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A NOTE ON THE SCHWARZ FRACTAL DERIVATIVE

LUIS ÁNGEL GARCÍA PACHECO, DANIEL ALFONSO SANTIESTEBAN,
RICARDO ABREU BLAYA, AND JOSÉ MARÍA SIGARRETA ALMIRA

Abstract. We define a Schwarz fractal derivative of order n for a real-valued
function f(t) as the limit

(Sα,β
n f)(t0) = lim

t→t0

∑n

j=0

(
n
j

)
(−1)jfβ

(
t0 + n−2j

2 (t − t0)
)

(tα − tα
0 )n

,

where α, β > 0 and fβ := f |f |β−1. This derivative naturally generalizes the
one introduced by Riemann in 1854. We study its essential properties and its
relationship with other fractal derivatives recently reported in the literature.
We obtain certain analogues of the mean value and Rolle theorems, together
with some of their most important consequences. Finally, we propose an
extension of such derivatives to the several-variable setting.

1. Introduction

The upper Schwarz derivative of a real-valued function f at t0 ∈ R is defined by

(Snf)(t0) = lim sup
h→0

∑n
j=0

(
n
j

)
(−1)jf

(
t0 + n−2j

2 h
)

hn
.

The lower Schwarz derivative (Snf)(t0) is analogously defined by the corresponding
lower limit.

When (Snf)(t0) = (Snf)(t0), whether finite or infinite, the common value will
be denoted by (Snf)(t0) and is referred to as the n-th Schwarz derivative of f at t0.
The existence of the n-th ordinary derivative f (n)(t0) implies that of (Snf)(t0).
For n = 2, we obtain the well-known Riemann derivative. Riemann was the first
to realize the important role that this derivative plays in Fourier analysis [14].
On the other hand, Schwarz proved that if f is continuous and this derivative
vanishes everywhere, then f must be linear. The terms “symmetric derivative”
and “pseudoderivative” are often used in the literature. Good references on this
topic are the works [4, 2, 5, 7, 16, 15, 12].
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Fractal calculus is very simple but extremely effective to deal with phenomena
in hierarchical or porous media. Fractal theory is the theoretical basis for the
fractal space-time. Many researchers have already found the intrinsic relationship
between the fractional dimensions and the fractional order. The flexibility intro-
duced by the fractal derivatives in the setting of fractal calculus allows one to look
for new perspectives in several lines of research concerning approximation theory,
anomalous diffusion and fractional differential equations (see, e.g., [3, 6, 8, 11]).

In this paper, the n-th Schwarz fractal derivative of f at t0 is defined by the
limit

(Sα,β
n f)(t0) = lim

t→t0

∑n
j=0

(
n
j

)
(−1)jfβ

(
t0 + n−2j

2 (t− t0)
)

(tα − tα0 )n
,

where α, β > 0 and fβ := f |f |β−1. As in the classical case, such a limit exists
if the upper and lower limits are equal. In the particular case when n = 2, we
will refer to this derivative as the Riemann fractal derivative. First we will study
basic properties of these derivatives, leading to interesting theoretical results. Sub-
sequently, we obtain weak versions of the mean value and Rolle theorems, as well
as some of their most important consequences. In Section 4 we derive a necessary
condition connecting the local extremes of a continuous function with its Riemann
fractal derivative. Finally, we briefly discuss a natural extension of this derivative
in the context of complex analysis.

2. Preliminaries and simple facts

For α, β > 0, let us define the (β, α)-fractal derivative of a function f at the
point t0 by

dβf

dtα
(t0) = lim

t→t0

fβ(t) − fβ(t0)
tα − tα0

,

whenever the limit exists and is finite. In such a case, we say that f is (β, α)-fractal
differentiable at t0. The space of (β, α)-fractal differentiable functions at t0 will
be denoted by F(t0). Here, the function fβ is defined as in the introduction by
fβ = f |f |β−1. This derivative was studied in the forthcoming paper by Alfonso
Santiesteban et al. [1], where it was used to find a better fitting curve for a real
data set related to tuberculosis in Mexico. It is not difficult to obtain the following
interesting properties of dβ

dtα .

Proposition 2.1. Let f be a differentiable function at t0. Assume also that t0 ̸= 0
if α > 1, and f(t0) ̸= 0 if β < 1. Then f is (β, α)-fractal differentiable at t0, and

dβf

dtα
(t0) = β

α
|t0|1−α|f(t0)|β−1f ′(t0).

In particular, dβf/dtα ≥ 0 if f ′ ≥ 0 and dβf/dtα ≤ 0 if f ′ ≤ 0.
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Proof. Since t0 ̸= 0 if α > 1, and f(t0) ̸= 0 if β < 1, we obtain

dβf

dtα
(t0) = lim

t→t0

fβ(t) − fβ(t0)
tα − tα0

= lim
t→t0

fβ(t) − fβ(t0)
t− t0

· t− t0
tα − tα0

= β |f(t0)|β−1f ′(t0) lim
t→t0

1
α |t|α−1 = β

α
|t0|1−α|f(t0)|β−1f ′(t0). □

Proposition 2.2. Let f, g be (β, α)-fractal differentiable functions at t0. Then the
following statements hold:

(1) fg is (β, α)-fractal differentiable at t0 and

dβ(fg)
dtα

(t0) = dβf

dtα
(t0) gβ(t0) + fβ(t0) d

βg

dtα
(t0).

(2) If g(t0) ̸= 0, then 1/g is (β, α)-fractal differentiable at t0 and

dβ

dtα

(
1
g

)
(t0) =

− dβg
dtα (t0)

|g(t0)|2β
.

(3) If g(t0) ̸= 0, then f/g is (β, α)-fractal differentiable at t0 and

dβ

dtα

(
f

g

)
(t0) =

dβf
dtα (t0) gβ(t0) − fβ(t0) dβg

dtα (t0)
|g(t0)|2β

.

