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THE ZERO FORCING NUMBER OF EXPANDED PATHS
AND CYCLES

YIPENG LIAO, CHAOHUI CHEN, JIA WEI, AND ZORAN STANIC

ABSTRACT. The zero forcing number, defined as the minimum size of a zero
forcing set, serves as an upper bound for the graph nullity. An expanded
path Py mo,...,m; (resp. expanded cycle Ciy mo,...,m; ) is obtained from the
k-vertex path (resp. cycle) by replacing its ith vertex with an independent
set of m; vertices. We show that the zero forcing number of Py ms,...,my
(resp. Cmy,ma,...,my) belongs to {n — k,n — k + 1} (resp. {n —k + 1,n —
k + 2}), where n is the number of vertices, and determine when it equals
n —k+ 1. As an application, we provide a new proof of a result of Liang,
Li, and Xu characterizing triangle-free graphs with zero forcing number n — 3.
We also show that for any cycle-spliced graph (i.e., a connected graph all of
whose blocks are cycles), the zero forcing number equals ¢ + 1, where c is the
cyclomatic number. This gives an upper bound for the nullity and extends a
result of Wong, Zhou, and Tian for the bipartite case.

1. INTRODUCTION

We consider finite undirected graphs G = G(V, E) without loops or multiple
edges. The number of vertices n is called the order of G. Dynamic colourings
of vertices in a graph have been well investigated in many branches. A particular
colouring based on the concept of a zero forcing procedure, together with the related
zero forcing number, was introduced in [I] to study the problem of maximum nullity
in the family of prescribed symmetric graph matrices. Independently, the zero
forcing number was termed the infection number in the context of controllability of
quantum systems [6]. As highlighted in [9] [12], the zero forcing routine exemplifies
propagation processes on graphs and finds numerous applications across various
fields including mathematics, computer science and physics. In particular, this
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invariant appears in the domain of logic circuits [4], dynamic systems [5] and power
domination [16].

The zero forcing is a deterministic iterative graph colouring procedure in which
vertices are initially coloured either black or white. From the initial colouring,
vertices change colour according to the following rule: If a black vertex u has a
unique white neighbour v, then v switches the colour to black. We say that u
forces v, and designate this by writing v — v. The initial set of black vertices is
denoted by S, and the derived set F(S) is the set of vertices coloured black after
the colour-change rule is applied until no more changes are possible. The vertices
of F(S)\ S are arranged as uy,us, ..., ug, in such a way that for every i there is a
vertex v; in SU{u; : 1 < j <i— 1} for which u; is the unique neighbour of v; in
V(G)\ (SU{u; : 1 <j <i—1}). The sequence v1 — u1,vs — ug, ...,V — Ug S
called a forcing sequence for S. The set S itself is a zero forcing set in G provided
F(S) = V(G). The zero forcing number Z(G) is the minimum size of a zero forcing
set in G.

The inequality

n(G) < Z(G) (1.1)

relates the zero forcing number to a spectral invariant known as the graph nullity,
that is, the multiplicity of zero in the spectrum of the standard {0,1} adjacency
matrix.

The zero forcing number has been computed for many particular classes of
graphs. For example, it is easily verified that Z(P,) = 1 holds for every path P,,
with an endvertex in the role of S. Similarly, for every cycle C,,, we have Z(C,,) = 2,
where the corresponding zero forcing set is comprised of any pair of adjacent ver-
tices. Moreover, it follows from definition that Z(G) = 1 (resp. Z(G) = n—1) holds
if and only if G is a path (complete graph with at least 2 vertices). The graphs
with forcing number 2 or n — 2 are also known, see [I4]. In the same reference,
Row proposed a problem of characterizing graphs with zero forcing number n — 3.
A partial answer is reported in [I3], where the authors characterized all connected
subcubic or triangle-free graphs with the desired forcing number.

To formulate our main results, we need to introduce certain graphs; the ter-
minology is consistent with [I0]. Let Py, := vive---vr be a path with vertices
v1,V2,...,V; and edges v;v;4q for 1 < ¢ < k — 1. By replacing each vertex v;
with an edgeless graph of order m; (m; > 1), denoted by O,,,, and adding edges
between every vertex of O,,, and every vertex of O,,,,,, we obtain an erpanded
path denoted by Pp, m,,..m;- In a similar way, from a cycle C, we obtain an
expanded cycle denoted by Chyy m,,....m,- The expanded path and the expanded
cycle have Zle m; vertices each. In both cases, k is referred to as the length of
the corresponding expanded graph.

In this paper we prove the following.

