size is substantially smaller than the size of ρ1 − ρ2.
The idea of the proof is very simple: given δ ∈ (0, π

2 ) and two star-shaped bodies
K1 and K2 close to the unit disk, for every θ ∈ R, define tj(θ) by

vol2(Kj ∩W+(θ, tj(θ))) = δ, j = 1, 2. (2.2)

Then, up to a small boundary effect, the difference

vol2(K1 ∩W+(θ, t2(θ)))− vol2(K2 ∩W+(θ, t2(θ)))

is determined by the difference of the boundaries of K1 and K2 in the angle

Cα(θ) = {x ∈ R2 : ∠(x, e(θ)) ≤ α}.

So in the first order approximation, this difference is
θ+α∫
θ−α

(ρ1(τ) − ρ2(τ))dτ . To

compensate for this difference, we need to move t away from t2(θ). Since all cross-
sections at the relevant levels are close to those of the unit disk, moving t by ∆t units
changes the area vol2(K1 ∩W+(θ, t)) by approximately −2 sinα∆t. Thus, to get

vol2(K1∩W+(θ, t)) = δ, we need to increase t2(θ) by the amount 1
2 sinα

θ+α∫
θ−α

(ρ1(τ)−

ρ2(τ))dτ , i.e.,

t1(θ)− t2(θ) ≈ 1

2 sinα

θ+α∫
θ−α

(ρ1(τ)− ρ2(τ))dτ.

Note also that the quantity on the right hand side changes very little if we replace
θ by a close angle θ′: the corresponding domains of integration have a huge com-
mon part and only short boundary intervals that are included in one but not the
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other one. Thus, when switching from K2 to K1, all boundary lines of the half-
planes W−(θ′, t2(θ

′)) determining K2,δ move out by pretty much the same amount

1
2 sinα

θ+α∫
θ−α

(ρ1(τ)− ρ2(τ))dτ as long as θ′ is close to θ. Since the value of the radial

function ρKδ
(θ) of the convex body of flotation Kδ of the body K close to the unit

disk is determined by t(θ′) with θ′ close to θ, this last observation translates into
(2.1) as desired. As usual, the devil is in the details, to which we now turn.

Let Γ > 0 be small. Consider the disks (1 + Γ)B and (1 − Γ)B, and let t± be
defined by

vol2((1± Γ)B ∩W+(θ, t±)) = δ.

Claim 2.1. If πΓ 1+Γ
2 sinα < cosα, then t± are well-defined and satisfy |t±− cosα| <

πΓ 1+Γ
2 sinα .

Proof. Observe that

vol2((1 + Γ)B ∩W+(θ, cosα)) ≤ vol2(B ∩W+(θ, cosα))

+ vol2(((1 + Γ)B \B) ∩W+(θ, 0))

≤ δ + π(1 + Γ)Γ.

Note also that if t > cosα is so large that the length of the intersection of (1+Γ)B
with the boundary line of W+(θ, t) is less than or equal to 2 sinα, then we already
have

vol2((1 + Γ)B ∩W+(θ, t)) < vol2(B ∩W+(θ, cosα)) = δ

(the area of the segment of a bigger disk spanned by a not longer chord is smaller).
Thus, to completely compensate for the increase in area of B ∩ W+(θ, cosα)

when replacing B by (1+Γ)B, we need to move the initial t = cosα up within the
region where the cross-section of (1 + Γ)B by the boundary line of W+(θ, t) has
length at least 2 sinα. But within this region, the move by ∆t units results in the
loss of area not less than 2 sinα∆t, whence t+ − cosα ≤ πΓ 1+Γ

2 sinα , as claimed.

The bound for t− is even simpler. Just notice that if we move t by πΓ 1
2 sinα units

down from the initial value t = cosα, we will have vol2(B ∩W+(θ, t)) ≥ δ + πΓ.
But when replacing B by (1− Γ)B here, we can remove the area not exceeding

vol2((B \ (1− Γ)B) ∩W+(θ, 0)) < πΓ,

so we went too far and the estimate t− ≥ cosα− πΓ 1
2 sinα follows. □

Let us now introduce the angles α− and α+ by (1±Γ) cosα± = cosα∓πΓ 1+Γ
2 sinα .

Their geometric meaning can be seen on Figure 2.
Their importance comes from the fact that for every t with |t−cosα| ≤ πΓ 1+Γ

2 sinα ,
we have

((1 + Γ)B \ (1− Γ)B) ∩ (W+(θ, t)△Cα(θ)) ⊂ Cα+
(θ) \ Cα−(θ).

Indeed, the shaded area on the right shows the largest possible piece of W+(θ, t) \
Cα(θ) within (1 + Γ)B \ (1− Γ)B for such t and the shaded area on the left shows
the largest possible piece of Cα(θ) \W+(θ, t).

https://doi.org/10.33044/revuma.5089
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α− α+

e(θ)

B

πΓ 1+Γ
2 sinα

πΓ 1+Γ
2 sinα

Figure 2. Angles α+ and α−.