We define the n-th Schwarz fractal derivative of a real-valued function f at a
point t0 ∈ R by

(Sα,β
n f)(t0) = lim

t→t0

∑n
j=0

(
n
j

)
(−1)jfβ

(
t0 + n−2j

2 (t− t0)
)

(tα − tα0 )n
, (2.1)

where α, β > 0. If the limit (2.1) exists, we say that f is n-times Schwarz fractal
differentiable at t0. This limit can exist even if the function is not continuous in t0.
The space of n-times Schwarz fractal differentiable functions at t0 will be denoted
by Sn(t0).

Remark 2.3. Using the identity
n∑

j=1
(−1)j+n jn

j!(n− j)! = 1

and L’Hôpital’s rule, in view of (2.1), we get that when the function f is n-times
differentiable at t0 then

(S1,1
n f)(t0) = f (n)(t0).

Unfortunately, for the fractal derivatives Sα,β
n f such a nice relationship is no

longer true (see Section 4). Sometimes it is convenient to rewrite Sα,β
n f as

(Sα,β
n f)(t0) =


1

αn|t0|n(α−1) lim
h→0

∑n

j=0 (n
j)(−1)jfβ(t0+(n−2j)h)

2nhn , t0 ̸= 0,

lim
h→0

∑n

j=0 (n
j)(−1)jfβ((n−2j)h)

2nαhnα , t0 = 0.
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This rewriting will be useful in Section 5, where the first-order Schwarz fractal
derivative is studied in detail (n = 1).

Example 2.4. The Dirichlet function

f(t) =
{

1, t ∈ Q,
0, t ∈ R \ Q,

has a first-order Schwarz fractal derivative equal to zero at every t ∈ Q, but, in
contrast, it is not first-order Schwarz fractal differentiable at any t ∈ R\Q. On the
other hand, neither f ′ nor dβf

dtα exist anywhere in Q. The existence of Sα,β
1 f does

not imply the continuity of f as does the existence of f ′ and dβf
dtα .

Example 2.5. Let

f(t) =
{
t2, t ≥ 0,
−t2, t < 0.

A direct computation shows that the Riemann fractal derivative of f at 0

(Sα,β
2 f)(0) = lim

t→0

fβ(t) + fβ(−t)
t2α

exists and is equal to zero, despite the non-existence of f ′′(0). Assume now that
α < 1 and β > 1. We have that

dβf

dtα
(t0) =

{ 2β
α |t0|2β−α−1t0, t0 ≥ 0,
−2β

α |t0|2β−α−1t0, t0 < 0,

whence d1

dtα

[
dβf
dtα

]
(0) = 0. This simple example shows that ordinary differentiability

is a stronger condition than Schwarz fractal differentiability. We performed some
simulations in the GeoGebra environment for this example, available at https:
//www.geogebra.org/m/rm46bvpr.

Remark 2.6. In [10], a generalization of local fractional derivatives was studied.
This generalized derivative was defined as

(Gϑ
T f)(t0) = lim

h→0

1
h⌈ϑ⌉

⌈ϑ⌉∑
k=0

(−1)k

(
⌈ϑ⌉
k

)
f(t0 − khT (t0, ϑ)), (2.2)

where f : I → R, I ⊂ R is an interval, ϑ ∈ R+ and T (t0, ϑ) is a positive continuous
function on I. For α = β = 1, the relation (2.1) reduces to

(S1,1
n f)(t0) = lim

h→0

1
hn

n∑
k=0

(
n

k

)
(−1)kf

(
t0 − kh+ n

2h
)
. (2.3)

Note the similarity between (2.2) and (2.3) when ϑ = n and T (t0, ϑ) ≡ 1. Therefore,
using the kernel T (t0, ϑ) we can arrive at a generalization of (2.1) by means of

lim
t→t0

∑⌊ϑ⌋
j=0

(⌊ϑ⌋
j

)
(−1)jfβ

(
t0 + n−2j

2 (t− t0)T (t0, ϑ)
)

(tα − tα0 )⌊ϑ⌋ .
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The following proposition is straightforward.

Proposition 2.7. Let α, β > 0, c ∈ R, and let f ∈ Sn(t0). The following state-
ments hold:

(1) We have
(Sα,β

n f)(t0) = (Sα,1
n fβ)(t0).

(2) The constant function c is Schwarz fractal differentiable of any order in
the whole space, and

(Sα,β
k c)(t0) = 0 for all t0 ∈ R, k ∈ N∗.

In addition,

(Sα,β
2 (at+ b))(t0) =

{
β(β − 1)(a/α)2|t0|2−2α|at0 + b|β−2, β ̸= 1,
0, β = 1,

where a, b ∈ R are such that at0 + b ̸= 0 if β ∈ (0, 2] \ {1} and t0 ̸= 0 if
α > 1.

(3) The function cf ∈ Sn(t0) and satisfies

(Sα,β
n cf)(t0) = cβ(Sα,β

n f)(t0).

(4) Sα,β
n is a linear operator if and only if β = 1.

Proof. (1) By definition, we have that

(Sα,β
n f)(t0) = lim

t→t0

∑n
j=0

(
n
j

)
(−1)jfβ

(
t0 + n−2j

2 (t− t0)
)

(tα − tα0 )n

= (Sα,1
n fβ)(t0).

(2) Since
∑k

j=0
(

k
j

)
(−1)j = 0, k ∈ N∗, it follows that

(Sα,β
k c)(t0) = lim

t→t0

∑k
j=0

(
k
j

)
(−1)jcβ

(tα − tα0 )k
= 0 for all t0 ∈ R.

The function (at+ b)β , a, b ∈ R, β ̸= 1, satisfies

d((at+ b)β)
dt

= aβ|at+ b|β−1.

Therefore, the function (at + b)β is differentiable at all t0 ∈ R except for the case
where t0 = − b

a , a ̸= 0 and β < 1. Note that for all t0 ̸= − b
a , we have

d(|at+ b|β−1)
dt

(t0) = a(β − 1)|at0 + b|β−2.