Theorem 1.1. Let G = Py, m,.....m, be an expanded path with n vertices and
k>3. Then

n—k<Z(G)<n-k+1,
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where the first equality holds if and only if k is even and G has one of the following
properties:
(i) m; > 2 for all odd integers 1 < i < k;
(ii) m; > 2 for all even integers 1 < i <k;
(iii) My, M3, ..., Mg, Msy3, Msis, ..., Mg > 2 for some odd integer s (1 < s <
k—3).

The case k = 2 is excluded since there G reduces to a complete bipartite graph
Ky m, With zero forcing number m; + mg — 2, unless m; = mo = 1 when it is 1
[, [11].

Theorem 1.2. Let G = Chy, my,....m, be an expanded cycle with n vertices and
k> 3. Then

n—k+1<Z(G)<n—-k+2,
where the first equality holds if and only if k is odd and m; > 2 for all i with the
same parity.

On the basis of these results we offer an alternative proof of the result of [I3]
that gives a characterization of triangle-free graphs with zero forcing number n — 3.

Corollary 1.3 ([13]). Let G be a connected triangle-free graph with n (n > 4) ver-
tices. Then Z(G) =n — 3 holds if and only if G belongs to {P1 m; ms.1: P11,my,ms,
C111,my,mg @M1, Mo > 1},

A block in a connected graph is a maximal connected subgraph with no cut-
vertex. Accordingly, a cycle-spliced graph is a connected graph whose every block
is a cycle. It can also be seen as a cactus in which every block is a cycle. We write
¢(G) = |E(G)| — n+ 1 for the cyclomatic number of a connected graph G.

Theorem 1.4. For a cycle-spliced graph G with cyclomatic number ¢(G), Z(G) =
¢(G) + 1 holds.

Taking into account that the nullity of G is never larger that Z(G), we immedi-
ately arrive at the following consequence.

Corollary 1.5. For a cycle-spliced graph G with nullity n(G) and cyclomatic num-
ber ¢(G), n(G) < ¢(G) + 1 holds.

This corollary extends a result of [I5] where the same inequality is proved for
bipartite cycle-spliced graphs.

For undefined notions, we refer the reader to [2 [3]. Section [2| can be seen as
preparatory, containing a mixture of known results and several simple but use-
ful lemmas. The proofs of Theorems [I.1] [.2] [[.4] and Corollary [I.3] are given in
Section [Bl

2. PRELIMINARIES

We start with a lemma concerning the zero forcing number of a graph containing
a fixed path as an induced subgraph.
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Lemma 2.1. Let G be a graph of order n containing an induced path of length k.
Then Z(G) <n—k.

Proof. Suppose that P = vgv; - - - v is an induced path of G, and let S = (V(G) \

V(P))U{vo}. Then vg — v1,v1 — va,...,vx—1 — vi is a forcing sequence for S.
Thus, we have F(S) = V(G), which implies that S is a zero forcing set of G. From
|S| =n—k, we get Z(G) < |S] =n—k. O

We proceed with an induced cycle.

Lemma 2.2. Let G be a graph of order n containing an induced cycle of length k.
Then Z(G) <n—k+2.

Proof. If C = vyvg -+ - vpwy is an induced cycle of G, we set S = (V(G) \ V(C)) U
{v1,v2}. As in the previous proof, vo — v3,v3 — v4,...,Vx—1 — v is a forcing
sequence for S, and the desired result follows. O

We now quote two known results.

Lemma 2.3 ([10]). Let G be an expanded path of order n and length k (k > 2).
For the nullity n(G), we have

n—=k if k is even,
n(G) = s
n—k+1 ifkis odd.

Lemma 2.4 ([I0]). Let G be an expanded cycle C of order n and length k (k > 3).
For the nullity n(G), we have

n—k+2 ifk=0 (mod 4),
0(G) = ) (mod 4)
n—k otherwise.

Henceforth, Ng(u) denotes the neighbourhood of a vertex u in a graph G.

Lemma 2.5. Let S be a zero forcing set of a graph G. If [V(G)\ S| > 2, then
Ng(u) # Ng(v) holds for every pair u,v € V(G)\ S.

Proof. Suppose that there is a pair of vertices u,v € V(G) \ S, such that Ng(u) =
Ng(v). Then for w € V(G) \ {u,v}, we have either {u,v} C Ng(w) or {u,v} N
Ng(w) = 0. This implies that there is no vertex that would force u or v. Conse-
quently, F(S) # V(G), which means that S is not a zero forcing set. O

Remark 2.6. On the basis of the previous lemmas, one may deduce several known
results on the zero forcing number of connected graphs.

(a) Lemma [2.1}implies Z(G) < n — diam(G), where diam stands for the diam-
eter. (This result originates from [14].)