Claim 2.2. For every compact interval I ⊂ (0, π
2 ), there exist γ = γ(I) ∈ (0, 1) and

L = L(I) ∈ (0,+∞)1 such that if α ∈ I and 0 < Γ < γ, then α± are well-defined
and satisfy 0 < α− < α < α+ < π

2 , α+ − α− < LΓ.

Proof. This is tantamount to the claim that the function τ 7→ arccos τ is well-
defined and Lipschitz on[

cosα− πγ 1+γ
2 sinα

1 + γ
,
cosα+ πγ 1+γ

2 sinα

1− γ

]
when α ∈ (0, π

2 ) is separated from 0 and π
2 and γ > 0 is small enough. □

Now we are ready to prove the main lemma of this section.

Lemma 2.1. For every compact interval I ⊂ (0, π
2 ), there exist γ = γ(I) ∈ (0, 1)

and L = L(I) ∈ (0,+∞) such that if α ∈ I, 0 < Γ < γ and K1, K2 are two
star-shaped bodies with continuous radial functions ρ1, ρ2 respectively satisfying
∥ρj − 1∥C ≤ Γ, j = 1, 2, then the radial functions ρ1,δ, ρ2,δ of the corresponding
convex bodies of flotation K1,δ and K2,δ satisfy

∣∣∣ρ1,δ(θ)−ρ2,δ(θ)−
1

2 sinα

θ+α∫
θ−α

(ρ1(τ)−ρ2(τ))dτ
∣∣∣ ≤ L

[
Γ∥ρ1−ρ2∥L1+QL

√
Γ|ρ1−ρ2|(θ)

]
,

where, for σ > 0,

Qσf(θ) =

θ−α+σ∫
θ−α−σ

f(τ)dτ +

θ+α+σ∫
θ+α−σ

f(τ)dτ.

1In this paper we shall denote by L various constants whose values may change from line to
line.
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Proof. Note that for every body K and every t > 0, we have

vol2(K ∩W+(θ, t)) = vol2(K ∩ Cα(θ)) + vol2(K ∩ (W+(θ, t) \ Cα(θ)))

− vol2(K ∩ (Cα(θ) \W+(θ, t))).

Subtracting these identities for K1 and K2 and using the “triangle inequality”

|vol2(K1 ∩ E)− vol2(K2 ∩ E)| ≤ vol2((K1△K2) ∩ E)

valid for every set E ⊂ R2, we get

vol2(K1 ∩W+(θ, t))− vol2(K2 ∩W+(θ, t))

≤ vol2(K1 ∩ Cα(θ))− vol2(K2 ∩ Cα(θ)) + vol2((K1△K2) ∩ (W+(θ, t)△Cα(θ))).

Note now that if (1 − Γ)B ⊂ K1,K2 ⊂ (1 + Γ)B, then K1△K2 ⊂ (1 + Γ)B \
(1− Γ)B, so for |t− cosα| ≤ πΓ 1+Γ

2 sinα ,

(K1△K2) ∩ (W+(θ, t)△Cα(θ))

= (K1△K2) ∩ (W+(θ, t)△Cα(θ)) ∩ ((1 + Γ)B \ (1− Γ)B)

⊂ (K1△K2) ∩ (Cα+(θ) \ Cα−(θ)).

At last, for |t − cosα| ≤ πΓ 1+Γ
2 sinα , the length of the cross-section of any body K

satisfying (1− Γ)B ⊂ K ⊂ (1 + Γ)B by the boundary line of W+(θ, t) is between
2 sinα − LΓ and 2 sinα + LΓ for some L = L(I), provided that the upper bound
γ(I) for Γ is small enough.

Now we are ready to approximate the difference t1(θ) − t2(θ) where tj(θ), j =
1, 2, are defined by (2.2). Since t1,2(θ) ∈ [t−, t+] for all θ, we can use all the
above observations for them or any t in between. For t2(θ), we have vol2(K2 ∩
W+(θ, t2(θ))) = δ, so

vol2(K1 ∩W+(θ, t2(θ))) ≤ δ + vol2(K1 ∩ Cα(θ))− vol2(K2 ∩ Cα(θ))

+ vol2((K1△K2) ∩ (Cα+
(θ) \ Cα−(θ))).