However, if β ∈ (0, 2] \ {1}, then the function |at + b|β−1 is not differentiable at
t0 = − b

a , a ̸= 0. If β > 2 we obtain

d(|at+ b|β−1)
dt

(
− b

a

)
= lim

h→0

|ah|β−1

h
= lim

h→0
|a|β−1 |h|

h
|h|β−2 = 0.
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Using Remark 2.3 we can rewrite (Sα,β
2 f)(t0) as

(Sα,β
2 f)(t0) =


1

α2|t0|2(α−1) lim
h→0

∑2
j=0 (2

j)(−1)jfβ(t0+(2−2j)h)
22h2 , t0 ̸= 0,

lim
h→0

∑2
j=0 (2

j)(−1)jfβ((2−2j)h)
22αh2α , t0 = 0.

Since (at+ b)β is twice continuously differentiable at t0 ̸= 0 if α > 1, and such that
at0 + b ̸= 0 if β ∈ (0, 2] \ {1}, at this point t0 we have

d2((at+ b)β)
dt2

(t0) = lim
h→0

∑2
j=0

(2
j

)
(−1)j (a(t0 + (2 − 2j)h) + b)β

22h2 ,

hence
(Sα,β

2 (at+ b))(t0) = β(β − 1)(a/α)2|t0|2−2α|at0 + b|β−2.

When t0 = 0 with α ≤ 1 and b ̸= 0 if β ∈ (0, 2] \ {1}, we have

(Sα,β
2 (at+ b))(0) = d2((at+ b)β)

dt2
(0) · lim

h→0
(2h)2−2α =

{
0, α < 1,
a2β(β − 1)|b|β−2, α = 1.

Analogously, if β = 1 we obtain (Sα,β
2 (at+ b))(t0) = 0.

(3) We have

(Sα,β
n cf)(t0) = lim

t→t0

∑n
j=0

(
n
j

)
(−1)j(cf)β

(
t0 + n−2j

2 (t− t0)
)

(tα − tα0 )n

= lim
t→t0

∑n
j=0

(
n
j

)
(−1)jcβfβ

(
t0 + n−2j

2 (t− t0)
)

(tα − tα0 )n

= cβ(Sα,β
n f)(t0).

(4) Given two arbitrary real functions f and g, the result follows because the
equality (f + g)β = fβ + gβ holds if and only if β = 1. □

In particular, note that if f is (β, α)-fractal differentiable at t0 then we have

(Sα,β
1 f)(t0) = lim

t→t0

fβ
(
t0 + t−t0

2
)

− fβ
(
t0 − t−t0

2
)

tα − tα0

= lim
z= 1

2 t+ 1
2 t0→t0

fβ(z) − fβ(2t0 − z)
2(zα − tα0 ) · 2(zα − tα0 )

(2z − t0)α − tα0

= lim
t→t0

fβ(t) − fβ(t0) + fβ(t0) − fβ(2t0 − t)
2(tα − tα0 )

= 1
2
dβf

dtα
(t0) + 1

2 lim
t→t0

fβ(t0) − fβ(2t0 − t)
tα − tα0

= 1
2
dβf

dtα
(t0) + 1

2 lim
2t0−t→t0

fβ(2t0 − t) − fβ(t0)
(2t0 − t)α − tα0

= dβf

dtα
(t0).
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Let ϵ > 0 and f, g ∈ S1(t0) ∩ C(t0 − ϵ, t0 + ϵ). We have

(Sα,β
1 fg)(t0)

= lim
t→t0

(fg)β(t) − (fg)β(2t0 − t)
2(tα − tα0 )

= lim
t→t0

(fg)β(t) − fβ(2t0 − t)gβ(t) + fβ(2t0 − t)gβ(t) − (fg)β(2t0 − t)
2(tα − tα0 )

= (Sα,β
1 f)(t0)gβ(t0) + fβ(t0)(Sα,β

1 g)(t0).

In general, the space S1(t0) is not a Banach algebra; however, if the continuity
of the function is required in a neighborhood of t0, then S1(t0) becomes a Banach
algebra. It will be shown in the following section that the continuity of (Sα,β

1 f)(t)
at a point t0 and the continuity of f(t) in a neighborhood of t0 imply the existence
of dβf

dtα (t0).
We shall be concerned with the following subclasses:

• Σ = {f : Sα,β
1 f exists everywhere},

• mΣ = {f ∈ Σ : f is measurable},
• σ = {f ∈ Σ : Sα,β

1 f is finite everywhere}.
A function f ∈ σ is symmetrically continuous at each t ∈ R, that is,

lim
h→0

(f(t+ h) − f(t− h)) = 0

for each t ∈ R. Stein and Zygmund proved that a symmetrically continuous func-
tion is continuous almost everywhere, and therefore σ ⊂ mΣ (see [16, Lemma 9]).
A proof quite analogous to that of [12, Theorem 2.1] shows that Sα,β

1 f belongs to
the first Baire class for any f ∈ Σ. We refer the reader to the paper [12], many of
whose results can also be applied to this fractional context.

In real analysis, two differentiable functions whose derivatives are equal through-
out an interval must differ by a constant in that interval. A similar result for Sα,β

1
is no longer true, as proved in the following example.

Example 2.8. Define the two functions as follows:

g(t) =
{

0, t = 1
n (n = ±1,±2, . . . ),

3, otherwise,

and

h(t) =
{
t, t is an integer,
π, otherwise.

At all points, (Sα,β
1 g)(t) = (Sα,β

1 h)(t) = 0, but g and h obviously do not differ by
a constant.

The following proposition is essential for the proof of the results to be presented
below.
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Proposition 2.9. Let f(t) be continuous on a ≤ t < b and let Sα,β
1 (t) exist on

a < t < b. Let f(b) > f(a) (resp. f(b) < f(a)), then there exists a point c,
a < c < b, such that Sα,β

1 (c) ≥ 0 (resp. Sα,β
1 (c) ≤ 0).

Proof. Since the function x|x|β−1 is increasing in R, it follows that fβ(a) < fβ(b).
Let d be such that fβ(a) < d < fβ(b). The set {t : fβ(t) > d, a < t < b} is
bounded below by a, and applying the greatest lower bound property we obtain
that it has a infimum c such that c ̸= a and c ̸= b. In addition, (Sα,β

1 f)(c) ≥ 0,
since there are points t > c in every neighborhood of c such that fβ(t) > fβ(c) and
fβ(t) ≤ fβ(c) for a ≤ t ≤ c. The second part of the proof is analogous. □

3. Rolle-type theorems and consequences

The classical mean value theorem does not hold for the first-order Schwarz fractal
derivative. This is illustrated by the example below.

