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ENDPOINT ESTIMATES FOR HIGHER-ORDER GAUSSIAN
RIESZ TRANSFORMS

FABIO BERRA, ESTEFANIA DALMASSO, AND ROBERTO SCOTTO

ABSTRACT. We show that, contrary to the behavior of the higher-order Riesz
transforms studied so far on the atomic Hardy space H!(R™, ) associated with
the Ornstein—Uhlenbeck operator with respect to the n-dimensional Gaussian
measure 7, the new Gaussian Riesz transforms are bounded from H! (R™, ) to
LY(R"™,~), for any order and any dimension n. We also prove that the classical
Gaussian Riesz transforms of higher order are bounded from an appropriate
subspace of H'(R"™,v) into L!(R™, ), extending T. Bruno (2019) to the first-
order case.

1. INTRODUCTION

For z € R", let dy(z) = n "/2¢~1#I" dz be the n-dimensional non-standard
Gaussian measure and let £ be the closure on L?(y) of the Ornstein—Uhlenbeck
differential operator given by

1 "*
L=—§A+x~vz;5i5i,

where

= L0
v \/iaxl

5 = _Lelzlzi(e—w.)
’ ﬂ 8.13i

is the formal adjoint of §; on L2(vy). This operator L is defined on the space

C*(R™) of smooth and compactly supported functions on R™. It is well known

that £ is an unbounded positive self-adjoint operator on L?(7). Its spectrum is

discrete, composed of non-negative integers as eigenvalues, whose eigenfunctions

are the normalized n-dimensional Hermite polynomials {ha}aewg, which turn out

and
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to be an orthonormal basis for L?(vy). That is, Lhe = |alhe with o] = 31 «a;
and
Dom(0) = { € 22(2): 3 o (7. < o .
aeNY
Let us observe also that C°(R™) C Dom (£) and £ = L on C*(R").

We define two types of higher-order Gaussian Riesz transforms, known in the
literature as the “old” and the “new” ones. First, let us note that these transforms
can be spectrally defined as follows: for a multi-index o € Nj \ {(0,...,0)}, the
“old” Gaussian Riesz transforms of order « are given by

Ro = DL~ %,

where D = 67" --- 5%, and the “new” ones have the form

Ry =D*(L+1)"%,

where D*® = §7%' ... §*%n and I denotes the identity operator on L?().

Our main aim is to analyze the continuity of these singular integrals on L' ().
It is well known, as in the classical setting for the Laplacian operator, that these
transforms are not bounded on L!(vy). Moreover, as noted in [11] the old Riesz
transforms are also not bounded from the Gaussian atomic Hardy space H!(v)
(given in [10]) into L' (), for n > 1. A satisfactory answer to this issue was provided
by T. Bruno in [3], in the case of the first-order old Gaussian Riesz transforms,
which are bounded from a certain subspace X!(y) C H!(y) into L'(vy). Now we
shall complete this study for higher-order old Gaussian Riesz transforms by using
smaller subspaces as we increase the order of the transform, and at the same time
we prove the boundedness of the new ones from H1!(v) into L' (7).

To that end, we will first need the concept of atom to introduce the corresponding
atomic Hardy space H!(7) later. Given r € (1, 00|, a Gaussian (1, r)-atom is either
the constant function 1 or a function a € L"(y) supported in an admissible ball B
(see its definition in Section [2)) such that

/ad7 =0 and |af, < ’y(B)%_l.

From now on, the symbol | - ||, denotes the norm in L" (). In the latter case, we
say that the atom a is associated to the ball B.

The space H17"(v) is then the vector space of all functions f € L'(y) that
admit a decomposition of the form 3~ Aja;, where the a; are Gaussian (1,7)-atoms
and the series associated to the sequence of complex numbers {);} is absolutely
convergent. The norm of f in H'" () is defined as the infimum of > 1A over all
these representations of f.

In [I0] and [I1] the spaces H1"(y) were defined and proved to coincide for all
1 < r < oo, with equivalent norms. So any one of them is called H!(v). In view of
these facts, we shall refer to the atoms in H!(7) as H'-atoms.

In Section [2f we will introduce a new Hardy space X*(v) for each k € N. The
sequence of these new Hardy spaces form a strictly decreasing chain such that
Xk+1(y) € X*(y) € H' (7). And these spaces will be suitable to the boundedness
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HIGHER-ORDER GAUSSIAN RIESZ TRANSFORMS 27

of R, when p = 1, where the parameter k is related to the order o as we can see
below.

We state our two main theorems which take care of the boundedness of these
Gaussian Riesz transforms on L!(7).

Theorem 1.1. R, is bounded from X*(vy) to L*(vy) for any multi-index o with
k = |a| and any dimension.

Theorem 1.2. R is bounded from H*(vy) to L*(v) for any multi-index o and any
dimension.