The difference

vol2(K1 ∩ Cα(θ))− vol2(K2 ∩ Cα(θ))

is

1

2

θ+α∫
θ−α

(ρ21(τ)− ρ22(τ))dτ

=
1

2

θ+α∫
θ−α

(ρ1(τ)− ρ2(τ)) 2 dτ +
1

2

θ+α∫
θ−α

(ρ1(τ)− ρ2(τ))(ρ1(τ) + ρ2(τ)− 2)dτ

≤
θ+α∫

θ−α

(ρ1(τ)− ρ2(τ))dτ + Γ∥ρ1 − ρ2∥L1

because |ρ1 + ρ2 − 2| ≤ 2Γ.

https://doi.org/10.33044/revuma.5089


Revista de la Unión Matemática Argentina Accepted article · Early view version

This peer-reviewed unedited article has been accepted for publication. The final copyedited version
may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite
using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.5089.

Submitted: December 24, 2024
Accepted: January 7, 2025
Published (early view): January 14, 2025

HOMOTHETY CONJECTURE FOR CONVEX BODIES OF FLOTATION ON THE PLANE 7

On the other hand, the area of the intersection (K1△K2)∩ (Cα+(θ) \Cα−(θ)) is

1

2

( θ−α−∫
θ−α+

+

θ+α+∫
θ+α−

)
|ρ21(τ)− ρ22(τ)|dτ ≤ 2

( θ−α−∫
θ−α+

+

θ+α+∫
θ+α−

)
|ρ1(τ)− ρ2(τ)|dτ

because |ρ21 − ρ22| = |ρ1 − ρ2|(ρ1 + ρ2) ≤ 4|ρ1 − ρ2|, so we obtain

vol2(K1 ∩W+(θ, t2(θ))) ≤ δ +

θ+α∫
θ−α

(ρ1(τ)− ρ2(τ))dτ + Γ∥ρ1 − ρ2∥L1

+ 2
( θ−α−∫
θ−α+

+

θ+α+∫
θ+α−

)
|ρ1(τ)− ρ2(τ)|dτ.

Moving t from t2(θ) to t1(θ) diminishes the left hand side by some quantity between
2 sinα (t1(θ)−t2(θ))−LΓ|t1(θ)−t2(θ)| and 2 sinα (t1(θ)−t2(θ))+LΓ|t1(θ)−t2(θ)|.
Since vol2(K1 ∩W+(θ, t1(θ))) = δ, we must have the inequality

2 sinα (t1(θ)− t2(θ))− LΓ|t1(θ)− t2(θ)|

≤
θ+α∫

θ−α

(ρ1(τ)− ρ2(τ))dτ + Γ∥ρ1 − ρ2∥L1 + 2
( θ−α−∫
θ−α+

+

θ+α+∫
θ+α−

)
|ρ1(τ)− ρ2(τ)|dτ,

whence

t1(θ)− t2(θ) ≤
1

2 sinα

θ+α∫
θ−α

(ρ1(τ)− ρ2(τ))dτ

+ L
(
Γ∥ρ1 − ρ2∥L1 + 2

( θ−α−∫
θ−α+

+

θ+α+∫
θ+α−

)
|ρ1(τ)− ρ2(τ)|dτ

)
with some slightly bigger L = L(I) ∈ (0,+∞), provided that γ(I) is chosen small
enough. In the last implication we used the elementary fact that if ax−b|x| ≤ y+z
with 0 < b < a

2 , z > 0, then x ≤ y
a + 2 b

a2 |y|+ 2
az. Indeed,

ax− y ≤ b|x|+ z ≤ b

a
|ax− y|+ b

a
|y|+ z ≤ 1

2
|ax− y|+ b

a
|y|+ z,

so ax− y ≤ 2( ba |y|+ z), which is equivalent to the inequality claimed.
To switch from t1(θ), t2(θ) to ρ1,δ(θ), ρ2,δ(θ), we observe that

ρ1,δ(θ) = min
θ′: cos(θ′−θ)>0

t1(θ
′)

cos(θ′ − θ)
, ρ2,δ(θ) = min

θ′: cos(θ′−θ)>0

t2(θ
′)

cos(θ′ − θ)
.

https://doi.org/10.33044/revuma.5089
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Note now that t− ≤ tj(θ
′) ≤ t+ for all θ′, so when 0 < cos(θ − θ′) ≤ t−

t+
, we

certainly have

tj(θ
′)

cos(θ − θ′)
≥ t−

t−/t+
= t+ ≥ tj(θ)

cos(θ − θ)
, j = 1, 2.

Thus, in the minimization problem we may restrict ourselves to the angles θ′ with
cos(θ − θ′) ≥ t−

t+
≥ 1− LΓ, i.e., |θ − θ′| ≤ L

√
Γ.

Let now θ′ be an angle for which ρ2,δ(θ) =
t2(θ

′)
cos(θ−θ′) . Then

ρ1,δ(θ)− ρ2,δ(θ) ≤
t1(θ

′)− t2(θ
′)

cos(θ − θ′)
.