Example 3.1. Consider f(t) = |t|
α
β . Then

(Sα,β
1 f)(t0) = lim

t→t0

fβ(t0 + 1
2 (t− t0)) − fβ(t0 − 1

2 (t− t0))
tα − tα0

= lim
t→t0

|t0 + 1
2 (t− t0)|α − |t0 − 1

2 (t− t0)|α

tα − tα0

=
{

|t0|
t0
, t0 ̸= 0,

0, t0 = 0.

If a = −2 and b = 3, then
fβ(b) − fβ(a)

bα − aα
= 3α − 2α

3α + 2α
,

which is not a value in the range of Sα,β
1 f .

In this section we will see a weak version of the Rolle theorem for the first-order
Schwarz fractal derivative and some immediate consequences.

Theorem 3.2. Let f(t) be continuous on a ≤ t ≤ b and let (Sα,β
1 f)(t) exist on

a < t < b, and let f(a) = f(b). Then there exists a point t0 ∈ (a, b) such that
(Sα,β

1 f)(t0) ≥ 0 and a point t1 ∈ (a, b) such that (Sα,β
1 f)(t1) ≤ 0.

Proof. The case f(t) ≡ f(a) is straightforward. Conversely, there exists either a
point c such that f(c) > f(a), or a point d such that f(d) < f(a), or both. By
Proposition 2.9, there exist points t0 and t1, a < t0 < c < t1 < b or a < t1 < d <

t0 < b, such that (Sα,β
1 f)(t0) ≥ 0 and (Sα,β

1 f)(t1) ≤ 0. □

Theorem 3.3. Let f(t) be continuous on a ≤ t ≤ b, and let (Sα,β
1 f)(t) exist on

a < t < b. Then there exist points t0, t1 ∈ (a, b) such that

(Sα,β
1 f)(t1) ≤ fβ(b) − fβ(a)

bα − aα
≤ (Sα,β

1 f)(t0).

Rev. Un. Mat. Argentina, Vol. 69, No. 1 (2026)



A NOTE ON THE SCHWARZ FRACTAL DERIVATIVE 9

Proof. Let g(t) =
[
fβ(t) − fβ(a) − fβ(b)−fβ(a)

bα−aα (tα − aα)
] 1

β . By Theorem 3.2, as
g(a) = g(b) = 0, there exists a point t0 ∈ (a, b) such that (Sα,β

1 g)(t0) ≥ 0, and a
point t1 ∈ (a, b) such that (Sα,β

1 g)(t1) ≤ 0. Since

(Sα,β
1 g)(t0) = lim

t→t0

gβ(t) − gβ(2t0 − t)
2(tα − tα0 )

= lim
t→t0

fβ(t) − fβ(2t0 − t) − fβ(b)−fβ(a)
bα−aα (tα − (2t0 − t)α)

2(tα − tα0 )

= (Sα,β
1 f)(t0) − fβ(b) − fβ(a)

bα − aα

and also

(Sα,β
1 g)(t1) = (Sα,β

1 f)(t1) − fβ(b) − fβ(a)
bα − aα

,

the result follows directly. □

Definition 3.4. A function f : R → R is said to have the Darboux property (or
intermediate value property) if, whenever x, y ∈ R and ϵ is any real number between
f(x) and f(y), there exists a number t between x and y such that f(t) = ϵ.

To a given real-valued function f we associate the set

C(f) = {t : f is continuous at t}.

Remark 3.5. In Theorem 3.3 the continuity of f(t) on an interval [a, b] can be
replaced by the weaker condition

f ∈ mΣ, a, b ∈ C(f),

and the results still hold. The proof is similar taking into account that C(f) is
dense.

Theorem 3.6. If f ∈ mΣ is such that Sα,β
1 f has the Darboux property, then for

each φ,ψ ∈ C(f) such that φ < ψ there is a ϑ ∈ (φ,ψ) such that

fβ(ψ) − fβ(φ)
ψα − φα

= (Sα,β
1 f)(ϑ).

Proof. Using Theorem 3.3 and taking into account Remark 3.5, we obtain that
there exist points t0, t1 ∈ (φ,ψ) such that

(Sα,β
1 f)(t1) ≤ fβ(ψ) − fβ(φ)

ψα − φα
≤ (Sα,β

1 f)(t0).

Since Sα,β
1 f has the Darboux property, we can ensure that there exists a ϑ ∈ (φ,ψ)

such that
fβ(ψ) − fβ(φ)

ψα − φα
= (Sα,β

1 f)(ϑ),

and we are done. □
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Theorem 3.7. Let f(t) and (Sα,β
1 f)(t) be continuous on a < t < b. Then dβf

dtα (t)
exists and

dβf

dtα
(t) = (Sα,β

1 f)(t).

Proof. For ϵ sufficiently small such that a < t + ϵ < b, we have by Theorem 3.3
that there exist t0 and t1 strictly between t and t+ ϵ such that

(Sα,β
1 f)(t1) ≤ fβ(t+ ϵ) − fβ(t)

(t+ ϵ)α − tα
≤ (Sα,β

1 f)(t0).

By the continuity of (Sα,β
1 f)(t), there exists t2 strictly between t and t + ϵ such

that

(Sα,β
1 f)(t2) = fβ(t+ ϵ) − fβ(t)

(t+ ϵ)α − tα
.

Taking ϵ → 0 gives the desired result. □

Theorem 3.8. Let (Sα,β
1 f)(t) be continuous at a point t0 and let f(t) be continuous

in a neighborhood of t0. Then dβf
dtα (t0) exists and

dβf

dtα
(t0) = (Sα,β

1 f)(t0).

Proof. For ϵ1 > 0, there exists a neighborhood V of t0 such that if t ∈ V , f(t) is
continuous and

|(Sα,β
1 f)(t) − (Sα,β

1 f)(t0)| < ϵ1.