The article is organized as follows. In Section [2] we introduce some notation,
definitions and properties of £, whereas in Section [3] we establish the definitions of
atoms and Hardy-type spaces in the Gaussian framework. In order to prove our
main theorems in Section [5} we first present several auxiliary results in Section [4

2. PRELIMINARIES

For the operator £ introduced above, and for every z € C, we define

=Y j*P;, Dom(C?) = {f e () : S PR P IR < oo}7

Jj=1 Jj=1

where P; is the orthogonal projection onto the Wiener chaos space of order j,
ie,Pif = Z\a|=j (f, haYho with h, the normalized Hermite polynomial of degree
|a| = j and « € Njj. Let us remark that £! = L.

For f € Dom(L), we have

Lf(x)=>_ jPif(x).
j=1

Recall that the family of orthonormalized Hermite polynomials {ha}aeNg is an
orthonormal basis for L?(y) (see, for instance, [I4]). Thus, we can rephrase

Dom(L) = {f € L*(v) : Lf € L*(7)}.

If Rez < 0, the operator £* turns out to be bounded on L?(y) and we have
Dom(L?) = L?(7). Meanwhile, if Rez > 0, then C°(R™) C Dom(L?) by the
decomposition £* = L*~N LY with N = [Rez] + 1.

Let IIp be the orthogonal projection

Ty : L?(7y) — ker(L)*: = {f € L*(y): . fdy= 0}.

In terms of the spectral resolution {P;};>0, Iy = I — Py since
Po : L*(y) — ker(L£) = C,
with
Pof = - fdy.
We shall denote the space Io(L?()) by L3(7).
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28 F. BERRA, E. DALMASSO, AND R. SCOTTO

Lemma 2.1. For every positive integer k we have
LreTkf =1, Vfe L*(y), L7Fckf =TIof Vf € Dom(LF)

Proof. Let us see that for f € L2(vy), L7%f € Dom(LF). From the definitions of
Pj and £L~* and the orthonormality of {ha }aeny, we have

PiLf) = jikpjf

and thus

= . _ = 1
S PPN =D i 5 1P f113
j=1 j=1 J
=> IPifl3
j=1

<> IPfI3
j=0

= [I£15 < oo.

Hence, £L7Ff € Dom(LF) and from the definition of £*¥ and £L=* we get that, for
ferL?(y),

Lot =S P = f =1 f.
S=3 Pt JRCEY,

Similarly, for f € Dom(LF), we get
L7FLFf =TI f. O
In particular, from the above result, we have
LhL™hf=f VfeLi(y),  LTFf=f VfeDom(L¥)NLi(y).

Let us introduce several function spaces that will play an important role in the
definition of special atoms and investigate the relationship among them.

Recall that £ is an elliptic operator. Thus, for a given bounded open subset {2
of R", a positive integer k and a real constant ¢, every solution u of the equation

LFu = eXq

is smooth in 2 by elliptic regularity. Here, X denotes the characteristic function
of Q.

We will now introduce some function spaces related to the solutions of the integer
powers of L.

Definition 2.2. Suppose that k is a positive integer and that €2 is a bounded open
subset of R™. We say that a function u is k-quasi-harmonic on Q if £*u is constant
on 2 (in the sense of distributions, hence in the classical sense, since u is smooth
by elliptic regularity). We shall denote by ¢Z(Q2) the space of k-quasi-harmonic
functions on € that belong to L?(7).
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HIGHER-ORDER GAUSSIAN RIESZ TRANSFORMS 29

The subspace of ¢Z(Q) of all functions v such that £¥v = 0 on Q will be denoted
by hi ().
Definition 2.3. Given a compact subset K C R™, we say that a function v is
k-quasi-harmonic on K if v is the restriction to K of a function in ¢Z(Q) for
some bounded open set 2 containing K. We shall denote by ¢7(K) the space

of all k-quasi-harmonic functions on K. The subspace of all functions which are
restrictions to K of functions in h3 () will be denoted by hi(K).

Remark 2.4. Let K be a compact subset of R™. Then
G(K): = {ve L3(y): L% € L3(K, )},
where L3 (K, ) is the space of functions w € L?(v) with suppw C K and [ wdy = 0.

The proof of this remark can be found in [I2] for the Laplace-Beltrami operator
and K = B with B a ball. Although it follows the same lines as the ones in [12]
Proposition 3.3 (i)], we will state it here for the sake of completeness.