As we have shown above,

t1(θ
′)− t2(θ

′) ≤ 1

2 sinα

θ′+α∫
θ′−α

(ρ1(τ)− ρ2(τ))dτ

+ L
(
Γ∥ρ1 − ρ2∥L1 + 2

( θ′−α−∫
θ′−α+

+

θ′+α+∫
θ′+α−

)
|ρ1(τ)− ρ2(τ)|dτ

)
.

Note that

θ′+α∫
θ′−α

(ρ1(τ)− ρ2(τ))dτ ≤
θ+α∫

θ−α

(ρ1(τ)− ρ2(τ))dτ

+
( θ−α+|θ−θ′|∫
θ−α−|θ−θ′|

+

θ+α+|θ−θ′|∫
θ+α−|θ−θ′|

)
|ρ1(τ)− ρ2(τ)|dτ,

so, taking into account that 1 ≤ 1
cos(θ−θ′) ≤ 1 + LΓ, we finally obtain

ρ1,δ(θ)− ρ2,δ(θ) ≤
1

2 sinα

θ+α∫
θ−α

(ρ1(τ)− ρ2(τ))dτ

+L
(
Γ∥ρ1−ρ2∥L1+

( θ′−α−∫
θ′−α+

+

θ−α+|θ−θ′|∫
θ−α−|θ−θ′|

+

θ′+α+∫
θ′+α−

+

θ+α+|θ−θ′|∫
θ+α−|θ−θ′|

)
|ρ1(τ)−ρ2(τ)|dτ

)
.

It remains to notice that all intervals of integration in the last term on the right
hand side are contained in the union of intervals centered at θ± α of length L

√
Γ,

so the corresponding integrals can be bounded by QL
√
Γ|ρ1−ρ2|(θ) yielding a one-

sided bound in the desired inequality. Exchanging the roles of ρ1 and ρ2, we get
the bound from the other side. □
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3. Homothety conjecture for origin-symmetric bodies
near the unit disk

Once the quasi-differentiability property of the mapping ρ 7→ ρδ has been estab-
lished, we can apply our usual routine, see [1], to obtain a positive result for origin-
symmetric bodies near the unit disk. The argument will go along the following lines.
At the first step we shall put the body K into the isotropic position (its definition
and properties will be discussed below in detail) and normalize its radial function

by 1
2π

2π∫
0

ρ(θ)dθ = 1. Both these operations will keep the body that originally was

close to the unit disk close to the unit disk. We write ρ = 1+ φ and decompose φ
into its Fourier series φ = φ2 + φ4 + . . ., where φk ∈ span(cos(kθ), sin(kθ)). Due
to the isotropic position assumption, ∥φ2∥L2 is much less than ∥φ∥L2 .

Now assume that Kδ = λK. Then λ ≈ cosα and, applying Lemma 2.1 with
K1 = K, K2 = B, we get

∣∣∣ρδ(θ)− cosα− 1

2 sinα

θ+α∫
θ−α

φ(τ)dτ
∣∣∣ ≤ L(Γ∥φ∥L1 +QL

√
Γ|φ|(θ))

with Γ = ∥φ∥C < γ. Projecting to non-zero frequencies, we obtain

∥∥∥λφ− 1

2 sinα

θ+α∫
θ−α

φ(τ)dτ
∥∥∥
L2

≤ L
√
Γ∥φ∥L2 .

However, the left hand side squared is at least

∑
k≥2

k even

(
λ− sin(kα)

k sinα

)2

∥φk∥2L2 ≈
∑
k≥2

k even

(
cosα− sin(kα)

k sinα

)2

∥φk∥2L2

≥ c(α)
∑
k≥4

k even

∥φk∥2L2 ≥ 1

2
c(α)∥φ∥2L2 , (3.1)

where

c(α) = min
k≥4

k even

(
cosα− sin(kα)

k sinα

)2

> 0.

If Γ is small enough, this will imply φ ≡ 0, so K is a disk.
Now the details. First of all, we will remind the reader the isotropic position

trick. Let K be an arbitrary star-shaped body. Consider the integral IK(x) =∫
K

⟨x, y⟩2dy. Opening the parentheses, we see that IK(x) = ⟨Ax, x⟩ for some positive

definite self-adjoint matrix A in R2. Now if we replace K by SK where S is a linear
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transformation in R2, then we will get

ISK(x) =

∫
SK

⟨x, y⟩2dy =

∫
K

⟨x, Sz⟩2|detS|dz

= |detS|
∫
K

⟨S∗x, z⟩2dz = |detS|IK(S∗x) = |detS|⟨SAS∗x, x⟩.

Choosing S = |detA| 14A− 1
2 , we get ISK(x) = |detA| 12 |x|2.