By Theorem 3.3, there exist t1 and t2 strictly between t0 and t0 + ϵ2 such that

(Sα,β
1 f)(t2) ≤ fβ(t0 + ϵ2) − fβ(t0)

(t0 + ϵ2)α − tα0
≤ (Sα,β

1 f)(t1),

with (t0 + ϵ2) ∈ V , ϵ2 ̸= 0. Hence

(Sα,β
1 f)(t0) − ϵ1 <

fβ(t0 + ϵ2) − fβ(t0)
(t0 + ϵ2)α − tα0

< (Sα,β
1 f)(t0) + ϵ1.

The existence of dβf
dtα (t0) follows and dβf

dtα (t0) = (Sα,β
1 f)(t0). □

The following theorem is a generalization of [12, Theorem 7.3, p. 597].

Theorem 3.9. If f ∈ σ, then for each t ∈ R,

lim inf
h→0

(Sα,β
1 f)(t+ h) + (Sα,β

1 f)(t− h)
2

≤ (Sα,β
1 f)(t) ≤ lim sup

h→0

(Sα,β
1 f)(t+ h) + (Sα,β

1 f)(t− h)
2 .

(3.1)

Proof. Suppose that

(Sα,β
1 f)(t) > lim sup

h→0

(Sα,β
1 f)(t+ h) + (Sα,β

1 f)(t− h)
2 .
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Through a translation and the addition of an appropriate constant, we may assume
that t = 0 and that

(Sα,β
1 f)(0) > 0 > lim sup

h→0

(Sα,β
1 f)(h) + (Sα,β

1 f)(−h)
2 . (3.2)

Set g(t) =
[

fβ(t)−fβ(−t)
2

] 1
β . Then g ∈ σ and, setting τ = 1

2 (t− t0),

(Sα,β
1 g)(t0) = lim

t→t0

gβ(t0 + τ) − gβ(t0 − τ)
tα − tα0

= 1
2 lim

t→t0

fβ(t0 + τ) − fβ(−t0 − τ) − fβ(t0 − τ) + fβ(−t0 + τ)
tα − tα0

= 1
2[(Sα,β

1 f)(t0) + (Sα,β
1 f)(−t0)].

Since (Sα,β
1 g)(0) = (Sα,β

1 f)(0), relation (3.2) implies that

(Sα,β
1 g)(0) > 0 > lim sup

h→0
(Sα,β

1 g)(h). (3.3)

Then there exists a δ > 0 such that (Sα,β
1 g)(h) < 0 whenever 0 < |h| < δ. For any

f ∈ mΣ we let

Mf =
{
x :
∣∣∣ lim sup
t→x, t∈C(f)

f(t)
∣∣∣ = ∞

}
and define µf to be the real function

µf (x) =

 lim sup
t→x, t∈C(f)

f(t), x /∈ Mf ,

f(x), x ∈ Mf .

If g ∈ σ with Sα,β
1 g < 0 a.e., then µg is continuous and nonincreasing on (−δ, δ).

Therefore, (Sα,β
1 g)(0) = (Sα,β

1 µg)(0) ≤ 0, which contradicts (3.3) and the right-
hand inequality in (3.1) is established. The left-hand inequality is established in
an analogous manner. □

Theorem 3.9 establishes that Sα,β
1 f must satisfy a weaker “Darboux-like” condi-

tion at every point given by formula (3.1). It is also interesting that if the first-order
Schwarz fractal derivative exists almost everywhere, then the fractal derivative ex-
ists almost everywhere.

Theorem 3.10. Let Sα,β
1 f be bounded on (a, b), with α ≥ 1, and let f be continuous

on (a, b). Then fβ satisfies the Lipschitz condition on (a, b), i.e., there exists a
constant M such that

|fβ(x) − fβ(t)| ≤ M |x− t|

for any x, t ∈ (a, b).
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Proof. Assume x ̸= t, and, to be specific, x < t. Applying Theorem 3.3, it is
apparent that no matter where x and t are in (a, b) there exist points p and q such
that x < p < t, x < q < t, and

(Sα,β
1 f)(p) ≤ fβ(x) − fβ(t)

xα − tα
≤ (Sα,β

1 f)(q).

Since (Sα,β
1 f)(x) is bounded on (a, b), choose

M = max
(∣∣ inf

(a,b)
Sα,β

1 f
∣∣, ∣∣sup

(a,b)
Sα,β

1 f
∣∣).

This implies that

−M ≤ fβ(x) − fβ(t)
xα − tα

≤ M.

Therefore,
|fβ(x) − fβ(t)| ≤ M |xα − tα| ≤ M ′|x− t|. □

Example 3.11. The function f(t) =
√
t defined on (0, 1) satisfies (S1,2

1 f)(t) = 1
and is obviously continuous on the interval. Clearly, f2(t) = t is Lipschitz contin-
uous; however, f(t) is not Lipschitz continuous on (0, 1). As is well known, the
function f(t) =

√
t is uniformly continuous, Hölder continuous of class C0,ν for

ν ≤ 1
2 , and absolutely continuous on [0, 1].

Definition 3.12. A function f is said to satisfy condition (F) at a point c, if f
crosses every straight line through (c, f(c)) at most a finite number of times in
some neighborhood Vc.

In [4] the following existence theorem for the common symmetric derivative was
proved.

Theorem 3.13. Let f satisfy the Lipschitz condition on (a, b) and let condition (F)
be satisfied for each t ∈ (a, b). Then S1,1

1 f exists and is bounded for t ∈ (a, b).

Since
(Sα,β

1 f)(t) = 1
α|t|α−1 · (S1,1

1 fβ)(t), t ̸= 0,

a simpler version of Theorem 3.13 can be obtained.

Theorem 3.14. Let fβ satisfy the Lipschitz condition on (a, b) and let condi-
tion (F) be satisfied for each t ∈ (a, b). If α = 1 then Sα,β

1 f exists and is bounded
for t ∈ (a, b); otherwise, Sα,β

1 f exists and is bounded in any subinterval of (a, b)
that does not contain zero as an accumulation point.

In closing, a conjecture is stated. This is not to indicate that these are the
only questions still unanswered but to point out a few ideas which can be further
pursued.