Proof of Remark 2.4 First let us prove ¢2(K)* C {v e L*(v): L7%v € L3(K,~)}.
Let v € ¢2(K)*. In order to prove that the support of £7%v is a subset of K
it suffices to show that (L~%v,Xp) = 0 for every ball B C R" \ K. Since L is
self-adjoint, we have
(Eikv, XB> e <’U, EikXB>.
On the other hand, notice that L7*Xp € ¢2(K). Indeed, there exists a bounded
open subset Q of R” with K C Q and LFL™* X5 = X — v(B) on §; in particular,
with Xp = 0 on K. Thus the last inner product in the above equality vanishes.
Now we prove that the function £~ v has average zero with respect to . Indeed,
since supp(£~*v) C K and L is self-adjoint, we have
LRy dy = (L7, Xg) = (v, L7FAQ).
R’n
Since v € ¢2(K)* and L7*X, € ¢?(K), this last integral vanishes, as required.
Next, let us prove the other inclusion. We assume that £=*v € L3(K,~) for
v € L2(y). Then v € Dom(L¥) and v = L¥L7*v. If we take w € ¢2(K), there
exists a bounded open subset Q € R™ with K C Q such that £*w is constant on €.
Therefore w turns out to be smooth on €2, and
(v, w) = (L L™ v, w) = (L™, LPw) = 0.
The last equality holds since L¥w is constant on Q and £~ %v € L3(K, 7). (]

Everything stated henceforth is understood in the sense of distributions, unless
otherwise specified. Let u be a function in Dom(LF) that vanishes on the com-
plement of B where B is a ball in R". Then L*u is in L?(y) and vanishes on
R"™\ B. For every ball B we introduce two operators £% and E%Dir defined as the
restriction of £¥ (in the distribution sense) to

Dom(£%) := {u € Dom(L*) : suppu C B},
Dom(ﬁ%pir) = {u IS WO%_M(B) LRy e L3(), supp(/lku) C B},
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30 F. BERRA, E. DALMASSO, AND R. SCOTTO

respectively. Here, for j € N, the closure of C¢°(B) = {u € CZ°(R") : suppu C B}
will be denoted by W{'(B) with respect to the norm

1/2
HUHW({vZ(B) = ( Z |Dau||2L2(B)) .

lo|<j

Notice that W?(B) = W{"*(B,~) since B is a bounded set.
The following lemma gives an identification of the domain of £% for any k € N.
The case k =1 can be found in [3, Lemma 2.6].

Lemma 2.5. Let B be a ball in R™. Then Dom(L%) = ng"z(B) with equivalence
of norms.

Proof. As said above, for the case k = 1 we have the result by T. Bruno in [3]. For
the general case we use induction on k since

Dom(L%) = {u € Dom(Lp) : Lu € Dom(L1)}.
Indeed, let us assume Dom(LY) = ng’2(B). Then
Dom(£5Y) = {u € Dom(Lp) : Lu € Dom(L) = W*?(B)}.

Thus, given u € Dom(ﬁk"’l)7 we have Lu = f with f € WO%’Z(B) and suppu C B,
so we get u € W ?(B) (cf. [4, Theorem 6.5]). Conversely, taking into account
that DL = LD* — 2|a|D® and that B is a bounded set, if u € WZ""2?(B) then
Lu € WZF2(B), and from this we get u € Dom(£%™). So the case k + 1 is also
true. 0

In the spirit of [3, Lemma 2.7], we can obtain the following lemma regarding
several properties of the function spaces previously defined, as well as the operators
L% and E%’Dir.

Lemma 2.6. The following statements hold.
(i) Both spaces q3(B) and hi(B) are closed subspaces of L*(B);
(ii) £F is a Banach space isomorphism between Dom(L%) and h2(B)*;

(iii) h7(B)> = hj(B)*;

(iv) Ran(ﬁk) hi(B)l,
(v) 2(B)* =ap(B)*;
(vi) Dorn(ﬁ’C ) € Dom(Lk Dir)-

Proof. Let us first prove item [(i)} Clearly h?(B) is a subspace of ¢Z(B) of co-
dimension one. Indeed, we have the vector space decomposition

6i(B) = hi/(B) & C(L*Y|p),
where ¢ € LZ(y) N C°(R™) is such that ¢ = 1 on B, and C(y¢) = {cp : c € C}.
Let u € ¢2(B). Then L*u = ¢ = ¢y on B. From the definition of ¢ we have
KL=k =ap. If we take v = u—cL )| p we have that L¥v = LFu—cLFLTFp =0
on B. Thus v € h}(B) and u = v + cL*|p. Since ¢ € LE(7y), we have that the
sum is direct.
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HIGHER-ORDER GAUSSIAN RIESZ TRANSFORMS 31

Let us prove that ¢7(B) and h2(B) are closed subspaces of L?(B). Due to
the above decomposition, it is enough to prove that hi(B) is closed. Indeed, let
{v;}jen be a sequence on hi(B) that converges in L*(B) to v € L?*(B). Then
ﬁkv] converges to £¥v in the sense of distributions. Thus £¥v = 0 on B, whence
v € hi(B).