There are two important points here. The first one is that, since the quadratic
form ISK(x) is proportional to |x|2, equating the coefficients and switching to polar
coordinates, we obtain

1

4

2π∫
0

ρSK(θ)4(cos2 θ − sin2 θ)dθ =

∫
SK

(y21 − y22)dy = 0

and

1

4

2π∫
0

ρSK(θ)4 cos θ sin θdθ =

∫
SK

y1y2dy = 0,

i.e., ρ4SK is orthogonal to span(cos(2θ), sin(2θ)). The second point is that if K was
close to the unit disk, then so is SK. More precisely, if (1− Γ)B ⊂ K ⊂ (1 + Γ)B,
then

(1− Γ)
(1− Γ

1 + Γ

)2

B ⊂ SK ⊂ (1 + Γ)
(1 + Γ

1− Γ

)2

B.

Indeed, since

I(1−Γ)B(x) ≤ IK(x) ≤ I(1+Γ)B(x) and IB(x) = c|x|2,
we have

c(1− Γ)4 Id ≺ A ≺ c(1 + Γ)4 Id,

so ∥A∥ ≤ c(1 + Γ)4, ∥A−1∥ ≤ c−1(1− Γ)−4, and c2(1− Γ)8 ≤ detA ≤ c2(1 + Γ)8.

Hence, ∥S∥, ∥S−1∥ ≤
(

1+Γ
1−Γ

)2

, and the claimed inclusions follow.

So, from now on, we will assume that our body K is in the isotropic position.

We can also normalize K by the condition 1
2π

2π∫
0

ρ(θ)dθ = 1, which can be achieved

by a pure dilation and also increases Γ at most 3 times if it is small enough.
Now write ρ = 1+φ and decompose φ into its Fourier series φ = φ2 +φ4 + . . . .

Since ρ4 has no second order Fourier component and

|ρ4 − (1 + 4φ)| = |6φ2 + 4φ3 + φ4| ≤ 11Γ|φ|,
we conclude that the second order Fourier component −4φ2 of ρ4 − (1 + 4φ) has
the L2-norm at most 11Γ∥φ∥L2 , i.e., ∥φ2∥L2 ≤ 3Γ∥φ∥L2 .

Assume now that KD = λK for some D ∈ I ⊂ (0, 1
2 ) and λ > 0. Since the area

vol2(K) is squeezed between (1−Γ)2π and (1+Γ)2π, we see that the corresponding
area δ = D vol2(K) is separated from both 0 and π

2 if Γ is not too large. Let α be
the angle associated with δ as above, i.e., vol2(B ∩W+(θ, cosα)) = δ. Noting now
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HOMOTHETY CONJECTURE FOR CONVEX BODIES OF FLOTATION ON THE PLANE 11

that in this case (1−Γ)B ⊂ K ⊂ (1+Γ)B and t−B ⊂ Kδ ⊂ t+B with |t±−cosα| ≤
πΓ 1+Γ

2 sinα , we conclude that |λ− cosα| ≤ LΓ with some L = L(I) ∈ (0,+∞). This
observation justifies the approximate equality in (3.1) and, thereby, completes the
proof of Theorem 1.1.

4. Asymmetric convex bodies homothetic to their convex bodies of
flotation

This section is devoted to the construction of asymmetric bodies homothetic to
their convex bodies of flotation. We use the basic technique from the bifurcation
theory that we borrowed from [3], Theorem 3.2, page 171. We believe that this
example could have been found long ago if the bifurcation specialists had paid more
attention to convex geometry problems or convex geometers were more familiar
with the bifurcation theory.

Again, before diving into technicalities, let us (try to) explain the general idea.
We are trying to solve the equation F (ρ) = λρ− ρδ = 0 with some positive λ and
δ. We have the trivial solution ρ ≡ 1, λ = cosα and δ = δ(α) (the unit disk). Note
that if ρ0 is the solution of this equation, then tρ0 is the solution of the equation
λρ− ρt2δ = 0. Also, the equation F (ρ) = 0 is invariant under rotations. These two
degrees of freedom are not so interesting: if we start with a disk, using them will
produce nothing but disks.

However, we know also that we can change the disk to an ellipse. Where does this
degree of freedom come from? Note that on the Fourier side the quasi-differential

dFα : ∆ρ 7→ cosα ∆ρ− 1

2 sinα

θ+α∫
θ−α

∆ρ(τ) dτ

of the mapping Fα(ρ) = cosαρ − ρδ is the multiplier operator acting on the k-th
frequency (i.e., on the space span(cos(kθ), sin(kθ))) as the multiplication by

µk(α) = cosα− sin(kα)

k sinα

(for k = 0, µ0(α) = cosα − α
sinα ). This multiplier operator is degenerate on the

second frequencies regardless of α (µ2(α) = cosα− sin(2α)
2 sinα = 0).

Locally, it allows one to shift away from the radial function ρ0 ≡ 1 of the unit
disk along this kernel and, by adjusting other frequencies appropriately, to obtain
a one-parametric family of solutions (ellipses) once the rotations and dilations are
factored out.