Conjecture 3.15. If any straight line through the origin intersects an odd func-
tion f an infinite number of times in each neighborhood of the origin, then (Sα,β

1 f)(0)
does not exist.
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4. Riemann fractal derivative

The study of the generalized Riemann derivative has attracted generations of
physicists and mathematicians. One of the main areas benefiting from these de-
velopments is numerical analysis, since the use of generalized Riemann derivatives
leads to the solution of a wider class of problems that are not solvable with classical
tools. The Riemann fractal derivative can be seen as a peculiar version of these
types of generalized derivatives that have been studied before in the literature (see
e.g. [13]).

In this section, we will obtain a necessary condition for the determination of a
local extreme in relation to the Riemann fractal derivative.

Now note that if f ∈ C2(t0 − ϵ, t0 + ϵ), with ϵ > 0, and if we also assume that
t0 ̸= 0 when α > 1, and f(t0) ̸= 0 when β ∈ (0, 2) \ {1}, then we have

(Sα,β
2 f)(t0)

= lim
t→t0

fβ(t) + fβ(2t0 − t) − 2fβ(t0)
(tα − tα0 )2

= lim
t→t0

β|f(t)|β−1f ′(t) − β|f(2t0 − t)|β−1f ′(2t0 − t)
2(tα − tα0 )α|t|α−1

= lim
t→t0

β(β − 1)|f(t)|β−2(f ′(t))2 + β|f(t)|β−1f ′′(t)
+ β(β − 1)|f(2t0 − t)|β−2(f ′(2t0 − t))2 + β|f(2t0 − t)|β−1f ′′(2t0 − t)

2α(2α− 1)|t|2α−2 − 2α(α− 1)|t0|α|t|α−2

= β(β − 1)|f(t0)|β−2(f ′(t0))2 + β|f(t0)|β−1f ′′(t0)
α2|t0|2α−2 .

and, on the other hand,

d1

dtα

[
dβf

dtα

]
(t0)

= β

α

d1[|t|1−α|f(t)|β−1f ′(t)]
dtα

(t0)

= β

α2 |t0|1−α
{

(1 − α)|t0|−α|f(t0)|β−1f ′(t0) + (β − 1)|t0|1−α|f(t)|β−2(t0)(f ′(t0))2

+ |t0|1−α|f(t0)|β−1f ′′(t0)
}

= 1 − α

α
|t0|−α d

βf

dtα
(t0) + (Sα,β

2 f)(t0).

Indeed, the special case when α = β = 1 confirms that (S1,1
2 f)(t0) = f ′′(t0).

Theorem 4.1. Let f be a continuous function in a neighborhood of t0. If f has a
local maximum (resp. minimum) at t0, then (Sα,β

2 f)(t0) ≤ 0 (resp. (Sα,β
2 f)(t0) ≥ 0).

Proof. If f has a local maximum (resp. minimum) at t0, then for a sufficiently
small ϵ > 0 one must have fβ(t0 ± ϵ) ≤ fβ(t0) (resp. fβ(t0 ± ϵ) ≥ fβ(t0)), hence it
is a fact that (Sα,β

2 f)(t0) ≤ 0 (resp. (Sα,β
2 f)(t0) ≥ 0). □
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Now let us see that if f and g are Riemann fractal differentiable at t0 and
continuous in a neighborhood of t0, then

(Sα,β
2 fg)(t0)

= lim
t→t0

(fg)β(t) + (fg)β(2t0 − t) − 2(fg)β(t0)
(tα − tα0 )2

= lim
t→t0

(
(fg)β(t) + fβ(2t0 − t)gβ(t) − 2fβ(t0)gβ(t) + (fg)β(2t0 − t) − 2(fg)β(t0)

(tα − tα0 )2

+ 2fβ(t0)gβ(t) − fβ(2t0 − t)gβ(t)
(tα − tα0 )2

)
= (Sα,β

2 f)(t0)gβ(t0)

+ lim
t→t0

(
(fg)β(2t0 − t) + fβ(2t0 − t)gβ(t) − 2fβ(2t0 − t)gβ(t0)

(tα − tα0 )2

+ 2fβ(2t0 − t)gβ(t0) − 2fβ(2t0 − t)gβ(t) − 2(fg)β(t0) + 2fβ(t0)gβ(t)
(tα − tα0 )2

)
= (Sα,β

2 f)(t0)gβ(t0) + fβ(t0)(Sα,β
2 g)(t0)

+ 2 lim
t→t0

(fβ(2t0 − t) − fβ(t0)) · (gβ(t0) − gβ(t))
(tα − tα0 )2 .

Thus, if f and g are (β, α)-fractal differentiable at t0 and f, g ∈ S2(t0), then we
obtain the following Leibniz rule for the Riemann fractal derivative:

(Sα,β
2 fg)(t0) = (Sα,β

2 f)(t0)gβ(t0) + fβ(t0)(Sα,β
2 g)(t0) + 2d

βf

dtα
(t0) · d

βg

dtα
(t0). (4.1)

As was shown in Proposition 2.2, the (β, α)-fractal differentiable functions form
a Banach algebra. Nevertheless, in general the Schwarz fractal differentiable func-
tions do not form a Banach algebra, even in the special situation when α = β = 1.

Example 4.2. Let

f(t) =
{

sin(1/t), t ̸= 0,
0, t = 0,

and g(t) = t. It is clear that

(S1,1
2 f)(0) = (S1,1

2 g)(0) = 0,

while (S1,1
2 fg)(0) = limt→0

2 sin(1/t)
t does not exist. However, thanks to relation

(4.1) we can state that the space S2(t0) ∩F(t0) ∩C(t0 − ϵ, t0 + ϵ), ϵ > 0, does con-
stitute a Banach algebra. Using Wolfram Mathematica 14.1, we obtained Figure 1,
which illustrates the plots of the Riemann fractal derivative Sα,β

2 f for different
values of α and β. The reader can also find an implementation in GeoGebra at
https://www.geogebra.org/m/qbznujuj.
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(a) α = 0.05 (b) α = 0.5

(c) α = 1.0 (d) α = 1.5

(e) α = 3.0 (f) α = 5.0

Figure 1. Plots of Sα,β
2 f for different values of α and β, where

f(t) = sin(1/t) for t ̸= 0 and f(t) = 0 for t = 0.

