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A NOTE ON THE SCHWARZ FRACTAL DERIVATIVE

LUIS ANGEL GARCIA PACHECO, DANIEL ALFONSO SANTIESTEBAN,
RICARDO ABREU BLAYA, AND JOSE MARIA SIGARRETA ALMIRA

ABSTRACT. We define a Schwarz fractal derivative of order n for a real-valued
function f(¢) as the limit

(599 1) (t0) — 1 20 )V f0 + 2R~ )

t—to (te —tg)m

)

where a, 8 > 0 and f? := f|f|®#~1. This derivative naturally generalizes the
one introduced by Riemann in 1854. We study its essential properties and its
relationship with other fractal derivatives recently reported in the literature.
‘We obtain certain analogues of the mean value and Rolle theorems, together
with some of their most important consequences. Finally, we propose an
extension of such derivatives to the several-variable setting.

1. INTRODUCTION

The upper Schwarz derivative of a real-valued function f at ty € R is defined by

" (M) (=1) n=2j
(Snf)(to) = limsup 20 (J)( D7 f (to + "5h) '
h—0 hn

The lower Schwarz derivative (S,, f)(to) is analogously defined by the corresponding
lower limit.

When (S, f)(to) = (S,.f)(to), whether finite or infinite, the common value will
be denoted by (S, f)(to) and is referred to as the n-th Schwarz derivative of f at to.
The existence of the n-th ordinary derivative f(")(tq) implies that of (S, f)(to).
For n = 2, we obtain the well-known Riemann derivative. Riemann was the first
to realize the important role that this derivative plays in Fourier analysis [14].
On the other hand, Schwarz proved that if f is continuous and this derivative
vanishes everywhere, then f must be linear. The terms “symmetric derivative”
and “pseudoderivative” are often used in the literature. Good references on this
topic are the works [41 2, [5, [7, [16], [15] [12].
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2 L. A. GARCIA PACHECO ET AL.

Fractal calculus is very simple but extremely effective to deal with phenomena
in hierarchical or porous media. Fractal theory is the theoretical basis for the
fractal space-time. Many researchers have already found the intrinsic relationship
between the fractional dimensions and the fractional order. The flexibility intro-
duced by the fractal derivatives in the setting of fractal calculus allows one to look
for new perspectives in several lines of research concerning approximation theory,
anomalous diffusion and fractional differential equations (see, e.g., [3], 6 8 [IT]).

In this paper, the n-th Schwarz fractal derivative of f at ty is defined by the
limit

(S%’ﬁf)(to) = lim Z;;O (?)(71)jf5 (to T n_22j (- to))

o =t ’

where a, 3 > 0 and f? := f|f|’~!. As in the classical case, such a limit exists
if the upper and lower limits are equal. In the particular case when n = 2, we
will refer to this derivative as the Riemann fractal derivative. First we will study
basic properties of these derivatives, leading to interesting theoretical results. Sub-
sequently, we obtain weak versions of the mean value and Rolle theorems, as well
as some of their most important consequences. In Section El we derive a necessary
condition connecting the local extremes of a continuous function with its Riemann
fractal derivative. Finally, we briefly discuss a natural extension of this derivative
in the context of complex analysis.

2. PRELIMINARIES AND SIMPLE FACTS

For «a, 8 > 0, let us define the (8, a)-fractal derivative of a function f at the
point to by

whenever the limit exists and is finite. In such a case, we say that f is (3, a)-fractal
differentiable at to. The space of (8, a)-fractal differentiable functions at ty will
be denoted by F(tg). Here, the function f” is defined as in the introduction by
8 = f|f|P~L. This derivative was studied in the forthcoming paper by Alfonso
Santiesteban et al. [1], where it was used to find a better fitting curve for a real

data set related to tuberculosis in Mexico. It is not difficult to obtain the following
a5

interesting properties of Tl

Proposition 2.1. Let f be a differentiable function at ty. Assume also that tg # 0
if a>1, and f(tg) #0 if 8 < 1. Then f is (B, a)-fractal differentiable at toy, and

B
L) = 2 ol 15 t0) P (t).

In particular, d°f /dt® > 0 if f' >0 and d°f/dt® <0 if f' <0.

Rev. Un. Mat. Argentina, Vol. 69, No. 1 (2026)



A NOTE ON THE SCHWARZ FRACTAL DERIVATIVE 3

Proof. Since tg # 0 if a > 1, and f(tp) # 0 if 8 < 1, we obtain

PL o PO =50 PO = )t
dte t—=to  t* — g t—to t—to to — tg
= 1)l (k) fim ey = Sl OG0 (). D

Proposition 2.2. Let f,g be (3, a)-fractal differentiable functions at to. Then the
following statements hold:

(1) fg is (B, @)-fractal differentiable at ty and
B B B,
PY (1) = 2L (1) 5700 + 1700) 22 1)
(2) If g(to) £ 0, then 1/g is (B, a)-fractal differentiable at to and
d’ (1 — 2% (1)
i () ) = Gl
(3) If g(to) # 0, then f/g is (B, «)-fractal differentiable at to and
@ (f>(t - L4 (t0) 9° (to) — [P (t) 2 (to)
die\g )" [9(to)[?? '

We define the n-th Schwarz fractal derivative of a real-valued function f at a
point o € R by

55 ) 0) = 1 im0 DI (o + 2720 1)

n 0) — tiﬂfo (ta _ t8‘)n b

where a, 8 > 0. If the limit (2.1) exists, we say that f is n-times Schwarz fractal
differentiable at to. This limit can exist even if the function is not continuous in tg.