We now consider item E We first observe that £F(Dom(L%)) C h2(B)*.
Let f € Dom(LY) and fix v € h2(B). Then there exist an open set Q O B
and a function w € hi(Q) such that w|z = v. We can construct a function
o € C2°(R™) N h2(R™) such that & = w on B and supp® C . Observe that

Lvﬁkfdvzﬁwﬁkfdvzfﬁﬁkfd’y:/ ﬁﬁ’“fdfy:/ LG fdy =0,
B B Q n n

where we have used that

/n ﬂz;kfdv:/Rn (;<ﬁ,ha>ha> <zﬁ: |5|k<f’hﬁ>h5> .
*ZZ MBI s o, )

:Z|a| 6aha 7 oc>

= / LEDf dry.
At this point, we shall prove that L% is injective on Dom(L%). Indeed, if
f € Dom(L%) and £Ff = 0, we have L(LF71f) = 0, so LE71f is a constant
L?-function with support contained in B. Therefore £¥~1f = 0. By proceeding
recursively we get that f = 0.
As the next step, we will prove that £¥ maps Dom(L kB) onto hi(B)t. Fix
v € h}(B)* and define o = vX5. Then, we have f = £L7%(3) € Dom(LF), since
L% L%(y) — Dom(LF). We also have

/ ﬂd’y:/fudfy:(),
n B

since 1 € hZ(B). Thus ¢ € L3(v) and consequently
Lrf=LF (L) =Moo = .
We now fix a test function ¢ € C2°(B“) N L2(7). Then we can write

<¢5 f> = <‘ck(£7k¢)7ﬁikﬁ> = <£7k¢af}> = \/7£7k¢v d’Y =0,
B

since L7F¢ € hi(B). By the arbitrariness of ¢ we can conclude that f is constant
on B°, that is, f(z) = ¢ for every z € B°. The function g = f — ¢ belongs to
Dom(LF), suppg C B and

Lhg=rF(f-c)=LFf=0=0.
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32 F. BERRA, E. DALMASSO, AND R. SCOTTO

Consequently, we have proved that the operator £* is a bijection between Dom(£%,)
and h?(B)L. We also have that £* is continuous since Dom(£%) = wg »2(B).
Let T = £* : Dom(L%) — h2(B)*. We are going to show that 7 is continuous
from h%(B)* to Dom(L%). In order to prove that, we shall see that its graph is
closed. Let {f;};en be a sequence in hZ(B)* such that f; — f when j — oo on
L*(B) and T~ 'f; — g, where g € ng72(§)_ By the surjectivity of T~! we have
that there exists f € h2(B)t such that g = T-1'f. By the continuity of 7' we get

fi=T(T7'f) > Tg=f;

then we conclude that f = f. By the closed graph theorem we obtain that 7! is
continuous.

The proofs of items |(iii)| to follow similar lines as in [3, Lemma 2.7] and we
shall omit them. O

3. HARDY-TYPE SPACES AND ATOMS

As mentioned in the introduction, defining suitable atoms for the old Gauss-
ian Riesz transforms requires considering a family of balls on which the Gaussian
measure v is doubling.

Given an Euclidean ball B = B(cg,r5), where cp is its center and rp > 0 its
radius, we will say that B is an admissible ball if rg < m(|cp|), where the function
m: R — RT is defined as

1, 0<s<l,

m(s):{l’ s> 1.

The collection of these balls will be denoted by %,. For any constant ¢ > 0, by ¢B
we will denote the ball with same center as B and c times its radius.

As it is well known (see, for instance, [10, Proposition 2.1 and Remark 2.2]), the
Gaussian measure is doubling on %1, that is, for any ball B € %,

with doubling constant D, > 0 independent of B.
We are now in a position to define, for every k € N, an X*-atom and its corre-
sponding atomic Hardy-type space X*(7) in this setting.

Definition 3.1. Given k € N, we say that a function a € L?(v) is an X*-atom if
a is supported on an admissible ball B € %, and satisfies
(a) llallz2y) < wr(rp)y(B)~1/2
for k 23;
(b) a € ¢i(B)*.

Remark 3.2. Since X»p € ¢ (B), observe that condition implicitly says that
[ ady = 0. On the other hand, since wy(rg) <1 for every k, we get from that

lall L2y < (B)~Y2. (3.1)

, with wi (rg) = wa(rp) = Land wy(rp) =} >
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HIGHER-ORDER GAUSSIAN RIESZ TRANSFORMS 33

Remark 3.3. It is easy to see that every X*-atom is also an X7-atom for every
1<j<k.

Remark 3.4. Condition @ implies that each atom is in L*(wyy) with
1, k=1,2:
wy () = {1 +z*2, k> 3.
Indeed, for any k£ > 1,
lallLr ey < lwrdBll2()llallzz i)
< HkaBHL2('y)wk(7’B)7(B)71/2 (3.2)
<1422

This will allow us to deduce the boundedness of the old Gaussian Riesz trans-
forms once the uniform boundedness on atoms has been established, taking into
account that R, with |a| = k are bounded from L!(wyy) into LY*°(v) (see [3]).
We also remark that, to obtain the uniform boundedness of these old Gaussian
Riesz transforms on atoms, we will use the weaker condition .

Remark 3.5. We shall point out that if a is an X*-atom, then m is an

H'-atom supported in B. Here || - ||, stands for the norm on the Banach space of
bounded linear operators defined on L?(7). -
Indeed, since a € ¢ (B)*, by Remark L %a € L3(B,~). Moreover, by (3.1)

127 allnaey < 1£75l; lallzzcy < €75l v(B) 772,

Since we are expecting a strong endpoint type result for the old Gaussian Riesz
operator, we shall consider a subset of L!(wy7y), given below.