(b) Lemma implies Z(G) < n — gr(G) + 2, where gr is the girth and G is
not a tree. (See [8].)

(c) From (a), (b) and the inequality (1.1, we deduce 7(G) < n—diam(G) and
N(G) <n—gr(G)+2. (See [1].)
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3. PROOFS

We go straight to the proof of the first result.

Proof of Theorem [I.1] It follows from definition that G = Py, m,,...m, contains
an induced path of length £ — 1. By Lemma we have Z(G) < n —k+ 1. This,
together with Lemma and the inequality (1.1)), yields

Z(G)=n—-k+1 if k is odd,
n—k<Z(G)<n-—k+1 if kis even.

This proves the desired inequalities, and it remains to consider the equality cases.

Suppose that Z(G) = n — k. By the previous part of this proof, k must be even.
We next show that one of the conditions (i), (ii) or (iii) holds. Let S be a zero
forcing set in G with |S| = n—k, and let V(G)\ S = {v1,vs,...,vx}. Observe that
for every i (1 < i < k), the vertices in V(O,,,) \ S share the same neighbourhood
in G. By employing Lemma we obtain 0 < [V(Oy,,) \ S| < 1 for every i. Since
Z(G) =n—k, we get |[V(O,,,)\ S| = 1. Without loss of generality, we assume that
v; € V(Om,) \ Z for 1 < i < k, and denote by u; a vertex in V(Oy,,) NS when

The desired conclusion follows whenever m; > 2 holds for either all odd 7 or
all even i. Therefore, we suppose that ¢ is the smallest odd integer and ¢ is the
largest even integer, such that m, = m; = 1. By the choice of ¢ and t, we have
mi,ms,...,Me—g > 2 and Myya, Mitd,...,mE > 2. Thus, we have u; — v;41
for i € {1,3,...,4 — 2} and u; — v;_;1 for j € {k,k—2,...,t +2}. Let S; =
S U{va,v4,. .. 00-1} U{0441,0e43,...,05—1}. This yields S; C F(S). If t > ¢,
then every vertex of S; has at least two neighbours outside S;, which implies
S1 = F(S). However, this contradicts F(S) = V(G), because vy, v; € S;. Hence,
t < £. Again, by the choice of £ and ¢, we have 3< /< k—-land 2 <t <k —2.
Then my,ms,...,mp_o > 2 and mey1,mets,...,m, > 2, and so (iii) holds by
setting s = £ — 2.

Conversely, suppose that one of the conditions (i), (ii) or (iii) holds. Note that
(i) is equivalent to (ii) by reordering m; = my_;41 for every i (1 <14 < k). Hence,
it is sufficient to consider the case in which one of (i) or (iii) holds. We conclude
the proof by explicit constructions of the corresponding forcing sequences.

If the condition (i) holds, i.e., m; > 2 for all odd @ (1 < i < k), then on the basis
of the assumptions on wu; and v;, we obtain a forcing sequence

U1 — V2,U3 — V4, ...,Uk—1 — Vg,V — Vk—1,Vfg—2 — Vp—3,...,V2 — V1.

This implies that S is a zero forcing set in G, which gives Z(G) =n — k.
If (iii) holds, then we obtain a forcing sequence

UL —> V2, U3 —> V4y - ooy Us —7 Us41, Uk —7 Vg—1, Ug—2 —2 Vk—3, .-, Us43 —7 VUs42,
Vs41 — Vg, Vs—1 — Vg—2y...,02 — V1, Vs42 — Vs+3,VUs+4 — Vs45y+++yVk—1 — Vk.
This implies that S is a zero forcing set in G, along with Z(G) =n — k. O
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We proceed with the next proof.

Proof of Theorem [I.2] An expanded cycle G = Cyy, m,....m, contains an induced
cycle of length k. By Lemma we have Z(G) < n — k + 2. This, together with
Lemma 2.4 and (L.1]), immediately gives n —k < Z(G) <n —k+2.

In what follows, we improve the lower bound on Z(G) to the bound given in
the formulation of the theorem. Let S be a zero forcing set in G with |S| = Z(G).
Observe that for 1 < i < k, the vertices in V(O,y,)\ S share the same neighbourhood
in G. Using this, by Lemma we obtain 0 < |[V(O,,,) \ S| <1 for each i. Now,
assuming that Z(G) = n — k, we obtain |[V(O,,,) \ S| = 1 for each i. Thus,
every vertex in S has exactly two neighbours outside S, which implies S = F(Z).
From S & V(G), we have F(S) & V(G), contradicting F(S) = V(G). Hence,
n—k+1<Z(G), as desired.