The idea now is to remove the second frequency out of the game entirely and
to make another frequency l play its role. Note that while µ2(α) = 0 for all α,
making the differential degenerate on some other frequency requires choosing very
special angles. We cannot make µl(α) = 0 with even l > 2 for any α ∈ (0, π

2 ), but
we have our chance with odd l = 4k + 1 ≥ 5. In this case, the curves α 7→ cosα

and α 7→ sin(lα)
l sinα intersect once near π

2 , the corresponding angle being αl =
π
2 − βl

l ,
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where βl is the unique on (0, π
2 ) solution of the equation cosβl =

l
2 sin

2βl

l , which,
as l → +∞, tends to the unique solution β of cosβ = β.

So the idea is to consider the set of all star-shaped bodies with the symmetries
of the regular l-gon, i.e., with continuous 2π

l -periodic even radial functions ρ (the
class that is preserved by the mapping ρ 7→ ρδ), take α = αl and try to move
away from the radial function 1 of the unit disk by adding s cos(lθ) to it. The
result will be that the equation Fα(1 + s cos(lθ)) = 0 will hold in the first (in s)
order, but there will be higher order errors in all frequencies divisible by l (no other
frequencies can appear due to the symmetry conditions).

To eliminate the errors in all frequencies except the l-th one, we can try to apply
(dFα)

−1 to the error without the l-th frequency, which is a well-defined multiplier
operator with the multiplier sequence νk = µk(αl)

−1, l|k, k ̸= l, and subtract the
result from the argument of Fα just as it is done in the classical proofs of the inverse
or implicit function theorems. This will reduce the size of the error (except for the
l-th frequency) and we can do it again and again until only the l-th frequency term
remains in the error. The final outcome will be some radial function

ρ = ρ0 + s cos(lθ) + ρ2l cos(2lθ) + ρ3l cos(3lθ) + . . .

with ρ0 = 1 + o(s), ρ2l, ρ3l, . . . = o(s) as s → 0, which solves the equation

Fαl
(ρ) = E(s, αl) cos(lθ)

with E(s, αl) = o(s) as s → 0. This is almost what we want, but not quite. To
remove the error entirely, we will choose α close to αl, but not exactly αl. Note

that the curves α 7→ cosα and α 7→ sin(lα)
l sinα cross transversally at αl. This is easy

to see in terms of β ∈ (0, π
2 ) given by β

l = π
2 − α, when the equation for βl

becomes cosβ = l
2 sin

2β
l with the left hand side decreasing and the right hand side

increasing in β on (0, π
2 ). So, with such choice of α, the initial first order error at

the l-th frequency will become

µl(α)s cos(lθ) = (c(α− αl) + o(α− αl))s cos(lθ)

with some c = c(l) ̸= 0, and then it will change only by o(s) during the rest of the
scheme. Thus, for sufficiently small s, we can make the final E(s, α) both positive
and negative by moving α slightly away from αl. Since E(s, α) depends continuously
on α, there exists some α close to αl for which it is exactly 0 and, voila, we have
our solution; actually even a countable set (indexed by l) of one-parametric (with
parameter s) families of solutions.

Now we turn to the pesky details.
We fix an odd number l = 4k + 1 ≥ 5 and consider the space Cl of continuous

even 2π
l -periodic functions. All functions in Cl are represented by pure cosine

Fourier series with frequencies divisible by l. We endow Cl with the usual norm
∥f∥ = max

[0,2π]
|f |. Let C ′

l be the subspace of Cl consisting of all functions orthogonal

to cos(lθ) (in general, for any function space X, we denote by Xl the subspace of
2π
l -periodic even functions from X and by X ′

l the subspace of functions from Xl

that are orthogonal to cos(lθ)).
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Let P : Cl → C ′
l be the usual orthogonal projection “forgetting” the Fourier

coefficient at the frequency l. Note that ∥P∥Cl→Cl
≤ 3 regardless of l (just because

P can be written as the identity operator minus the projection to the l’th frequency,
and the norm of the latter is not greater than 2).

Note that the convex body of flotation preserves all symmetries of the original
body, so we can view the function Fα(ρ) = cosαρ − ρδ as a mapping from Cl to
itself defined on all functions ρ ∈ Cl sufficiently close to 1. We shall choose α close
to αl defined above. Let

(Tf)(θ) =
1

2 sinα

θ+α∫
θ−α

f(τ) dτ

be the quasi-differential of the mapping ρ 7→ ρδ near the unit disk. The result of
Lemma 2.1 implies that

∥ρ1,δ − ρ2,δ − T (ρ1 − ρ2)∥C ≤ L
√
Γ∥ρ1 − ρ2∥C

with Γ = max(∥ρ1 − 1∥C , ∥ρ2 − 1∥C), say. The quasi-differential of Fα is then
cosα Id−T .