Definition 3.6. Given k € N, the Hardy space X*(7) is defined by
Xk("y) = {f S Ll(’y) : f = ZAJ'CLJ', a; an Xk—atom VJ S N, {)\j}jeN € él}
jEN
The norm for this space is given by
Hf”Xk(,y) = inf{||{)\j}||¢1 cf = Z)\jaj, a; an XF atom Vj € N}.
JEN
As claimed, X*(y) C L*(wy7), since for f € X*(v) and from (3.2)) we get
o0 oo
ALt o) < D lllaglor ey < (1+2572) YAl
j=1

Jj=1

4. AUXILIARY RESULTS

We shall see next that the operator £~* preserves the support of X*-atoms,
which will be one of the key ingredients in the proof of Theorem [I.I]in the following
section. We refer to [3, Proposition 2.5] for the case k = 1.
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34 F. BERRA, E. DALMASSO, AND R. SCOTTO

In the following, by A < B we shall understand that there exists a positive
constant C' such that A < C'B, where C may change in each occurrence.

Proposition 4.1. Let a be an X*_atom supported on an admissible ball B. Then,
supp(L~%a) C B and
1E7 % all 2y < rE(B) 2.
Proof. Let a be an X*-atom. By items and of Lemma we obtain
a € ¢i(B)* = ¢i(B)* C hi(B)" = Ran(L}).

Then there exists f € Dom(L%) C Dom(ﬁ’%,Dir), by Lemma , such that
L”E’Dirf = L% f = a. Wehavethat f = Engira, as E%,Dir is one-to-one in Dom(L%,).
Consequently, supp E;{“Dira = supp f C B, and further £§{€Dira = £ %a. There-

fore, since Lp pir has a discrete spectrum (cf. [8, Theorem 10.13]), so does L py,,
and thus

_ _ —k —k -
17| oy = €550l L2y < Obie (BN llallzzcyy € A (B) " 1(B) ™2,
where we have used (3.1)) and A\}); (B) denotes the first eigenvalue of £g piy. From
this point on, we can proceed as in the proof of [3, Proposition 2.5]. O

In order to prove Theorem|[I.I]we will require the following lemma, proved in [10].
Lemma 4.2 ([10, Lemma 7.1]). Let B = B(cp,rp) be a ball in R™. Fory € B,
set rpy = ﬁ fory#0 and rp,y = oo fory=0.

(1) Ifrp,y > 1, then 4|lz—ry| > |x—cp| for every r € [0,1] and every x € (2B)¢;
(i) if rpy <1, then 4|z —ry| > |x — cp| for every r € [1 — rp 4y, 1] and every
x € (2B);
(iii) for every 6 > 0, there exist positive constants Cy1 and Cy such that

1 s Y <o
A=y (23)06 - dx < Cips Vi < Cre 17,

where @s(s) = (14 5)" 2795 < ¢,e=C2%" for s > 0.

The following result will be useful in the proof of Theorem as it takes care
of the derivatives of £¥/2 for odd orders k. When k = 1, the proof can be found in
[3, Lemma 2.8].

Lemma 4.3. Let o be a multi-index with |a| = k, where k is an odd positive
integer. Then

||Da£k/2f||L1((4B)cﬁ) 5 T§2k||f“L1(B,’y)
for every ball B € %, and every f € L*(y) such that supp f C B.

Proof. For k odd, we have that £¥/2 has the following kernel (see, for instance, [3,
p. 1612)):

lre—y|?
1 ' Y g2\ dr
Kﬁk/z(%y)zﬂ_gr(_k)/o (=logr)~ 2 1<<1_742);_e |yl )r.
2

Rev. Un. Mat. Argentina, Vol. 69, No. 1 (2026)



HIGHER-ORDER GAUSSIAN RIESZ TRANSFORMS 35

For |a| = k, by using the chain rule and the definition of the n-dimensional Hermite
polynomials, we have

|re— yl2 rk rr —vYy _lrz—y|?
D& e 172 | = H e 17
: ( ) (-5 " wa)

and taking into account that —|rz —y|?> = —|z — ry[* + (1 — r?) (|z|> — |y|?), we
get the following kernel:

DgKﬁk/2 (x,y)

B 1 /1 (—1ogr)*§*1Da \v;_ry\ >dr
- n A NI z\ €
71'21_*(—5) 0 (1—-12)2 T
L[ (22t)o
G 0= Vier

e‘zlz |y|2 ' k T —y I:L 7y|
==z k / n+kHu< )6 dr.
w37 (=5) Jo (~logr) %" (1 —1r2) Vi-r2

Let ¢ € Ny be a non-negative integer such that k£ = 2¢ 4+ 1. By using again the
definition of Hermite polynomials on R", it is well known that

