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1.-Let 'a set, S, of distinct positive integers be called a h
partilionable set, or shortly a m-set, if it possesses a basis, K, of .
unique restricted partitions, in the following sense: S consists
of all integers representable as sums of distinct elements of a
sequence,

1 K: By<ky<hy<.., ' (ko=1),

of posiﬁve integers which has: the property that a relation of
the form . '

N O T . K=k +K,+...+ k;’b,
v . )
where I/, <I/y<... and K’ <k”,<... are elements of K,/
holds only when = ‘

=k, K,=k's, ..., kK, =k"; a=b..

Every sequence K having the latter property .determines a 7
set S, having K as a basis. Conversely, if a n-set S is given, its
basis K is uniquely determined by S. The latter fact can readily
be verified by induction, viz., by first characterizing k,, and then,
if Jegoy.., K in (1) ape known, kj,, in terins of S alone. A
/ ’ formal - rewording of this uniqueness proof can be based on the
generaling relation

. (o o] [o o]
(2) : 14 XZs,zn=TI(1+2 ), |z|<1,
ne=l =0 :
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where s, denotes the characteristic function of S, i.e.,
(8) . s,=1 ors,=0 according as n is or is not in S.

It is clear that a given sét of integers k; is a basis, K, if ]
and only if the corresponding product (2) leads to a power series
(2) in which no coefficient turns out to have a value-: distinct !
from 0 and 1, and that the set S generated by K is then defined

by (8). This description of the situation makes clear enough the
substantially implicit nature of the requirements involved.

Strictly speaking, (2) ‘helds only if the sequence (1) is infi- |
nite, since otherwise the upper limit of the product in (2) must- ‘
(whereas the upper limit of the sum in (2) may, but need not)
be replaced by a finite limit. It is however clear that K is a

. finite set if and only if S is,.and the fqllowmg considerations
deal with an asymptotic question concerning infinite mates K, S.
rather than with the question of enumeration presented by the
case of finite mates K, S.

2.-1f S is any set of distinct positive integers, let N(n)
dcnole the number of those elements of S which do nol exceed
n; so that ' S t

(4) . N(n)/n=(s;+. .. +sa)/n,

'if s, is defined by (3). If (4) tends, as n— oo, to-a limit, then
S is said to be measurable («in relative measure»), and, the limit,.
which will be denoted by |S|, is called the measure of S. It is
clear from (4) and (3) that, if

, (5) |S|=lim (s;4-. . 4s,)/n L
: oo | “ '.
igxists, then \ : .(' - o - . B
®, N ENESS
o Smcc;, $, =0, it follows from a Tauberian theorem: of Hardy

and Littlewood (cf. reference [1] at the end of this paper) that
(5) is equivalent to




.

01— . e
O |S|=lim (1—r) Zs,rm,  (0<r<l).
! r~>1 ne=] ~ N :

By «equivalence» is meant that the existencé of either of the
limits (5), (7) implies the existence and the identity of both
limits. ‘ .

If this criterion is applied to the case of a m-set S; it-fol-
lows that S is measurable, and has the measure |S|, if and only
if the basis, (1), of S is such as to lead to the existence of the
limit
BN

(8) tim £(r) =[S,
where .
© Fr) =L (1t )/ (1),

This is clear from (2) and (7), if recourse is had to Eulers
identity ' '

(10) - Za=II(14+22), [z<1
=0

() J

(which, in view of the criterion (2), means that the set of all
positive integers is a m-set, with

1y 1,24,8,...
as basis).

3.-1It is clear that, if
(12) kr<l*<k*<...

is a subsequence of a sequence (1) and if (1) is a basis, then
(12) is a basis and generates a m-set, S*, contained in the m-set,
S, generated by (1). Furthermore, if S is measurable, -then -S*
is measurable and has the measure

A

(13) |8%|={Sl/2h or |S*|=0

according as just a finite number or an infinity of elements of
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(L)’ are missing in (12), the exponent h in (13) being the num-
ber of those k-values which do not occur in (12). In fact, the’
truth of (13) is readily verified from the criterion (8), from the
definition (9) and from the identity which results if a finite
number of factors are omitted on the right of (10).

Let a K be called a 0-basis if the characteristic function, s,,,
of the m-set, S, generated by K satisfies

(14). o Sy+-..+s,=o(n) (i.e., |S|=0).