Claim 4.1. The linear mapping dFα = cosα Id−T is invertible on C ′
l and the

norm of the inverse (as an operator from C ′
l to itself ) is uniformly bounded for α

sufficiently close to αl.

Proof. On the Fourier side, dFα acts as a multiplier operator with the multiplier

sequence µk(α) = cosα− sin(kα)
k sinα . We note now that µ0(α) = cosα− α

sinα is negative
and is bounded away from 0 as long as α ∈ (0, π

2 ) is bounded away from 0.
When k = ml (m = 2, 3, . . . ), we have

µk(α) = cosα− sin(mlα)

ml sinα
.

Recall that αl is defined by

cosαl =
sin(lαl)

l sinαl

and that lαl mod2π is neither 0, nor π. Thus, for every m = 2, 3, . . ., we have
| sin(mlαl)| < m| sin(lαl)|, so∣∣∣∣ sin(mlαl)

ml sinαl

∣∣∣∣ < ∣∣∣∣ sin(lαl)

l sinαl

∣∣∣∣ = cosαl,

i.e., µml(αl) > 0, and for every fixed m, this inequality persists in some neighbor-
hood of αl. On the other hand, for all α ∈ (αl

2 , π
2 ), we have the uniform bound∣∣∣∣ sin(mlα)

ml sinα

∣∣∣∣ ≤ 1

ml sin αl

2

<
cosαl

2

when m is large enough. Thus, in a sufficiently small neighborhood of αl, for all
m = 2, 3, . . ., we have µml(α) ≥ cl > 0 with some cl depending on l only.
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Now it is clear that for all α in that neighborhood, dFα = cosα Id−T is invert-
ible in (L2

l )
′ and the norm of its inverse S is uniformly bounded there. To get the

bound for the norm of S in C ′
l , we shall use the resolvent identity

(cosα Id−T )−1 = (cosα)−1
(
Id+T (cosα Id−T )−1

)
.

Note that the second term in the sum in parentheses can be viewed as the
composition of the trivial imbedding C ′

l ↪→ (L2
l )

′, the resolvent (cosα Id−T )−1 :
(L2

l )
′ → (L2

l )
′ of norm uniformly bounded for α sufficiently close to αl, and the

convolution operator T : (L2
l )

′ → C ′
l , whose norm is bounded for α ∈ (0, π

2 )
separated from 0. □

For small s > 0, consider the mapping

Hs : φ 7→ φ− SPFα(1 + s cos(lθ) + φ)

in the closed ball ∥φ∥C ≤ Γ in C ′
l .

Claim 4.2. When s is small enough, the mapping Hs sends the closed ball in C ′
l

of radius comparable to s
3
2 to itself and is a contraction in that ball.

Proof. First, let us estimate the norm of Hs(0). By Lemma 2.1, for small enough s,
we have

Fα(1 + s cos(lθ)) = dFα(s cos(lθ)) + E ,
where

∥E∥C ≤ L(α)
√
ss = L(α)s

3
2 .

Note now that dFα(s cos(lθ)) = µl(α)s cos(lθ) and P annihilates it entirely, so

∥Hs(0)∥C = ∥ − SPE∥C ≤ L(α)s
3
2 .

To show the contraction property, we notice that for s+Γ ≤ γ(α) and ∥φ1,2∥C ≤ Γ,
we can write

Fα(1 + s cos(lθ) + φ1)− Fα(1 + s cos(lθ) + φ2) = dFα(φ1 − φ2) + E(φ1, φ2),

where

∥E(φ1, φ2)∥C ≤ L(α)
√
s+ Γ∥φ1 − φ2∥C .

Observe now that SPdFα is the identity operator on C ′
l , so when ∥φ1∥C , ∥φ2∥C ≤

Γ, we have

∥Hs(φ1)−Hs(φ2)∥C = ∥SPE(φ1, φ2)∥C ≤ L(α, l)
√
s+ Γ∥φ1 − φ2∥C .

In order to make Hs a contraction, it suffices to demand that L(α, l)
√
s+ Γ ≤ 1

2 ,
say. Note that L(α, l) stays bounded and γ(α) stays separated from 0 as long as α
stays close to αl. Finally, to ensure that Hs acts from the ball ∥φ∥C ≤ Γ to itself,
we can write

∥Hs(φ)∥C ≤ ∥Hs(0)∥C + L(α, l)
√
s+ Γ∥φ∥C ≤ L(α, l)(s

3
2 +

√
s+ ΓΓ)

and take Γ = 2L(α, l)s
3
2 and s so small that L(α, l)

√
s+ 2L(α, l)s

3
2 ≤ 1

2 . □
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Let now φs be the fixed point of Hs. Then ∥φs∥C = O(s
3
2 ) as s → 0 and

SPFα(1 + s cos(lθ) + φs) = 0,

i.e.,

PFα(1 + s cos(lθ) + φs) = 0,

so

Fα(1 + s cos(lθ) + φs) = E(s, α) cos(lθ)
with some E(s, α) ∈ R. It remains to discern the dependence of E(s, α) on the
parameter α of the mapping Fα.