Remark 4.3. A trigonometric series

a0

2 +
∞∑

n=1
(an cosnt+ bn sinnt)

with bounded coefficients an, bn can be summed by Riemann’s method at a point
t0 ̸= 0 to a number R if the function

G(t) =
(
a0t

2

4 −
∞∑

n=1

an cosnt+ bn sinnt
n2

)1/β

has, at t0, a Riemann fractal derivative equal to R
α2|t0|2(α−1) . We refer the reader

to the preliminary work of Riemann [14].
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5. Concluding remarks

The final extension of the basic concept is to briefly examine the first-order
Schwarz derivative as it relates to functions of two variables. These ideas con-
tribute to a generalization of this type of derivative in a multidimensional context.
A suitable reference for the symmetric derivatives is the thesis [9].

Definition 5.1. A function f : C → C is first-order Schwarz fractal differentiable
at a point z0 ∈ C if the limit

(Sα,β
1 f)(z0) = lim

z→z0

fβ(z0 + 1
2 (z − z0)) − fβ(z0 − 1

2 (z − z0))
zα − zα

0

exists.

The above definition is similar to the definition of Schwarz fractal differentiability
in the case of a real argument, except that we allow z to take complex values.

Definition 5.2. Let the equation u = f(x, y) define a function in a region R of
the Euclidean plane. At a point (x, y) of R2 the symmetric partial derivatives of u
with respect to x and of u with respect to y, written

∂∗u

∂x
= Sα,β

1,x f(x, y) and ∂∗u

∂y
= Sα,β

1,y f(x, y),

respectively, are the limits of the difference quotients

Sα,β
1,x f(x, y) =


1

α∥(x,y)∥α−1 lim
∆x→0

fβ(x+∆x,y)−fβ(x−∆x,y)
2∆x , (x, y) ̸= 0,

lim
∆x→0

fβ(∆x,0)−fβ(−∆x,0)
(2∆x)α , (x, y) = 0,

Sα,β
1,y f(x, y) =


1

α∥(x,y)∥α−1 lim
∆y→0

fβ(x,y+∆y)−fβ(x,y−∆y)
2∆y , (x, y) ̸= 0,

lim
∆y→0

fβ(0,∆y)−fβ(0,−∆y)
(2∆y)α , (x, y) = 0.

We will refer to Sα,β
1,x f(x, y) and Sα,β

1,y f(x, y) as the first-order symmetric partial
derivatives.

Definition 5.3. For any complex variable z and function f with f(z) = u(x, y) +
iv(x, y), the symmetric Cauchy–Riemann conditions are

∂∗u
1
β

∂x
= ∂∗v

1
β

∂y
and ∂∗u

1
β

∂y
= −∂∗v

1
β

∂x
.

Theorem 5.4. If the first-order Schwarz fractal derivative (Sα,β
1 f)(z) of a func-

tion f exists at a point z0 = x0 + iy0, then the first-order symmetric partial deriva-
tives with respect to x and y of each of the components u and v of fβ = u+ iv must
exist at that point, and satisfy the symmetric Cauchy–Riemann conditions. Also,

(Sα,β
1 f)(z0) = ∂∗u

1
β

∂x
(x0, y0) + i

∂∗v
1
β

∂x
(x0, y0) = ∂∗v

1
β

∂y
(x0, y0) − i

∂∗u
1
β

∂y
(x0, y0).
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Proof. Suppose the function f has a first-order Schwarz fractal derivative at z0 =
x0 + iy0 and (Sα,β

1 f)(z0) = a+ bi. Since

fβ(z) = u(x, y) + iv(x, y),
∆∗fβ = fβ(z0 + ∆z) − fβ(z0 − ∆z),

∆∗u = u(x0 + ∆x, y0 + ∆y) − u(x0 − ∆x, y0 − ∆y),
∆∗v = v(x0 + ∆x, y0 + ∆y) − v(x0 − ∆x, y0 − ∆y),

when z0 ̸= 0 we have

(Sα,β
1 f)(z0) = lim

∆z→0

1
α|z0|α−1

∆∗u+ i∆∗v

2(∆x+ i∆y) = a+ bi.

Therefore,
1

α|z0|α−1 lim
∆x→0
∆y→0

Re ∆∗u+ i∆∗v

2(∆x+ i∆y) = a

and
1

α|z0|α−1 lim
∆x→0
∆y→0

Im ∆∗u+ i∆∗v

2(∆x+ i∆y) = b.

On the other hand,

∂∗u
1
β

∂x
(x0, y0) = 1

α|z0|α−1 lim
∆x→0

u(x0 + ∆x, y0) − u(x0 − ∆x, y0)
2∆x = a,

∂∗v
1
β

∂x
(x0, y0) = 1

α|z0|α−1 lim
∆x→0

v(x0 + ∆x, y0) − v(x0 − ∆x, y0)
2∆x = b,

∂∗v
1
β

∂y
(x0, y0) = 1

α|z0|α−1 lim
∆y→0

v(x0, y0 + ∆y) − v(x0, y0 − ∆y)
2∆y = a,

−∂∗u
1
β

∂y
(x0, y0) = − 1

α|z0|α−1 lim
∆y→0

u(x0, y0 + ∆y) − u(x0, y0 − ∆y)
2∆y = b.

Thus, the symmetric partial derivatives exist and

∂∗u
1
β

∂x
(x0, y0) = ∂∗v

1
β

∂y
(x0, y0), ∂∗u

1
β

∂y
(x0, y0) = −∂∗v

1
β

∂x
(x0, y0).

The case z0 = 0 is analyzed in a similar way; in this case, by definition, iα = i.
Then

(Sα,β
1 f)(z0) = ∂∗u

1
β

∂x
(x0, y0) + i

∂∗v
1
β

∂x
(x0, y0) = ∂∗v

1
β

∂y
(x0, y0) − i

∂∗u
1
β

∂y
(x0, y0). □

In order to appreciate the generality of this construction, we obtain

Sα,β
1 f = 1

2

[
∂∗

∂x
− i

∂∗

∂y

] [
(Re fβ)

1
β + i(Im fβ)

1
β
]
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and the version of the Cauchy–Riemann operator would be as follows:

S
α,β

1 f = 1
2

[
∂∗

∂x
+ i

∂∗

∂y

] [
(Re fβ)

1
β + i(Im fβ)

1
β
]
.