The space of n-times Schwarz fractal differentiable functions at ¢y will be denoted
by &,(to).

Remark 2.3. Using the identity

(2.1)

iyt =1
| — Nl
= Jl(n —j)!
and L'Hépital’s rule, in view of (2.1)), we get that when the function f is n-times
differentiable at t¢ then
Sy F)(to) = £ (to)-

Unfortunately, for the fractal derivatives S#f such a nice relationship is no

longer true (see Section . Sometimes it is convenient to rewrite S° f as

SO () (=17 £ (to+(n—25)h)

1 : j=
anltoln(a_l) }IZL)I% =0 2npn ) tO # 07
(S” £)(to) = .
2 ()1 (n—24)h)
lim = Srapna , to = 0.
h—0
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4 L. A. GARCIA PACHECO ET AL.

This rewriting will be useful in Section [5} where the first-order Schwarz fractal
derivative is studied in detail (n = 1).

Example 2.4. The Dirichlet function

)L, teq,
f(t)‘{o, teR\Q,

has a first-order Schwarz fractal derivative equal to zero at every ¢ € Q, but, in
contrast, it is not first-order Schwarz fractal differentiable at any t € R\ Q. On the

s
other hand, neither f’ nor fh—({ exist anywhere in Q. The existence of S B f does

s
not imply the continuity of f as does the existence of f’ and 2-L.

dt
2, t>0,
t) = -
1®) {tz, t < 0.

A direct computation shows that the Riemann fractal derivative of f at 0

(527 1)(0) = lim T2+ £7(=0)

t—0 2

Example 2.5. Let

exists and is equal to zero, despite the non-existence of f”(0). Assume now that
a < 1and > 1. We have that

dﬁf(t ) Bltg26-o1tg, o >0,

—_— O =

dt _Tw|t()|2ﬁ_a_1t0, to <0,

whence Cﬁ—; [%} (0) = 0. This simple example shows that ordinary differentiability

is a stronger condition than Schwarz fractal differentiability. We performed some
simulations in the GeoGebra environment for this example, available at https:
//www.geogebra.org/m/rm46bvpr.

Remark 2.6. In [I0], a generalization of local fractional derivatives was studied.
This generalized derivative was defined as

91
@) = i i S04 (1)) o - w00, (22)
k=0

where f: I — R, I C R is an interval, ¥ € RT and T'(¢g, 9) is a positive continuous
function on I. For a = 8 = 1, the relation (2.1 reduces to

n

1 n n
1,1 1 - _1\k . n
(Sp, ﬂm)—;gbwzgo(k>(l)fco kh+2h>. (2.3)
Note the similarity between ([2.2]) and ([2.3]) when ¥ = n and T'(¢o, ) = 1. Therefore,

using the kernel T'(ty, 1)) we can arrive at a generalization of (2.1]) by means of

X (1787 (t0 + 52— t0) T (o, )
lim )
t—to (ta - t%) 9]
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The following proposition is straightforward.

Proposition 2.7. Let a, > 0, c € R, and let f € &,(tg). The following state-
ments hold:

(1) We have
(S ? F)(to) = (S ' f7) (to).
(2) The constant function c is Schwarz fractal differentiable of any order in
the whole space, and

(S¥Pe)(tg) =0 for all to € R, k € N*.
In addition,
B(B —1)(a/a)?|to]*~>*|ato +b]°2, B #1,
0, B =1,

where a,b € R are such that ato +b # 0 if € (0,2] \ {1} and to # 0 if
a>1.
(3) The function cf € &,(to) and satisfies

(SPef)(to) = (S P f)(to).
(4) S%8 s a linear operator if and only if B = 1.

(S5"" (at +b))(to) = {

Proof. (1) By definition, we have that
(529 ) t0) = i om0 V7 o+ 2570~ )

i g
= (Sp ') (to).
(2) Since Z?:o (?)(fl)j =0, k € N*, it follows that

Z?:o (I;) (—1)ic”

(Sg’ﬁc)(to) = lim =0 foralltyeR.

BT e
The function (at + b)%, a,b € R, B # 1, satisfies
d((at +b)?
% = aflat 4 b|°~1.