Therefore, there are exactly two possibilities for Z(G), and we need to decide
whether each of them occurs.

Suppose that Z(G) = n —k + 1, and let V(G) \ S = {v1,v2,...,v5k-1}. The
inequality |V (Om,;) \ Z| <1 (for each i) allows us to assume that u; € V(Op,,) NS
(if my >2) and v; € V(Op,) \ S for 1 <i <k —1.

We first show that £ must be odd. Namely, if k is even and m; > 2 holds for each
odd ¢ (1 < i < k), then by applying the forces u; — v; 41 for i € {1,3,...,k—3}, we
obtain F(S) = S U {va,v4,...,v5_2}, but this contradicts F(S) = V(G). Hence,
the set I = {i : m; =1, i is odd} is non-empty. By fixing ¢ and ¢ to be the smallest
and the largest element of I, respectively, we obtain F(S) = SU{va,v4,...,v-1}U
{Vk—2,Vk—4,...,v¢41}. In particular, v; € F(S), which is impossible. Hence, k is
odd.

In what follows, we assume that there exist an odd ¢ and an even j such that
m; = m; = 1. We can do this because, if this assumption does not hold, then we
would have m; > 2 for either all even 4 or all odd ¢, which, together with the part
already proved for k, makes the statement of the theorem.

As before, let ¢ be the smallest odd integer and ¢ the largest even integer such
that my = my; = 1. This implies that mq, ms,...,me_2 > 2 and my4o, Miyq, ...,
my—1 > 2. Thus, we have u; — v;4q for every i € {1,3,...,¢ — 2} and u; —
vj_q for every j € {k—1,k—3,...,t +2}. Let S1 = SU{va,v4,..., 001} U
{41, V43, ..., Uk—2}. We have S C F(S).

If t > ¢, then every vertex of S7 has at least two neighbours outside .S7, which
implies S1 = F(S). However, this contradicts F(S) = V(G), because vg,vs & Sy.
Therefore, we have t < ¢ and, by the choice of ¢ and ¢, 3 < ¢ < k — 2 and
2 <t < k-3, giving my,ms,...,mg_o > 2 and me41, Mpy3,...,mp—1 > 2. By
reordering the indices from {1,2,...,k} to {¢,¢+1,...,k,1,2,... k—1}, we obtain
m; > 2 for each even i, which concludes this part of the proof.

Suppose now that k is odd and m; > 2 holds for each i. By taking v; € V(O ),
for 1 <i < k—1, we create the set Sop = V(G) \ {v1,v2,...,v5_1}. For each even i,
we may also take u; € V(Op,,) N S,u; # v;, as we have m; > 2. This leads to the
forcing sequence

Uk—1 — Vp—2,Uk—3 —> Vk—4,...,U2 —> V1,V] —7> V2,V3 —> V4, ..., V-2 —> Vk—1.
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Therefore, Sy is a zero forcing set in G, and hence Z(G) < n—k+ 1. Together with
the already obtained inequality n — k + 1 < Z(G), this leads to Z(G) =n — k + 1,
and we are done. (]

We now prove a corollary, actually a known result. For a graph G, we say that
a vertex dominates a subset of V(G) if it is adjacent to every vertex of this subset.

Proof of Corollary [L3] If G € {P1 1my,ms,1s P1,1,m1,ms> C1,1,1,me,ms @ M1, ma > 1},
then Z(G) = n — 3 by Theorems [1.1| and

In the remainder of the proof, we assume that Z(G) = n—3. Lemma [2.1|ensures
that G is Ps-free. Together with the assumption that G is triangle-free, this yields
that G is either bipartite or contains Cy as an induced subgraph.

Case 1: G is bipartite. This immediately implies that G is not Ci 1,1,m,,m,. Sup-
pose that

G ¢ {Pl,ml,mz,lvpl,l,ml,mg imyp,mo > 1}» (3.1)

and let X and Y be the colour classes of G. Also, let X’ C X be the set of vertices
that do not dominate Y and Y’ C Y the set of vertices that do not dominate X.

Let 1 = |X'], s = |Y'|, t1 = | X \ X'| and to = |[Y \ Y'|. If either s; = 0
or s = 0, then G is a complete bipartite graph Ky, ;, with Z(G) # n — 3, which
contradicts the initial assumption. Hence, s1, so > 1. However, we claim a stronger
restriction: s1,s2 > 2. Namely, if s = 1, then G = Py 4, 4,5, by definition of Y.
Together with , this leads to s3 > 2 and t; > 2. By Theorem we have
Z(G) = Z(P1ty,1,,5,) = n — 4, which is impossible. The case sy = 1 is symmetric,
and so s, So > 2, as claimed.