Therefore, if Sα,β
1 f exists at a point z ∈ C, then (Sα,β

1 f)(z) = 0. Note that, in
general, these versions of the Cauchy–Riemann operator and its complex conjugate
do not behave as linear operators unless β = 1, which is to be expected, since these
derivatives are not linear.

A straightforward consequence of Theorem 5.4 is the following:

Theorem 5.5. Let u and v be real and single-valued functions of x and y which, to-
gether with their first-order partial derivatives, are continuous at a point (x0, y0). If
the symmetric partial derivatives with respect to the real components of the function
fβ = u+ iv satisfy the symmetric Cauchy–Riemann conditions at that point, then
the first-order Schwarz fractal derivative (Sα,β

1 f)(z0) exists, where z0 = x0 + iy0
and z0 ̸= 0 if α > 1.

Proof. Since the first-order partial derivatives exist and the symmetric partial
derivatives with respect to the real components of the function fβ = u+ iv satisfy
the symmetric Cauchy–Riemann conditions, we obtain that the partial derivatives
satisfy the Cauchy–Riemann conditions. Hence dfβ

dz (z0) exists. The existence of
dfβ

dz (z0) implies that (Sα,β
1 f)(z0) also exists as long as z0 ̸= 0 if α > 1. Note that

when z0 ̸= 0 we have

∂∗u
1
β

∂x
(x0, y0) = 1

α|z0|α−1 lim
∆x→0

u(x0 + ∆x, y0) − u(x0 − ∆x, y0)
2∆x

= 1
α|z0|α−1

∂u

∂x
(x0, y0),

∂∗v
1
β

∂x
(x0, y0) = 1

α|z0|α−1 lim
∆x→0

v(x0 + ∆x, y0) − v(x0 − ∆x, y0)
2∆x

= 1
α|z0|α−1

∂v

∂x
(x0, y0),

∂∗v
1
β

∂y
(x0, y0) = 1

α|z0|α−1 lim
∆y→0

v(x0, y0 + ∆y) − v(x0, y0 − ∆y)
2∆y

= 1
α|z0|α−1

∂v

∂y
(x0, y0),

−∂∗u
1
β

∂y
(x0, y0) = − 1

α|z0|α−1 lim
∆y→0

u(x0, y0 + ∆y) − u(x0, y0 − ∆y)
2∆y

= − 1
α|z0|α−1

∂u

∂y
(x0, y0),

whence
(Sα,β

1 f)(z0) = 1
α|z0|α−1

dfβ

dz
(z0).
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In the particular point z0 = 0, when α > 1, we obtain

∂∗u
1
β

∂x
(0, 0) = lim

∆x→0

u(∆x, 0) − u(−∆x, 0)
(2∆x)α

= lim
∆x→0

u(∆x, 0) − u(−∆x, 0)
2∆x · 1

(2∆x)α−1 ,

∂∗v
1
β

∂x
(0, 0) = lim

∆x→0

v(∆x, 0) − v(−∆x, 0)
(2∆x)α

= lim
∆x→0

v(∆x, 0) − v(−∆x, 0)
2∆x · 1

(2∆x)α−1 ,

∂∗v
1
β

∂y
(0, 0) = lim

∆y→0

v(0,∆y) − v(0,−∆y)
(2∆y)α

= lim
∆y→0

v(0,∆y) − v(0,−∆y)
2∆y · 1

(2∆y)α−1 ,

−∂∗u
1
β

∂y
(0, 0) = − lim

∆y→0

u(0,∆y) − u(0,−∆y)
(2∆y)α

= − lim
∆y→0

u(0,∆y) − u(0,−∆y)
2∆y · 1

(2∆y)α−1 .

Therefore, the existence of the partial derivatives at 0 does not imply the existence
of the symmetric partial derivatives at 0, so we cannot ensure the existence of
(Sα,β

1 f)(0) when α > 1. □

It is important to note that the existence of the first-order symmetric partial
derivatives is not strong enough to obtain the existence of the first-order Schwarz
fractal derivative. For this reason, in the previous theorem the existence and con-
tinuity of the ordinary partial derivatives were taken as assumptions. The use of a
weaker condition remains an open question of interest.
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On fractal derivatives and applications, Math. Methods Appl. Sci. 48 no. 11 (2025), 10726–
10739. DOI MR Zbl

[2] J. M. Ash, A new, harder proof that continuous functions with Schwarz derivative 0 are lines,
in Fourier analysis: Analytic and geometric aspects (Orono, ME, 1992), Lecture Notes in
Pure and Appl. Math. 157, Dekker, New York, 1994, pp. 35–46. MR Zbl

[3] A. Atangana and S. Qureshi, Modeling attractors of chaotic dynamical systems with
fractal-fractional operators, Chaos Solitons Fractals 123 (2019), 320–337. DOI MR Zbl

[4] C. E. Aull, The first symmetric derivative, Amer. Math. Monthly 74 (1967), 708–711. DOI
MR Zbl

Rev. Un. Mat. Argentina, Vol. 69, No. 1 (2026)

https://doi.org/10.1002/mma.10914
https://www.ams.org/mathscinet-getitem?mr=4922954
https://zbmath.org/?q=an:08081992
https://www.ams.org/mathscinet-getitem?mr=1277817
https://zbmath.org/?q=an:0809.26004
https://doi.org/10.1016/j.chaos.2019.04.020
https://www.ams.org/mathscinet-getitem?mr=3941450
https://zbmath.org/?q=an:1448.65268
https://doi.org/10.2307/2314269
https://www.ams.org/mathscinet-getitem?mr=212138
https://zbmath.org/?q=an:0147.04801
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Facultad de Matemáticas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad
Universitaria, 39087, Chilpancingo, Mexico
rabreublaya@yahoo.es
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