Therefore, the function (at + b)? is differentiable at all ¢, € R except for the case
where tg = —2, a # 0 and 8 < 1. Note that for all ¢ty # —g, we have
d(lat +b°~1)
dt

However, if 3 € (0,2] \ {1}, then the function |at 4+ b|°~! is not differentiable at
to=—2,a#0.If 3> 2 we obtain

d(|at +b|P~1) (_b)

dt a

(to) = a(B — 1)|ato + b|° 2.

R
= lim
h—0

hl
hl—>0 |a‘ h |h| 0
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6 L. A. GARCIA PACHECO ET AL.

Using Remark m we can rewrite (S5 f)(to) as
2 C) (=17 £ (to+(2—24)h)

(Souﬁf)(t ) o O‘2|t0‘12(0t71) }11113) = 22h2 ) tO 74 07
’ R DU SN 6 (e A Gl
ilzli)% 22a p2a 5 tO — O

Since (at+b)? is twice continuously differentiable at to # 0 if > 1, and such that
ato+b#0if 8 € (0,2] \ {1}, at this point ¢y we have
& ((at + b)?) Y20 () (1) (alto + (2 — 2j)h) +b)”

gz (to) = [im 2252 ’

hence
(S5 (at + b)) (to) = B(B — 1)(a/a)|to[*">*|ato + b 2.
When tg =0 with « <1 and b#0if 8 € (0,2] \ {1}, we have

d?((at +b)?) _ 0 a<l
a,f3 . 2-2a ) )
lat +b =———-—72(0) lim(2h =
(SQ (a + ))(O) dt2 ( ) hgr%)( ) a26(ﬁ _ 1)|b‘ﬂ—2, a=1.
Analogously, if 8 = 1 we obtain (S3° (at + b))(to) = 0.
(3) We have
>0 (D (=17 (ef)? (to + "2t — to))
o, s =0 \y 2
(Sn Cf)(tO) - tlgltlo (t(x _ tg)n
O (=17 B (g + PS5 — 1))
= lim ==/~
t=to (> —ig)"
=Sy f)(to).
(4) Given two arbitrary real functions f and g, the result follows because the
equality (f + ¢)% = f# + ¢® holds if and only if 8 = 1. O

In particular, note that if f is (5, a)-fractal differentiable at ¢y then we have
e

a,f BT
(ST7f)(to) = }g& —

_ lim fP(z) = £ (2t0 — 2) o 2(z% —tF)
2=L1t+1to—t0 2(z> —t§) (22 — o)™ — t§

PP £+ P — £t 1
t—to 2(750‘ _ t8‘)
1d°f Lo fPte) = fP(2t0 — 1)

Y T AT

_ldﬁ(t )+1 i fP(2tg —t) = 7 (to)

T 2dte VY T 2 2t0—Htrl>t0 (2tg — )™ — t§
d°f

= dTa(to)-
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A NOTE ON THE SCHWARZ FRACTAL DERIVATIVE 7

Let € > 0 and f,g € G1(to) NC(to — €,t9 + €). We have

(ST f9)(to)
o U9~ (J9)’ e — 1)
t—to 2(t0‘ — tg)
i F9°() = (2t — )97 (1) + £7 (2t — )97 (1) — (£9)° (20 — 1)
t—to Q(to‘ _ tg)

= (ST7 F)(t0)g” (to) + 7 (o) (ST7 g) (o).

In general, the space &4 (tg) is not a Banach algebra; however, if the continuity
of the function is required in a neighborhood of tg, then &;(¢y) becomes a Banach
algebra. It will be shown in the following section that the continuity of (S‘f’ﬂ @)
at a point tg and the continuity of f(¢) in a neighborhood of ¢y imply the existence
of L (1).

We shall be concerned with the following subclasses:

o X ={f: 5% exists everywhere},
e m¥ ={f €X: fis measurable},
e o={feX: S?’ﬁf is finite everywhere}.
A function f € o is symmetrically continuous at each ¢ € R, that is,
lm (f(t+h)— f(t—h)=0
h—0
for each t € R. Stein and Zygmund proved that a symmetrically continuous func-
tion is continuous almost everywhere, and therefore ¢ C mX (see [L6, Lemma 9]).
A proof quite analogous to that of [I2] Theorem 2.1] shows that Sf’ﬁf belongs to
the first Baire class for any f € X. We refer the reader to the paper [12], many of
whose results can also be applied to this fractional context.

In real analysis, two differentiable functions whose derivatives are equal through-
out an interval must differ by a constant in that interval. A similar result for Sy A
is no longer true, as proved in the following example.

Example 2.8. Define the two functions as follows:
0, t=2% (n==+1,42,...),
o(t) = n )
3, otherwise,

and

t, tis an integer
h(t) — ) ) g )
7w, otherwise.

At all points, (S*7¢)(t) = (S®Ph)(t) = 0, but g and h obviously do not differ by
a constant.

The following proposition is essential for the proof of the results to be presented
below.
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8 L. A. GARCIA PACHECO ET AL.