‘
Wl <Y [ul¥
7=0
for u € R™. Thus,

y|?I+t _la—ry)?
12

¢ 1 rh—1
DK eus ()] £ 300 re -

prd 0 (—logr) = (1—r2)*== "+

Fix f € L'(«y) with supp f C B for some ball B = B(cg,rp) € %;. Then,

ID2LY2 flla amyemy < / . / DS g ()1 ()| dy 1 da

Fh—1 y[23H1
S o o o e
(4B)e logr (1 —p2)

le=ryl®

xe d?"\f( ) dy(y) dx

;/ 0l di(y),
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where

1 k—1
r ey
L= | sy [ ey ~dedr
! 0 (—logr)kgz(l—ﬂ) 5 (4B)e

- /OIJ(y,r)dr—/OéJ(y,r)dr+/11J(y,r)dr

2
= I;1(y) + L 2(y)
for each j =0,1,...,74.
If we prove that

Ij,z(y) <T§2k7 j:O713"'7é7 i:172; (41)
we can conclude that

||D§/3k/2f||1:1((43)c,7) Sl sy = 5 1l (B.4)-

In order to estimate ) for I;1(y), let us consider v = x — ry so we get
re—y =rv+(r’—1)y and dx = dv. Since y € B € %1, we get |y\ <lepl+rp < 5.
Then

v|+1
rz =yl S rlol + (0= lyl < ol +lyl < ol + 2 <20 EL
We apply this and use that
3 k—1 217k:
1—72>2 and < -
4 (—logr)#* ~ (log2)™+*

f0r0<r§%,t0get

1 k1 i1

P (o[ + D 2

L s | o
0o (—logr)™ o Tg

< 1 /67|v\2/2dv<i,
ry Tt Jen B

Clearly, since rg < 1, we also have I ;(y) < 7“152]“ for every j =0,1,...,7.
When % < 1 < 1, we have that —logr ~ 1 — r2. By splitting

re —y| = |r(@ —ry) = (L =)yl < o —ry| + 1 =)y,

we have

Ij,z(y)

< / ! [ (b y|>2j“e—'i-fz'2dxdr
Sl R Jan \ VT

1 2j+1 ; 2
1 2j+1| _ Jo—ryl
S/ 2) ( Ty|> + (vl—rz\y|) e T drdr
1 (1 —r 4B)<‘ V1-—r2

_ 2 z—ry|2
</ 14+ (\/1 T ‘ZJ|) 1 _ / 67‘2(1—r£) dz ) dr. (4.2)
~ 1 (1 —T2)k+1 (177”2)5 (4B)e
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Now, let 75, be the number defined in Lemma @ and consider the cases rp, > 1
and g, < 1.

If rg, > 1, for any x € (4B)° and r € ($,1) we have that [z — ry| > |z — cp|
by Lemma [4.2|(i)l Hence, from Lemma [4.2|(iii)|
1 |z —ry|? 1 _olz=epl?
ﬁ/ emwd‘“ﬁ/ o
(1—7“ )2 (4B)¢ (1—7" )2 (4B)¢

2
rB _C0,B_
:C e | — <Ce 27,2
1¥ ( %1_7“2)_ 1

2

where p.(s) = (1 + s)""2e7°".
This leads to

14 (\/1 — 7“2|y|)2jle o, B
Ii2(y) < [ D Ol gy
3
1 2 2]+1 1‘2
1+ (\/ 1—7r |y|) —Cp B, 2r
< ; e -2 ———— dr.
1 (1 —r2)k=2 (1—-17r2)2

Setting s = rp/v1— 12, ds/rg = rdr/(1 — r2)2, and recalling that rgly| < 1, we
get

2j+1 2
1+ (V1=r2y| o C r
I;2(y) Nﬁ ( ) ’

-1 - 3B dr
L (VI=1?) (1 — )2
) /oo L4 ()" ads
~ oN2k-1 ¢ o
o () g

_ L7 (rply )

_ _ 2
5 51 g2k=1e=C257 g
TB S J+

0
1 o ; 1
rﬁ 0 (52’“*1 _|_$2(k7371)) —Cas” g %’
sincek—j7—12>%=>0forevery 0 < j < /= %1 This gives estimate (4.1

when rp, > 1.
We now study the case rp, < 1. Set I; o(y) := I 2.1(y) + Ij 2,2(y), splitting the

integral over (f 1—rp y and (1 — By, 1), respectively. For the second interval,
we can apply Lemma and |(iii)l and proceed as in the previous case.
On the interval (1 TB7y)7 we can proceed as in ) to get

=75,y 1 + (1 _ TQ)j+%|y|2j+1 1 _Ja—ry)?
I < - 2(1-r2) (. dr.
3,2,1(y)N/é (1= r2)kr1 <(1_T2)2 /(4B)Ce x) T

We perform the change of variables

T =Ty dr
V=Y, dv= ———%,
2(1 —r?) (2(1 —1r2))z
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in order to obtain

1-rB,y | 1 — p2)i+3 |20 +1
I2,1(y) f“v‘[ al Gl ] / eI v dr
1 n

(1 _ T2)k+1
I=rBy | 4 (1 — ¢)d+3|y|29+1
%[ ((1 )T)Hllyl dr
2
1 1—7’3,1/
<l [ e
r 1
B,y 2
2j5+1
< 1 W¥ :
~ rk; I

s L
lylE |yl

k k—j—1
2
"B

= () (1 + Qo).