For instance, (1) is a O-basis if k,=3r. If it were true that
every basis which is not a 0-basis is a subsequence, (12), of
Euler’s 'basis, (11), it would follow from (13) that every m-sel:
1s measurable, those n-sets which are not of measure 0 having
the measure 1/2h, where h is a certain positive integer (in fact,
the basis (11) generates all positive integers, which form a set
of measure 1). But the hypothesis of this conclusion is false.
For, if 9 is any value contained in the interval 0 <9 <1 (hence,
a value not necessarily of the form 1/2h), it is not difficult to
construct a basis K=Kg corresponding to which the n-set,
S=_8j, is measurable and has the preassigned & as ils measure,
|Ss - '

It will remain undecided whether every or nol every m-sel;
is measurable. What ,will be proved is a sufficient criterion,
along .with an explicit condition which can be obtained as a
corollar_y of this criterion, for the measurability of a n-set.

4 The criterion in question is «Abelian» in nature; it sla—

tes that; if (1) is a basis for which the Limit ;
(156) ‘ lim 2n/k,,
. n—>00

exiss, then the n-set generated by (1) is measurable, and its
measure is the limit (15). : 4

In view of the criterion (8), this- assertion is equ1valent tor
the statement that, if the e\nstence of (15) is assumed, then the
function (9) must tend, as r—1, to a limit, and that the latter
has the same value as (15). Hence, more than the italicized
assertion will be proved iff it is shown that, whether the limits
(8), (15) do or do not exist, the function (9) must satisfy the
mequahtlos , . !
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(16) . liminf 2n/lcn.§ liminf f(r),  limsup f(r) <limsup 27/k,.
n-»00 >l C ol n-sc0
Pui |
an . fal) =T ), (r<1);
so that fy=F, by (9) Since, when n is fixed,

!

(18) (14r%)/(1472") — 1 as r—1,

it is clear that
(19) I lim sup f(r) =1lim sup f,,,(r)
) r1 ra1t

holds for every fixed m. On the other hand; if 8 denotes the
upper limit on the right of the second of the inequalities (16),
then either B=oo, in which case the second . of the’ assertions
(16) is trivial, or else there belongs to every €>>0 an m having
the .property that ‘ o

\ k, > 2r/(B+¢€) whenever n=m=m,.

\

Sincd 0 <r<1, this means that, if g=gq. is defined By
(21) qﬁ+e$r, so that Ol<q<1.‘

then .

ko' g2 wh —
r‘is<<qg* whenever n>m=m,.

In view of (17), the last inequality ﬁnplies that

lim sup f,,(r). < limsup T (14q2" ) /(142" ),
r=1 r>l  npe=m

where g=¢q(r) —1 as.r — 1, by (21). Since, corresponding to
(18), ‘ -

(14¢2")/(14+r2") =1 as r— 1’

14
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holds for every fixed n, it follows that

lim sup f,,(r) < lim sup IT (14q2" ) /(1+12").
rod r>1  ne=l

v

Hence, if (19) is applied on the left, and (10) twice on the right,\
N 1) o)
lim sup f(r) < lim sup = qr/Zn,
rol r>1  peml n=l
Since, as r—1, .
© | = ‘ -
= qr/Z m e (1-1)/(1=g) — B e,
n=al Bum] ' .

by (21), it follows that

. lim sup f(r) <B +¢, and so limsup f(r) <B.
r->-00 r>o

This proves the -second ofi the inequalities (16) and the first is
proved in the same way.

It is clear that the existence and the non-vanishing of the

hmlt (15) imply that

- (22) ki /k,—2 as n—o.

1t follows therefore from the italicized assertion, Just proved, that,
if (1) is a basis generating a m-set, S, which is measurable by
virtue of the existence of (15), then the basis must satisfy (22)

unless |S|=0.

5.-The (I, k”)-requirement, specifieci after (1), is obvious-
ly fulfilled by any sequence of positive integers ko, k;, . .. satis-
fying

(23) ki >ko+ ...k, for n=0,1,...
Since ky,=1, the inequalities

(24) o k,=2n, where n=0,1,2,.

——

>

......
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are necessary for (23). In the inequalities (24), the sign of equa-
lity must fail to hold for one n at least, unless (1) is the sequence
(11), the basis of all positive integers. Thus (11) appears as the
(unique) extremal case of all bases satisfying (23).

A corollary of the italicized criterion is that, if ky, Ky, ..
is a sequence. of positive integers satisfying (23), then it is a
basis generating a measurable n-set. In order to conclude this, it
is. sufficient to ascertain that the limit -(15) must exist whenever
(23) is satisfied. But this can be assured by, even though it is not
explicitly contained in, the arguments applied by R. Salem and
D. C: Spencer (cf. reference [2] below).

Since (23) implies the existence of the limit (15), it follows
that, if a basis satisfies (23), then (22) must hold unless the

n-set is of measure 0. Nevertheless, it is-easy to see that, corres-

ponding to every 9 in the interval 0<% <1, there exists a basis
satisfying (23) and generating a (measurable) m-set the measure
of which is 9. 4 !

The Johns Hopkins University.
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