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STABILITY OF THE RITZ PROJECTION IN WEIGHTED Wh!

IRENE DRELICHMAN AND RICARDO G. DURAN

ABSTRACT. We prove stability in weighted W' spaces for standard finite
element approximations of the Poisson equation in convex polygonal or poly-
hedral domains, when the weight belongs to Muckenhoupt’s class A; and the
family of meshes is quasi-uniform.

1. INTRODUCTION

The Ritz projection is the best approximation in the norm of the Sobolev space
W, 2(92) (see Section 2 for notation), or equivalently, the finite element approx-
imation of the solution to the Poisson equation. As a consequence, its stability
in that norm follows immediately. However, stability in other norms is a difficult
problem that has been the subject of many papers, mostly dealing with the case
of W1°(Q) (see, for instance, the books [I} 2] or the articles [3] [6] and references
therein). More recently, motivated by the numerical approximation of singular
problems, attention was turned in [5] to weighted W1?(Q) norms with weights
belonging to Muckenhoupt’s classes.

The result in that paper was improved by a much stronger result in [4] where
it was proved that, for a convex polytope in Q C R? or R?, the gradient of the
Ritz projection over quasi-uniform meshes is pointwise controlled by the Hardy—
Littlewood maximal operator of the gradient of the original function. This estimate
immediately implies the stability of the Ritz projection in WL P(Q2) whenever 1 <
p < oo and w € A, (as well as in other spaces where the maximal operator is
bounded — see examples in [4]). The cases of WH1(Q) and WL1(Q) for w € Ay
were left by the authors of [4] as open problems. The aim of this short note is to
show that these results can be obtained by a modification of their proof.

2. NOTATION AND PRELIMINARIES

As usual, we will write A < B to mean A < CB for a positive constant C
independent of A, B and other relevant quantities.
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The Hardy—Littlewood maximal operator is defined as
M) = swp o [ 1) d
Q3 [Ql Jg
where the supremum is taken over all cubes containing .

A weight w is a non-negative measurable function defined in R™, and it is said
to belong to Muckenhoupt’s class A; iff Mw(x) < w(x) almost everywhere.

The spaces L'(Q) and W1?() are the usual Lebesgue and Sobolev spaces, and
W, P(2) is the subspace of functions of W' () vanishing at the boundary. The
weighted spaces associated to the measure w(x) dz will be denoted by L1 () and
wlr(Q).

In what follows, we briefly recall the notation from [4] that we will use below.
For K,~v > 0 (that can be appropriately chosen), 1 : R™ — R is defined as

_nt~y
o1(z) = er(|z* + K2)~ 77,

where ¢; is such that [, o1 (x)dz =1. For e > 0 and z € Q, p. = ¢ "¢1(z/e) and
Pex = pe(2 — ).

Let T = {Tn}r>0 be a family of conforming and quasi-uniform triangulations
of Q, where h > 0 is the mesh size of T;,. For h > 0 and z €  such that z € T for
some T € Ty, there exists a function 6, € C§°(T') such that

/ 0,(x)P(x)dx = P(z) VP € Py, [ D™6. oo <A™, m € Nop.
T

For I € {1,...,n}, the regularized Green’s function is g, € Wol’Q(Q) such that
(Vg., VO) 12() = (05, 00) 1210y Vv € Wy 2(Q).
For k € N, the Lagrange space of degree k is
Li(Th) ={f € C(Q): flr € PL VT € Tp},

where Py, is the space of polynomials of degree at most k. Then, Vj, = L}(75) N
W,y () and the Ritz projection Ry, : W' — Vj, is defined by

<VRhu, V¢>L2(Q) = (Vu, V¢>L2(Q) Y € V.

3. STABILITY IN WEIGHTED W' (Q)

Theorem 3.1. Let Q C R? or R? be a convex polytope and T = {Tx >0 be a family
of conforming and quasi-uniform triangulations of Q). For every u € Wol’l(Q) and
every weight w € Ay, there holds

||VRhu|

@ S IIVullLy @)

w

Proof. Fix [ € {1,...,n}. Using the previous notation, simple computations show
that

O Ryu(z) = (02, Oru(2)) 12 + (V(Rrg: — g2), Vu) 12
(see [Il equation (8.2.3)] or |4, Step 1]). Therefore,

)
0 Rru(2)] L1 @) < 1002, Oru(2)) r2llLy () + KV (Rrg: — g2), Vu) L2y (). (3.1)
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The first term on the right-hand side of is
/ / 10, (z) Qu(x)| dxw(z) dz = / / 0. (z)w(z) dz |Oju(x)| dx
QJQ QJT
< / Muw(z) |0yu(x)| dx
Q

< / w(z) |Ou(x)| dx
Q
< [Vl
where we have used Fubini’s theorem, the properties of d,, and the fact that w € A;.
To bound the second term on the right-hand side of (3.1)), recall that, by [4,

Proposition 4.4], there are appropriate choices of the parameters K, in the defi-
nition of ¢; such that

L3, (@)

G = sup lon iV (Rrge = g:) (o) S 1. (3.2)
ze
Also, observe that
[ ne@hue) dz = (o w)(@) £ Mul) S w(a), (3.3)
Q

because ¢y, is a radial and decreasing function (see [7, Theorem 2.2 in Section 2.2])
and w € A;.

Therefore, using (3.2), (3.3)), Fubini’s theorem, and the fact that w € A;, we
may write

//|V(Rh9z—gz)(x)vu($)|dfﬂw(z)dz§gh//Sﬂh,z(ﬂf)wu(fcﬂdxw(z)dz
aJa aJa
5/Q\Vu(mﬂ/ﬂtph,z(x)w(z)dzdm

S IVl @)
This concludes the proof. O
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