Since |y| < |ep| +rp < % and |y|rp < 2, we get

Ij,z,z(y) S 7"1§2k~

The proof is now concluded. O

5. PROOFS OF THEOREMS [[.1] AND [[.2]

For proving the main results, we may need the integral representations of both
Gaussian Riesz transforms R, and R},. Given a multi-index oo € Nj \ {(0,...,0)},
we have

n

Rof(z) = pov. / ko, 9) £ (y) dy,

and
R f(z) =p.v. | ki(z,y)f(y)dy,
]Rn
where
1 lal/2-1 ~lyore
—logr y—re e 1-r
koc ; = Cn,a o= [ = Ha d
(z,y) = cn, /0 r 1_,2 Jioz) @y
and
1 lal/2-1 ey
—1 — 1—7
ko (2, y) = Cn,aelz‘Qi‘ylg/ ( Og§> He < — ) : 2\n/2+1 dr,
o \1—r Vi—r2) (1 —r2)n/2+
respectively.
The operator R, turns out to be bounded on LP(v) for 1 < p < oo (see, for
instance, [7,[9,13]). For the first-order Gaussian Riesz transforms R} ,i =1,...,n,

the LP(vy) boundedness was obtained in [6] for 1 < p < co. By Meyér’s multiplier
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theorem, the new higher-order Gaussian Riesz transforms are also bounded on
LP?(v), as can be proved similarly to [I4, Corollary 9.14].

Proof of Theorem [L.I] First we are going to prove that the old higher-order Gauss-
ian Riesz transforms R,, with |a| = k are uniformly bounded on L' () when applied
to every X*-atom. Once this is done, the boundedness of R,, from X*(v) into L!(v)
follows from the fact that these transforms are bounded from L (wy) into L1:>°(v)
(see [5]). Indeed, by following steps closely related to those in, for instance, [2], we
obtain that for f =}, A;a;, where each a; is an Xk-atom and > [N < oo, the
series defining f converges in L'(wy7) and therefore

£
Raf = eli)rgo Ra(Z; /\jaj)
J:

in L1 (v).
Then there exists an increasing function v : N — N such that

P(€)
R.f(z) = lim R, <Z)\ aj> a.e. z € R".

Thus,

|Ro f(x \fhrn

Z:IA || Raa(x

From this,
IRafllziy < D INIIRaas 21y < C D IAL
j=1 j=1

where C' is an absolute constant independent of the atoms on which any f € X*(v)
is decomposed as we shall see it in what follows. Then, ||Ra fllz1(y) < C|fllx#()-

Let us then prove that
[RaallLry) < C (5.1)

for every X*-atom a. For k even, let us call k = 2j. Then the old Gaussian Riesz
transforms of even order now become V# £~7 with V¥ = Zla‘:% D

Let a be an X*-atom. Then, by Remark a is also an X7-atom. Since a is
supported in a critical ball B, by Proposition we have that £ 7a is supported
in B. By applying Holder’s inequality and using the boundedness of V* £~/ on
L?(7), we get that

V¥ L7 a1y < V¥ L a2y v(B)Y? S Nlallp2 (v (B)Y2 < 1,

where we have also used Remark This takes care of the boundedness from
XF%(v) to L*(y) of the old k-th order Gaussian Riesz transforms for k even.

We now turn to the proof of the boundedness of this operator for k odd. Given
an X*-atom a, notice that

[RaallL1(y) < [[RaallLr B,y + [[RaallLr(ap)e -
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For the first term on the right-hand side, we apply again Hélder’s inequality, to-
gether with the L?(y)-boundedness of R,. This yields

IRaalli 4B,y < | Ratllr2@p.)v(4B)? < llall 2y (4B)/2 S 1,

where in the last inequality we have used that a is an X*-atom and ~ is doubling
over admissible balls.

To take care of the term || Roal| 11 ((ap)e ), we write D*L~F/2q = DLF/2(L7Fq).

)
Since a is an X*-atom, we get supp £L™%a C B and

Y(B)Y2|| L7 *al 2y S TH

by Proposition Using Lemma and the inequality above with f = £ %a, we
get

||Da'c_k/2a”L1((4B)Cw) = HDack/QfHLl(MB)C,'y)
Srp Il sy S e B P IL a2y S 1.
This proves (5.1]) for every k € N. O

Proof of Theorem [I.2] Let us point out here that in order to prove the boundedness
of the new Gaussian Riesz transforms from H!(y) into L'(7y), we will not be able
to apply [10, Theorem 6.1 (ii) and Remark 6.2], for if we consider m(x,y) being the
kernel associated to the old Gaussian Riesz transforms, m*(z,y) does not represent
the kernel associated to the new higher-order ones. So, given an H'-atom a, in order
to prove this result we will proceed as in the proof of the boundedness of the old
higher-order Gaussian Riesz transforms of odd order, by splitting the norm in the
following way:

|Ryallry) < [IRLall 2B,y + 1 RaallLr(@2B)e,y)-

Then, the first term in the sum is bounded by the L?(y)-norm of Rja times
7'/2(2B), and we use the continuity of R’ on L?(y) and the fact that v is a
doubling measure over 4.