Proposition 2.9. Let f(t) be continuous on a < t < b and let S?’ﬁ(t) exist on
a <t <b Let f(b) > f(a) (resp. f(b) < f(a)), then there exists a point c,
a < ¢ <b, such that SP(¢) > 0 (resp. % (¢) <0).

Proof. Since the function x|x|°~! is increasing in R, it follows that f°(a) < f#(b).
Let d be such that f%(a) < d < fA(b). The set {t : fP(t) > d,a < t < b} is
bounded below by a, and applying the greatest lower bound property we obtain
that it has a infimum c such that ¢ # a and ¢ # b. In addition, (S?’Bf)(c) >0,
since there are points ¢ > ¢ in every neighborhood of ¢ such that f%(t) > f%(c) and
FB(t) < fB(c) for a < t < c. The second part of the proof is analogous. O

3. ROLLE-TYPE THEOREMS AND CONSEQUENCES

The classical mean value theorem does not hold for the first-order Schwarz fractal
derivative. This is illustrated by the example below.

Example 3.1. Consider f(t) = [t|%. Then
o PP+ 5(t—t0)) = fP(to — 5(t — o))

(S77f)(t0) = li

t—to t* — 15
5 [to + 5(t —t0)|* — [to — 5(t — to)|
= lim
t—to te — g
_ %7 to 7& 07
0, to = 0.

If a =—2and b =3, then
Fo0) — f7(a) _ 3 =2
b — a® 3@ 420’

which is not a value in the range of S h f.

In this section we will see a weak version of the Rolle theorem for the first-order
Schwarz fractal derivative and some immediate consequences.

Theorem 3.2. Let f(t) be continuous on a < t < b and let (S¢P f)(t) exist on
a <t<b, and let f(a) = f(b). Then there exists a point ty € (a,b) such that
(S £)(to) > 0 and a point t; € (a,b) such that (S f)(t1) < 0.

Proof. The case f(t) = f(a) is straightforward. Conversely, there exists either a
point ¢ such that f(c) > f(a), or a point d such that f(d) < f(a), or both. By
Proposition [2.9] there exist points tp and t1, a <ty < c <ty <bora <t <d<
to < b, such that (ST7 f)(to) > 0 and (ST f)(t1) < 0. O

Theorem 3.3. Let f(t) be continuous on a < t < b, and let (S°f)(t) exist on
a <t <b. Then there exist points tg,t1 € (a,b) such that

L0 - 5a)

2L < 80 ).

(ST7H)(0)
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A NOTE ON THE SCHWARZ FRACTAL DERIVATIVE 9

Proof. Let g(t) = [fP(t) — fP(a) — %(W - ao‘)}%. By Theorem as
g(a) = g(b) = 0, there exists a point tg € (a,b) such that (S?’Bg)(to) >0, and a
point ¢1 € (a,b) such that (537 ¢)(t;) < 0. Since
B(t) — B —
o8 . go(t) — g7 (2t — t)

F2() = 22t — 1) ~ EREID 10 — (2t — 1))

= lim be—a®
t—to 2(t> — tg)
« fﬁ b) — fﬁ a

= (877 )(t0) - D=L

and also
«a e A b) — A a
(St )(0) = (53 (o) - O =LA

the result follows directly. O

Definition 3.4. A function f : R — R is said to have the Darboux property (or
intermediate value property) if, whenever z,y € R and € is any real number between
f(x) and f(y), there exists a number ¢ between = and y such that f(t) =e.

To a given real-valued function f we associate the set
C(f) ={t: f is continuous at t}.

Remark 3.5. In Theorem the continuity of f(¢) on an interval [a,b] can be
replaced by the weaker condition

femx, a,beC(f),

and the results still hold. The proof is similar taking into account that C(f) is
dense.

Theorem 3.6. If f € mX is such that S’f’ﬁf has the Darboux property, then for
each p, 1 € C(f) such that ¢ < 1 there is a ¥ € (p,) such that

W) = F9(0) _ qas
rg— = (577 N)@).

Proof. Using Theorem and taking into account Remark we obtain that
there exist points tg, t1 € (p, 1) such that

B _ B
77 p)t) < T (00 gy ),
Y-

Since S(f”@ f has the Darboux property, we can ensure that there exists a 9 € (¢, 1)
such that

fﬁ(qﬁ)—fﬁ(@) a,B

- T = (S 9),

woz _ s004 ( 1 f)( )

and we are done. O
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10 L. A. GARCIA PACHECO ET AL.

Theorem 3.7. Let f(t) and (S?’ﬁf)(t) be continuous on a <t < b. Then Zi—c{(t)
exists and 5

d f o,

(1) = (7)),
Proof. For e sufficiently small such that a < t + ¢ < b, we have by Theorem 3.3
that there exist tg and t; strictly between t and t 4 € such that

fP(t+e) = fP(t)

(ST () < < (S$7 1) (to).

