CUESTIONES ELEMENTALES RESUELTAS

No. 9. Si α_1 , α_2 , ..., α_n son los términos de una progresión armónica, demostrar que: $\sum_{r=1}^{n} d^{r-1}Cn$, r=n α_1 ; siendo d la razón de la progresión aritmética y Cn, r los productos de las α tomadas de r en r.

Si desarrollamos el siguiente producto de binomios:

$$(\mathbf{1} + \alpha_1 d) (\mathbf{1} + \alpha_2 d) \dots (\mathbf{1} + \alpha_n d) = \mathbf{1} + d (\alpha_1 + \alpha_2 + \dots + \alpha_n) + d^2 (\alpha_1 \alpha_2 + \dots + \alpha_{n-1} \alpha_n) + \dots$$

 $+d^n \alpha_1 \alpha_2 \dots \alpha_n$ es la sumatoria expresada en el primer miembro, aumentada en 1 y multiplicada por d; o sea: $\sum_{r=1}^n d^{r-1} C n, r = \frac{(1+\alpha_1 d) (1+\alpha_2 d) \dots (1+\alpha_n d)-1}{d}$.

Pero siendo $\alpha_1, \alpha_2, \ldots, \alpha_n$ una progresión armónica, es $\frac{\mathbf{I}}{\alpha_1}$; $\frac{\mathbf{I}}{\alpha_2}$; $\ldots \frac{\mathbf{I}}{\alpha_n}$ una progresión aritmética de razón d; luego un término cualquiera $\frac{\mathbf{I}}{\alpha_i}$ se obtiene mediante el algoritmo siguiente:

$$\frac{\mathbf{I}}{\alpha_i} = \frac{\mathbf{I}}{\alpha_{i-1}} + d \cdot \cdot \cdot \frac{\mathbf{I}}{\alpha_i} = \frac{\mathbf{I} + d \alpha_{i-1}}{\alpha_{i-1}} \cdot \cdot \cdot (\mathbf{I} + d \alpha_{i-1}) = \frac{\alpha_{i-1}}{\alpha_i} \quad (\mathbf{I}) \quad \mathbf{y}$$

además resulta:
$$\frac{\mathbf{I}}{\alpha_n} = \frac{\mathbf{I}}{\alpha_1} + (n-\mathbf{I}) d \cdot \cdot \cdot \alpha_n = \frac{\alpha_1}{\mathbf{I} + (n-\mathbf{I}) d \alpha_1} (2);$$

luego, sustituyendo los binomios por los valores dados en (1), resulta:

$$\sum_{r=1}^{n} d^{r-1} C n, r = \frac{\frac{\alpha_{1}}{\alpha_{2}} \cdot \frac{\alpha_{2}}{\alpha_{3}} \cdot \dots \cdot \frac{\alpha_{n-1}}{\alpha_{n}} (\mathbf{1} + \alpha_{n} d) - \mathbf{1}}{d} = \frac{\mathbf{I}}{d} \left[\frac{\alpha_{1}}{\alpha_{n}} (\mathbf{1} + \alpha_{n} d) - \mathbf{I} \right]$$

y sustituyendo α_n por el valor dado en (2):

$$\begin{split} \sum_{r=1}^{n} d^{r-1} C \, n, r &= \frac{\mathbf{I}}{d} \left[\left(\mathbf{I} + \alpha_{1} \left(n - \mathbf{I} \right) \, d \right) \left(\mathbf{I} + \frac{\alpha_{1} \, d}{\mathbf{I} + \left(n - \mathbf{I} \right) \, d \, \alpha_{1}} \right) \stackrel{\cdot}{\rightharpoonup} \mathbf{I} \right] = \\ &= \frac{\mathbf{I}}{d} \left(\mathbf{I} + \alpha_{1} \left(n - \mathbf{I} \right) d + \alpha_{1} \, d - \mathbf{I} \right) \cdot \cdot . \end{split}$$

$$\sum_{r=1}^{n} d^{r-1} C n, r = n \alpha_1.$$

Juan José Rodríguez
Alumno de 2º Año de Matemáticas del I. N. P. S.