Let us now prove that the mapping (α,φ) 7→ Hs(φ) is uniformly continuous in
α when φ stays in a small closed ball in C ′

l and α stays close to αl. To this end, we
can first observe that ρt2δ = t(t−1ρ)δ, so when ∥ρ− 1∥C and |t− 1| are less than Γ
and Γ > 0 is not too large, Lemma 2.1 implies the estimate

∥ρt2δ − ρδ∥C ≤ |t− 1| ∥(t−1ρ)δ∥C + ∥ρδ − (t−1ρ)δ∥C
≤ 2|t− 1|+ L∥ρ− t−1ρ∥C ≤ L|t− 1| ≤ L|t2 − 1|,

or, equivalently, ∥ρδ′ − ρδ∥C ≤ L
δ |δ′ − δ| for some L > 0. However, δ is a Lipschitz

function of α that is bounded away from 0 in a small neighborhood of αl, so ρδ
and, therefore, Fα(ρ) are uniformly Lipschitz in α there when ρ stays close to 1.

Next, we need to show that S depends continuously on α as an operator from
C ′

l to itself. First, observe that S depends continuously on α as an operator from
(L2

l )
′ to (L2

l )
′. Indeed, if we take two angles α′ and α′′ close to αl, the norm of the

difference of the corresponding operators S′ and S′′ is

∥S′ − S′′∥(L2
l )

′→(L2
l )

′ = sup
k: l|k,k ̸=l

|µk(α
′)−1 − µk(α

′′)−1|

≤ c−2
l sup

k: l|k,k ̸=l

|µk(α
′)− µk(α

′′)|,

where cl > 0 is the uniform lower bound for |µk(α)| with l|k, k ̸= l, in a small
neighborhood of αl. However, µk(α) is continuous for each k and µk(α) → cosα
uniformly as k → ∞ in that neighborhood, so the supremum becomes small when
the difference |α′ − α′′| gets small.

Since S = (cosα)−1(Id + TS), in order to finish, we just need to show that

the convolution operator T̃αf(θ) =
θ+α∫
θ−α

f(τ)dτ depends continuously on α as an

operator from (L2
l )

′ to C ′
l . However,

∥T̃α′f − T̃α′′f∥C ≤
√
2|α′ − α′′| ∥f∥L2

by Cauchy–Schwarz and we are done. The other components of the mapping Hs

do not depend on α at all, so the proof is complete.
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Thus, the fixed point φs also depends on α continuously. Next, Fα is Lipschitz
in its argument as long as the latter remains close to 1, so

Fα(1 + s cos(lθ) + φs) = Fα(1 + s cos(lθ)) +O(∥φs∥C)
= dFα(s cos(lθ)) +O(s

3
2 ) = µl(α)s cos(lθ) +O(s

3
2 ).

The conclusion is that

E(s, α) = µl(α)s+O(s
3
2 ) (s → 0),

where the implicit constant in O() stays bounded as long as α stays sufficiently
close to αl (how close exactly depends on l, but not on s).

Since µl(α) changes sign at αl, we see that E(s, α) also changes sign in a short
interval around αl if s is small enough. But then, by the intermediate value theo-
rem, for any sufficiently small s, there exists α = α(s) in a small neighborhood of
αl for which E(s, α) = 0, i.e.,

Fα(1 + s cos(lθ) + φs) = 0.

Then ρs = 1+ s cos(lθ) + φs is a continuous radial function of a star-shaped body
Ks that is homothetic (with the coefficient 1

cosα ) to its convex body of flotation
and, therefore, convex as well.

At this point, it is already clear that it cannot happen that the Ks corresponding
to very different values of s (differing 10 times or more) are affine equivalent.
Indeed, since Ks has the symmetries of the regular l-gon, it is centered at the
origin and is in the isotropic position, so the only chance to map it to another
Ks′ (which also is centered at the origin and is in the isotropic position) affinely
is to use a combination of rotation and dilation (any other affine transformation
will destroy the isotropic position or shift Ks off center, or both). However, both
rotations and dilations preserve the ratio of the total size of the component of ρ
at the l-th frequency to the size of the component at the 0-th frequency, and that
ratio for Ks is between s

2 and 2s.
It is reasonable to expect that we have actually obtained a continuous in s

continuum size family of pairwise affinely non-equivalent bodies here, but showing
it rigorously goes well beyond the scope of this short paper, so we leave it to the
interested reader.
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[4] C. Schütt, E. Werner, Homothetic floating bodies, Geom. Dedicata, 49 (3) (1994), 335–
348.
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