(t+e)> —to
By the continuity of (S?’Bf)(t), there exists ty strictly between ¢ and t 4 € such
that 5 5
[Pt +e) = f7(1)
ST F)(t2) = :
(5171)(t2) (t+e)—to
Taking € — 0 gives the desired result. O

Theorem 3.8. Let (S?’ﬁf) (t) be continuous at a point to and let f(t) be continuous
in a neighborhood of tg. Then ‘fl%(to) exists and

T (1) = (87 )lto).

Proof. For €1 > 0, there exists a neighborhood V' of ¢y such that if t € V, f(¢) is
continuous and

(ST7 1) () — (ST7 f)(to)| < en
By Theorem there exist ¢; and ¢ strictly between ¢y and ty + €2 such that
fP(to + €2) — P (ko)
(to + €2)> — £

(ST f)(t2) < < (8P F)(t),

with (o + €2) € V, €2 # 0. Hence

JP(to + €2) — [P (to)
(to + €2)™ — t§

The existence of ‘c%{(to) follows and ‘c%{(to) = (SP F)(to). O

(Slll’ﬁf)(tO) —€ < < (S(ll’ﬁf)(to) + €1.

The following theorem is a generalization of [I2, Theorem 7.3, p. 597].
Theorem 3.9. If f € o, then for each t € R,

o (SEPR @+ ) + (ST =)
h—0 2

(3.1)

< (S0 < sy SDCERHSTEDE D)
h—0

Proof. Suppose that

o . (STPF)(E+R) + (577 ) (t — )
(S771)() > lim sup ! B :

Rev. Un. Mat. Argentina, Vol. 69, No. 1 (2026)



A NOTE ON THE SCHWARZ FRACTAL DERIVATIVE 11

Through a translation and the addition of an appropriate constant, we may assume
that ¢ = 0 and that

(ST + (ST (=h)

(597 £)(0) > 0 > limsup (3.2)
h—0 2
Set g(t) = {fﬂ(t)%fﬁ(ft)] 7 Then g € o and, setting 7 = %(t —tp),
B — dP(tn —
B oGP (to+T) =g (to —T)
(S5 g)t0) = Jim SO
_ L [Pt +1) = [P(=to —7) = fPto = 7) + fP(=to + 7)
2 i to —ty
1 « «
= 5(S1 PH)(to) + (ST f)(~to)]-
Since (S3?¢)(0) = (S £)(0), relation implies that
(827 9)(0) > 0 > limsup(S$?g) (h). (3.3)

h—0

Then there exists a § > 0 such that (S{"’¢)(h) < 0 whenever 0 < |h| < 8. For any
femy we let

My = {m: ‘ lim sup f(t)‘ = oo}
t—ax, teC(f)

and define 15 to be the real function

limsup f(t), « ¢ My,
lu,f(x) = { t—x,teC(f)
f(x), x € My.

If g € 0 with S?’ﬁg < 0 a.e., then p, is continuous and nonincreasing on (-4, 6).

Therefore, (S$79)(0) = (S7"°114)(0) < 0, which contradicts (3:3) and the right-
hand inequality in (3.1) is established. The left-hand inequality is established in
an analogous manner. O

Theoremestablishes that S B f must satisfy a weaker “Darboux-like” condi-
tion at every point given by formula . It is also interesting that if the first-order
Schwarz fractal derivative exists almost everywhere, then the fractal derivative ex-
ists almost everywhere.

Theorem 3.10. Let S f be bounded on (a,b), with o > 1, and let f be continuous
on (a,b). Then fP satisfies the Lipschitz condition on (a,b), i.e., there exists a
constant M such that

[P (@) = ()] < Mz — ¢
for any z,t € (a,b).

Rev. Un. Mat. Argentina, Vol. 69, No. 1 (2026)



12 L. A. GARCIA PACHECO ET AL.

Proof. Assume z # t, and, to be specific, z < t. Applying Theorem [3.3] it is
apparent that no matter where x and ¢ are in (a, b) there exist points p and ¢ such
that < p <t,x <g<t and

(50 py(p) < L0

Since (S7 f)(x) is bounded on (a, b), choose

< (577 f)(q)-

M = max(|(i(1r}£) S?’BJ% |(b;1£)) Sf’ﬁﬂ)'

This implies that
B(y) — £B8
Ly P
S T ¢ <
Therefore,
[P (@) = f(t)] < Mla® — %] < M|z —]. O

Example 3.11. The function f(t) = /7 defined on (0,1) satisfies (S} f)(t) =1
and is obviously continuous on the interval. Clearly, f2(t) =t is Lipschitz contin-
uous; however, f(t) is not Lipschitz continuous on (0,1). As is well known, the
function f(t) = v/t is uniformly continuous, Holder continuous of class C% for
v < £, and absolutely continuous on [0, 1].

Definition 3.12. A function f is said to satisfy condition (F) at a point ¢, if f
crosses every straight line through (¢, f(c¢)) at most a finite number of times in
some neighborhood V..

In [4] the following existence theorem for the common symmetric derivative was
proved.