Let X' = {zy,29,...,25,} and Y(x;) = Y \ N(z;) for 1 < i < s1. By defini-
tion of X', we have Y (z;) # (. Since G is connected, we also have Y (z;) # Y.
If V(1) = Y(x2) = --- = Y(z5,), then Y’ = Y(x1), and so G = Ps, 15.41.5,
(with s1,82 > 2). By employing Theorem 1.1} we obtain Z(G) = n — 4, which
is a contradiction. Thus there exist two vertices in X', say x1 and x5, such that
Y(z1) # Y(22). U Y(21) € Y(x2) and Y (22) € Y (x1), then there are two vertices
y1,Y2 € Y, such that y; € N(z1)\N(z2) and y2 € N(z2)\N(z1). This tells us that
G contains an induced path Py, k > 5, with 1,22, y1,y2 € V(Pg). By Lemma
we have Z(G) < n — 4, a contradiction as before.

By symmetry, we may assume that ) # Y(z1) C Y(z2) C Y. Let y; € Y(z1),
y2 € Y(x2) \ Y(z1) = N(z1) \ N(z2) and y3 € Y \ Y(z2) = N(z2). Since G is
connected, there exists x3 € X \ {1, 22} such that x3 is adjacent to y;. We set
S =V(G)\{x1,x3,y2,y3}. Note that the set {x1,z2,y1,y2} induces the edge x1ys.
By applying the forces

Y1 — T3, T2 — Y3, Y3 — 1, L1 — Y2,

we obtain that S serves as a zero forcing set in G, and so Z(G) < n — 4. This
contradiction denies (3.1]) and concludes this case.

Case 2: G contains C5. In this case, (3.1) holds true, and we need to show that
G is isomorphic to Cy1,1,m;,m,- Let C be an induced cycle of G with V(C) =
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{v1,v2,...,v5} and S;(C) = {x € V(G)\V(C) : Na(z) NV (C) = Ng(v;) NV (C)}
for 1 <4 <5.
We claim that

5
V(G)\V(C) = si(0). (3-2)
i=1

Indeed, by taking x € V(G)\ V(C), since G is triangle-free and Ps-free, we deduce
that = is adjacent to exactly two non-adjacent vertices v;, vy of C, that is, z €
S;(C'), where v; is the common neighbour of v; and vy in C.

We proceed with the following structural examinations. First, since G is triangle-
free, every S;(C) is an independent set. Secondly, by taking any two vertices
u; € S;(C) and u; € S;(C) for ¢ # j, we arrive at the following implications:
vv; € E(G) = wu; € E(G) (otherwise, {s;,s;} UV(C) \ {v;,v,} induces Ps)
and v;v; € E(G) = u,u; ¢ E(G) (otherwise, there exists a triangle Cs : vgs;s;vy,
where vy, is the unique common neighbour of v; and v; in C).

Now, the previous implications, together with and the fact that S;(C) is
an independent set for each 7, give the structure of G, i.e., lead to the conclusion
that G is an expanded cycle. By Theorem @ we have G = C11,1,m1,m.,- O

It remains to prove the result on cycle-spliced graphs.

Proof of Theorem [I.4. We use the induction on ¢(G). If ¢(G) = 1, then G is a
cycle, and so Z(G) = 2 = ¢(G) + 1. Next, we set ¢ = ¢(G) > 2 and suppose
that the result holds for every cycle-spliced graph with cyclomatic number ¢ — 1.
Consider a pendant block C' of (G, which contains exactly one cut-vertex u;. Let
G1 be a subgraph of G induced by (G\V(C)) U {u1}, and let C = uqug - - - upu;.

We have ¢(G1) = ¢ — 1 and, by the induction hypothesis, there exists a zero
forcing set S7 of Gy with |S1| = ¢. Then S = S; U {uz} is a zero forcing set of G,
which implies Z(G) < ¢+ 1.

We next show that Z(G) > ¢+ 1. Let Sz be a minimum zero forcing set of G.
Since Ng(u1) NV (C) = {ug,u,}, we have 1 < |SoNV(C)| < 2.

If |So N V(C)| = 1, then uy & Sa, and so Se \ V(C) is a zero forcing set of Gi.
Then we have ¢ = Z(G1) < |S2| — 1, that is, Z(G) > ¢+ 1.

If |So N V(C)| = 2, then (S2 \ V(C)) U {u1} is a zero forcing set of Gy. Hence,
¢ = Z(G1) < |Ss| — 1, which implies Z(G) > ¢ + 1. O
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