Now, for taking care of the second term in the above sum, we use the fact that
the atom a has its support contained in B and it has average zero over that ball.
This yields

| ReallL(2B)e,y)

<c / ja(y)|
B (2B)e

where
1 - \ 12
—logr P} =Ty z—ry
Aa(r) = (1 — r2> and F,(x,y,r) = H, (\/W) e 1t

By applying the mean value theorem to the function F, in the variable y, we
get that

/0 (1M>)/+(F<W> — Falw,cp,1)) dr| dzdr(y),

IR%allz2ye S vsllallpiy < wsllallzzyy'/2(B) S vs,
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where
Vs = sup sup rB/ s(x,y) dx
Be®, yeB (2B)°
and
1
s(z,y) = Cn/o uj\;%|vaa(x,y,r)|dr.
Now we prove the finiteness of vs. For every i =1,...,n,

o —ry|?

x—ry T — TY; T —ry e 1-r?
Oy, Fo(x,y,7) =21 ayHy_o, — H, ,
wFa(:97) < e’<\/1—7“2) V172 <\/1—7“2)> V172

which leads to

_lw=ry|?
z—ry \|le -7
Vi, Fo(z,y,m)| S|P ,
v )| € [P( 22 )| s
where P is a polynomial of degree |a|. Therefore,
_le—ry?
< e 2(1—-r2)
IVyFalz,y,r)| S ﬁ
Consequently,
|z—ry|?

1 _
Aa(r) € 20=7D
vs < sup supr / / drdx
Be2, yeB b @By Jo (1—=72)3/2 (1 —r2)n/2
1 _lz—ry|?
[ [T
= sup supr —_— ————dxdr.
Be%, yeB 7 J (1=72)3/2 Jiap)e (1 —r2)n/2
In order to see that vy < oo, it will be enough to show that, for every ball B € %;
and every y € B,
L. () 67% 1
1= / z / dedr < —.
o =127 Jipye (=22 047 = 75
Let rp, be the number defined in Lemma @ and assume that rp, > 1. By

applying items |(i)| and |(iii)| in Lemma and the fact that A\, (r) < Cy v~ /2 for
any r € (0,1/2), we get

1 2
)\a(r) _02%
ISA me 1-r2 dr
Car?

1/2 1 e 20— (5 2)
§/0 /\a(r)dr+/1/2 A= dr )

2 [ e 11
<V2Chn + — e du <1+ — < —.
B Jo B B

Rev. Un. Mat. Argentina, Vol. 69, No. 1 (2026)



42 F. BERRA, E. DALMASSO, AND R. SCOTTO

We now turn our attention to the case rp, < 1. We split the integral I into
three parts, I, I> and I3, as follows:

|z—ry|?
V2 (r) e 20—
I = e —————dxd
= e /(ZBV (L=
|z —ry|?
1-rp,y A (7“) e 20-r2)
I = - dx d
? /1/2 (1 —r2)3/2 /(QB)C (122
1 _le—ry|?
Aa(T) e 20a-r%)
I3 Z/ 7/ —————dxdr.
1—rg,y (1 _7"2)3/2 (2B)e (1 _T2)n/2

We shall estimate every term above separately. We apply item in Lemma
and the change of variable z = | — ¢g|/v/1 — 2 to have

lo—cp|?

< 1/2 e 20-r2)
I]_ N/O )\a(T‘)/Rn mdl‘d’r

1/2 1212 1
N (/ )\a (r) dr) </ e_T dZ) g 1 S g’
0 n B

where we have again used the integrability of A, as in (5.2).
On the other hand, since A\,(r) < C, for r € [1/2,1], and 1 — 72 ~ 1 — 7 on
[1/2,1 —rp,|, by repeating the argument for I; on the inner integral, we get

_lz—ry|?

Le [ 1 ¢ D ed
“/1/2 (1— )32 / (122

1/2 2 1 9 1/2 1 1
([T (o)< () et
re n r / B rp rB

Y B,y

since [y|/2 < rf? +rp'/%

Finally, the bound for I3 follows, as in the case rp, > 1, by using item in
Lemma and proceeding as in the estimate for the second term in .

Taking into account that these new higher-order Gaussian Riesz transforms are
also bounded from L!(v) into LY»*(v) (see [I]), and proceeding as before when
we have other types of continuity, these operators extend boundedly to the whole
atomic space H' (7). O
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