Theorem 3.13. Let f satisfy the Lipschitz condition on (a,b) and let condition (F)
be satisfied for each t € (a,b). Then S} f exists and is bounded for t € (a,b).

Since
1

(STP () = alfe 1 (SU ), t#0,

a simpler version of Theorem [3.13| can be obtained.

Theorem 3.14. Let f? satisfy the Lipschitz condition on (a,b) and let condi-
tion (F) be satisfied for each t € (a,b). If a« =1 then Sf’ﬁf exists and is bounded
for t € (a,b); otherwise, Sf’ﬁf exists and is bounded in any subinterval of (a,b)
that does not contain zero as an accumulation point.

In closing, a conjecture is stated. This is not to indicate that these are the
only questions still unanswered but to point out a few ideas which can be further
pursued.

Conjecture 3.15. If any straight line through the origin intersects an odd func-
tion f an infinite number of times in each neighborhood of the origin, then (Sf"ﬁ )(0)
does not exist.
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4. RIEMANN FRACTAL DERIVATIVE

The study of the generalized Riemann derivative has attracted generations of
physicists and mathematicians. One of the main areas benefiting from these de-
velopments is numerical analysis, since the use of generalized Riemann derivatives
leads to the solution of a wider class of problems that are not solvable with classical
tools. The Riemann fractal derivative can be seen as a peculiar version of these
types of generalized derivatives that have been studied before in the literature (see
e.g. [13]).

In this section, we will obtain a necessary condition for the determination of a
local extreme in relation to the Riemann fractal derivative.

Now note that if f € C?(tg — €,to + €), with € > 0, and if we also assume that
to # 0 when a > 1, and f(t9) # 0 when 5 € (0,2) \ {1}, then we have

(5577 f)(to)
i IO+ 12l — 1) — 2fP (k)
i (> —t§)?
~ lim BIFWIP1f () — BIF (2t — )P ' (2t0 — 1)
o 2 — ol !
BB —=DIFOP2(fF () + BIFBIT (1)
+ BB = 1) (2to — )| 2(f'(2t0 — 1))* + BIf (2t — )P~ " (2t0 — 1)

- tliglo 202 — D)[t]2272 — 2a(ax — 1)|tg|@|t|* 2
_ BB =D)[f()|°>(f'(t))* + Bl (to) [P~ (to)
- a2|to|20 2 :
and, on the other hand,
dat [d?
= | @
1[|4|1—a B—1 ¢/
_ Bt @O @) (t)

« dte
- %“OP_“{G — a)lto] £ (t0) 1"~ ' (t0) + (B = Dt~ (1)" 2 (t0) (f' (t0))?

+ |f0\17Q|f(to)\571f"(to)}
11—« d°f

= |to|7a%(to)+(sgﬁf)(to)-

Indeed, the special case when o = 3 = 1 confirms that (S f)(to) = f” (to).

Theorem 4.1. Let f be a continuous function in a neighborhood of to. If f has a
local mazimum, (resp. minimum,) at to, then (S5°° f)(to) < 0 (resp. (S5°° £)(to) > 0).

Proof. If f has a local maximum (resp. minimum) at ¢y, then for a sufficiently
small € > 0 one must have f7(to+€) < fP(to) (vesp. f2(to £¢€) > f5(to)), hence it
is a fact that (S37f)(to) < 0 (resp. (S5°° f)(to) > 0). O
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Now let us see that if f and g are Riemann fractal differentiable at ¢y and
continuous in a neighborhood of ¢y, then

(5" £9)(t0)

i J9°(0) + (F9)° 2o — 1) ~ 2(£9)" (t0)
t—to (te — t8‘)2

~ lim <(fg>’3<t) + 72t — 1)g°(t) — 2](‘5<to)gﬂ)(t) +(£9)°(2t0 — ) = 2(f9)° (to)
t—to to —t5)2

L 2 (t0)g” () — f7(2t0 — t)gﬁ(t))

g
= (837 £)(to)g” (to)
. <(fg)’3(2to ~ )+ 17t = 05°(0) = 207 Cto ~ g (1)
t—to (t> —t§)?

| 277 (2t — )9 (o) = 272ty — g (1) — 2(/9)° (t0) + 2fﬂ<to>gﬂ<t>>
(=57

= (S5°7 ) (t0)g” (to) + £° (£0)(S57 9) (t0)
B —t)— fB (P — B
49 lim (f” (2t —t) = 7 (t)) - (¢"(t0) — 9" (1))
i @ —13)?
Thus, if f and g are (8, @)-fractal differentiable at ¢y and f,g € Sa(tg), then we
obtain the following Leibniz rule for the Riemann fractal derivative:

a a a d°f d°yg
(85719)(to) = (8571 (t0)g” (t0) + f(t0)(S57g) (to) + 277 (to) - =2 (to). (4.1)
As was shown in Proposition the (8, a)-fractal differentiable functions form
a Banach algebra. Nevertheless, in general the Schwarz fractal differentiable func-

tions do not form a Banach algebra, even in the special situation when a = § = 1.

Example 4.2. Let
sin(1/t), t#0,
ft) =
0, t=0,
and g(t) = t. It is clear that
(821 1)(0) = (Sy79)(0) = 0,
while (S5 f¢)(0) = lims_0 23%(1/” does not exist. However, thanks to relation
(4.1) we can state that the space Sa(tg) NF(tg) NC(to —€,to +€), € > 0, does con-
stitute a Banach algebra. Using Wolfram Mathematica 14.1, we obtained Figure [T}
which illustrates the plots of the Riemann fractal derivative S3° f for different

values of o and 8. The reader can also find an implementation in GeoGebra at
https://www.geogebra.org/m/qbznujuj.
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FiGURE 1. Plots of Sg’ﬂ f for different values of a and [, where
f(t) =sin(1/t) for t # 0 and f(t) = 0 for t = 0.

Remark 4.3. A trigonometric series
a o0
?0 + ;(an cos nt + by, sin nt)

with bounded coefficients a,,, b, can be summed by Riemann’s method at a point
to # 0 to a number R if the function

aot? = a, cosnt + b, sinnt
GO =" -2 "
n=1

has, at tg, a Riemann fractal derivative equal to W. We refer the reader
to the preliminary work of Riemann [I14].
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5. CONCLUDING REMARKS

The final extension of the basic concept is to briefly examine the first-order
Schwarz derivative as it relates to functions of two variables. These ideas con-
tribute to a generalization of this type of derivative in a multidimensional context.
A suitable reference for the symmetric derivatives is the thesis [9].

Definition 5.1. A function f : C — C is first-order Schwarz fractal differentiable
at a point zg € C if the limit

(578 F)(z0) = lim TG0 32— %0) = [7(0 — 5(2 — 20))

z—20 2% — zg‘
exists.

The above definition is similar to the definition of Schwarz fractal differentiability
in the case of a real argument, except that we allow z to take complex values.

Definition 5.2. Let the equation v = f(x,y) define a function in a region R of
the Euclidean plane. At a point (z,y) of R? the symmetric partial derivatives of u
with respect to z and of u with respect to y, written

0*u B 0*u B

5y = St f(zy) and oy Ly f(x,y),

respectively, are the limits of the difference quotients

1 o PP etAsy)— P (a—Axyy)
et Jim SEESnm LEmsen - (e y) # 0,
Sa’ﬁf(l‘ )=

1,z YY) = fﬁ(Am,O)ffﬁ(fAz,O)

e Az ; (z,y) =0,
S Jim St b a8 () 2,
Sa’ﬁf(x y) _ Y Ay—0 Yy
by S lin £20AY)— (0.~ Ay) (z.4) = 0
Ay—0 (2Ay)> ’ yy) =V

We will refer to Sf’ff(m,y) and Sfyﬁf(x,y) as the first-order symmetric partial
derivatives.

Definition 5.3. For any complex variable z and function f with f(z) = u(x,y) +
iv(z,y), the symmetric Cauchy—Riemann conditions are
our  9uh gud 9l
0 Y7 ad 2= -7
ox oy y ox
Theorem 5.4. If the first-order Schwarz fractal derivative (Sf‘ﬁf)(z) of a func-
tion f exists at a point zg = xg+ 1Yo, then the first-order symmetric partial deriva-
tives with respect to x and y of each of the components u and v of f% = u+iv must
exist at that point, and satisfy the symmetric Cauchy—Riemann conditions. Also,
1 1 1 1
o*u?® o*vF o*vF o*u?
S%B ) (20) = ———(z +1 T =—(x —i—(20,0).
(5777 f)(20) Oz (20, Y0) Oz (20, Y0) Iy (20, Y0) dy (0, Y0)
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Proof. Suppose the function f has a first-order Schwarz fractal derivative at zy =
zo +iyo and (S f)(20) = a + bi. Since
P(2) = ulz,y) + iv(z,y),
A fB = fB (20 + Az) — fP (2 — A2),
Ay = u(xg + Az, yo + Ay) — u(zo — Az, yo — Ay),
Av =v(zo + Az, yo + Ay) — v(z0 — Az, Y0 — AY),
when zg # 0 we have

1 A*u +iA*v

SP = i =a+bi.
(S777 1) (z0) ArD0 alzp|®1 2(Az + iAy) @t
Therefore,
lim R A*u +iA*v
Azt A R SR Ay ¢
alzo ﬁng 2(Az +iAy)
and
lim 1 A*u + 1A%y
im Im =
alzg|*™ ! azm0 2(Az 4 iAy)
On the other hand,
1
O*uB (z - 1 . u(zo + Az, yo) — u(ze — Az, yo) .
gx 00 alzo|®~t Az0 2Ax ’
1
ALK (@ ) = 1 . v(xg + Az, yo) — v(zo — Az, yo) 0
az oY alzg|®1 Az=0 2Ax ’
1
o*v7 (l’ n ): 1 lim U(x()vyO"’_Ay)_v(wO?yO_Ay) —a
ay 7Y T alze)emT Ayso 2Ay ’
o up 1 . u(zo,yo + Ay) — u(zg,yo — A
_ (xo’yo) - — lim ( 0, Y0 y) ( 05 Yo y) —b.
Ay alzo] Ay—0 2Ay
Thus, the symmetric partial derivatives exist and
1 1 1 1
0*u?® o*vF o*u? o*v?
W(xo,yo) = Ty(xo,yo)y Ty(xoayo) = —W(xo,yo)

The case zp = 0 is analyzed in a similar way; in this case, by definition, i* = i.
Then

=

0*u ,8*1)/% o*vF ,a*u%ﬂ
O (70,%0) ‘Hﬁ(iﬂmyo) = Ty(%»yo) - 1Ty($0,y0)' U

(577 f)(z0) =

In order to appreciate the generality of this construction, we obtain
o* o*

1 1 5
S11= 3 [z ~igy) [Re)F +itim )]
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and the version of the Cauchy-Riemann operator would be as follows:

—a,B 1[o* O0* 1 . 1

S == |=—+i—|[(Re fP)7 +i(Im f)7].

1t =3 |G Higy | [(Rer)? it 1))
Therefore, if S7° f exists at a point z € C, then (g?’ﬁf)(z) = 0. Note that, in
general, these versions of the Cauchy-Riemann operator and its complex conjugate
do not behave as linear operators unless 8 = 1, which is to be expected, since these
derivatives are not linear.
A straightforward consequence of Theorem is the following;:

Theorem 5.5. Letu and v be real and single-valued functions of x and y which, to-
gether with their first-order partial derivatives, are continuous at a point (xo,yo). If
the symmetric partial derivatives with respect to the real components of the function
8 = wu+iv satisfy the symmetric Cauchy-Riemann conditions at that point, then
the first-order Schwarz fractal derivative (S f)(z0) exists, where zy = xo + iyo
and zy # 0 if a > 1.

Proof. Since the first-order partial derivatives exist and the symmetric partial
derivatives with respect to the real components of the function f? = u + iv satisfy

the symmetric Cauchy—Riemann conditions, we obtain that the partial derivatives

B
satisfy the Cauchy—Riemann conditions. Hence dj—z(zo) exists. The existence of

%(zo) implies that (S$” f)(zo) also exists as long as zo # 0 if & > 1. Note that

when zg # 0 we have

8*u% (0, 70) = 1 . ul(zo + Az, yo) — u(xo — Az, yo)
dz 7T alzg)eT Axso 2Ax
1 3u( )
= —(x
O[|Zo|a71 o 0,%0),
9 ¥ (20,40 = 1 . v(zo + Az, yo) — v(zo — Az, y0)
3} 02707 20T Az—0 2Az
1 E)v( )
= —(x
a|20|a_1 Oz 0,Y0),
o*v7P (0, 70) = 1 . v(x0, Yo + Ay) — v(wo, yo — Ay)
y 07T Glze)om T Ayso 2Ay
1 av( )
=———(z
O[|Zo|a_l 8y 0,Y0),
1
78*’&5 (ZL' Y ) _ 1 . U(anyO + Ay) - u(x(vaO - Ay)
gy O alzo|*—! ay—o0 2Ay
B 1 ou
= _W@(xo’yO)’
whence 5
o 1 d
(S7 ) (z0) = )

alzole—1 dz
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In the particular point zg = 0, when o > 1, we obtain

o u” .. u(Az,0) —u(—Axz,0)
gp (0:0) = Jim, (2Az7)@
— fim u(Az,0) — u(-Az,0) 1
 Az—0 2Ax (2Az)o—1"
o vF .. v(Az,0) —v(—Axz,0)
gz (00) = Jim, (2Az)"
— fim v(Az,0) — v(-Az,0) 1
 Az—0 2Ax (2Az)>—1’
o*vs . v(0, Ay) — (0, —Ay)
0,0) = 1
gy 00 = 4, (2Ay)~
_ v(0,Ay) —v(0, —Ay) 1
= 1 .
Ayso 2Ay (2Ay)e-1’
9 u” - u(0, Ay) —u(0, —Ay)
— 0,0)=—-1
gy (00 =~ fim, (2Ay)°
_ iy W0.Ay) —u(0,-Ay) L
Ay—0 2Ay (2Ay)>—1"

Therefore, the existence of the partial derivatives at 0 does not imply the existence
of the symmetric partial derivatives at 0, so we cannot ensure the existence of
(827 £)(0) when a > 1. O

It is important to note that the existence of the first-order symmetric partial
derivatives is not strong enough to obtain the existence of the first-order Schwarz
fractal derivative. For this reason, in the previous theorem the existence and con-
tinuity of the ordinary partial derivatives were taken as assumptions. The use of a
weaker condition remains an open question of interest.
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