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NEW REPRESENTATIONS ' OF WHITTAKER'S
CONFLUENT HYPEBGEOMETRIC' FUNCTION

por J. BROMBERG .
N. York

By substituting an Euler integral for an equivalent Beta
function in the summand of the conventional series. for function
My,m(x); a generalization of the Poisson type integral repre-
sentation of cylindrical and associated functions is obtained,
which further, by expressing it as a series of known integrals
of this type, yields an expansion of Whittaker’s function in
terms of Bessel and Struve functions of- increasing orders. -

1. Integral Representations. Whittaker's solution My, ()
of the differential equation

Y [ YA+ e+ (1/A—m?) /2]y =0, (1)
whose classic expression (1) may be written as
My () =[I' @2m+1) /I'(—k+m+1/2)]. gmtl/2,

e-ira | 2 {[I'(— ket m+1/2+n) L(2m+1+n)].onl}, (2)

n—O.l

- appears, after multiplying, in (2), th esummand and dividing

the constant factor by I'(k+m+1/2), as

My, () = Gy wmH1/2 g=1/22

Z[B(—k+m+1/24n, k+m41/2).an/nl], (2a)

n=0,1

) [1], § 161 (p. 337, bottom), The bracketed figures in these foot-
notes refer to the order numbers in the list of references at the end of
the text.
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where, as in the rest of the present calculation,
Cm=1/B(—k+m+1/2, k4+m+1/2) (3)

and. the B-functions have the.usual meaning -
o . : :
B(p.q)=[1'(p) -I'(9)] /I (p+9) = tr-2 (1—t)2t (2). (4)
o 0

We substitute in (2a) the series = [(—1/2%)¢/sl] for e71/22,
. n=0,1

traﬁSform the .('ioublie, series thus obtained by Cauchy’s rule,
with N=n+s, and introduce the unit factor N!/N| into the
summand :

M;f,m(w)'=0k.m’x’"+1/2 Z [(2N/N1). Z(UV L/[(N—s)Is!]} .

n=0,1
(12 Bl bt L2+ Nes, b mes L2)
According to (4) and interchanging summation and inte-

gration we have, with the usual notation for the binomial coef-
ficient appearing in the braces,

Miem() =Gy, ma:m+1/2 Z ((:z:’V/Nl)

{ > [( As’ ) (— 1/2/t>s]} . Aletm=3/26N (1—g)letm1/2 d),
d s=0,1

By the binomial formula the factor in braces is equivalent to
[1—1/(2t)]V, and so, with :

E=1/2z,

Mion() = G a2 Z {[(— 1/22)N/N1]
N=0,1

(@) [1], §¢ 12.4, 12.41 (pp. 258-5).
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1
] (1—-2t)¥, ‘t5k+m—1/2" (1—t)tm=1/2 g} =
=2+ G, wm+1/22{[( g)N/Nl]
) N=ot' '

L

f (1—2) [t(l—t)]i’f+m-1/2 [1F (1—2t)] ok g} .

In our range of integration it is |1—2t| <1 and the bino-
mial formula may be applied to the T 2k—th power before
dt (except, possibly, at a terminus, but we ghall ignore, tem-
porarily, this singularity):

Miom(2) =222k Gy, ametti2 2 ([(—E)V/N1]

N—o.,i

2 (e (72 f (1) oot (120 de) ) (5)

p=0,1

Denoting the value of the integral in (5) by A, we have,
with t=sin2,

1/2n
A= [ (sin b . cos ) HHktm=1/) cosV+p (2) sin 2 . dp =
0

1/2n .
— 22(Fl—m) f sin2(Ekim) (20) . cosV+p (20) . d(2b) =
0 .

. .
— 92(Fl—m) f sin2Ektm) o . cos N4p o dp.

In the range of our last integration sin¢ is symmetrical
and cos ¢ is antisymmetrical with respect to the ordinate through
the middle of the range. Therefore:
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=/2

for (N+1) odd it is [=— [and A=0;
n/2 0
T n/2
for (N+p) even it is f:—l—fand A=

n/2 0

/2
— 92(Fh—m}+1 | / cos2lElk+m+1/2(N+p)] Q. tan2(Lk+m) p.do=
0

= 22 Fem) I (4 k +m+1/2) . I[1/2 (N + p) +1/2]
A Ek+m+14+1/2(N+p)] (%)
Applying to the second Gamma-function Legendre’s dup-
lication formula (%)
F(z4+1/2) =nt/2, 271 ' (22) /T" (2), (6)
A = 92(Fk—m) 1/2 {I'(+k+m+1/2)
[L[£k+m+1+1/2(N+p)]}.
e (VL) RNER]Y . ()
We have now to substitute into (5) the value of the integral
A from (7) for the terms with (N <4 p) even and to drop there
the terms with (N4 p) odd; as, consequently, (—1)N (F-1)p=

(—1)Mp (£1)p=(41)? and as also [(N+p)!/NI]EN="
op (EN+p)/0€p, we can write:

© o o0 o0
Mk,m(.’l;) — 92-2m 71/2 Clc,m (Eletm+1/2) | pme1/2 [(Z >+ > Z)
N=0,2 p=0,2 ¥=1,3 p=1,8

T ok, op (1/2 )Nt
(0 ) g (R T e 207 }2])
8

After another application of Cauchy’s rule, with N4p=M,

(*) [2] tab. 42, N° 6 (p. 71) and tab. 17, N°¢ 19 (p 44), with a con-
dition of validity to our 4-% - m<C0, which is insufficient, as will he
seen; [11], p. 164, (11).

(4 [1], § 1215 (p. 240).
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the summation begomes

© M-1
G x4+ 3 D
M=02p=02 M=2,4 p=13 p

0F {(LREVL(L/2M) I T (kK m o 141/ MY OB = 2 ()

M=0,2 p=0,1

with the understanding, originally, that 0=<p=<M; but, as, for

M ®
p>M, it is Op (EM)/0Ep=0, we may replace = by =. With
p=0,1 p—O,‘i
2M used for M in both the summation symbol and the summand,
our sum becomes now

z = (D (o)

M=0,1 p=0,1
0p {(1/2E)M/[MIT (L k4 m + 1+ M)]} /0%),

and, because of the well-known d_efinitiori of the modified
Bessel function

I(z)=mn12[(T(v+1/2)} (1/22)¥

f [22 (4 7 cos §) ] sin2v § d9 (5) (8) =

= X {(1/22)%0[nI T (v +1+n)]} (7) %)

n=0,1

we may now rewrite (8) as

——

) [31, § 3.71, (9) (p. 79). _
(®) Choice of gsign independent of choice between exp. and cosh;
o Afom om  w
if cosh is used, 1t1sf—2f f zfandf 2/
Yo © —2 9

) 131, § 37, (2) (. T7).

(®) Thus most of the beginning of the present article down to this point
could haye been dropped; we keep it  becanse of a more general heuristie
value possibly-inherent to the used method of replacing a Beta fumetivn by
its integral representation.
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My m(z) =20 m 2 G, T (£ e+ m+1/2) amtt/2:

S{(+1)p ﬁ 2k 3 00 [T rm(E)/ 2 a>ik+m]/oap} (1)

p=0,1

It  may also be written symbolically:

Mk.m(w) 2712y ' (L ke +m +1/2) (1/2 E)mt1/2
(14 0/08) k[l ;Q:h-l-m(E>/ (1/2E)*ktm]. (11)

We substitute into (10) or (11), for the Bessel function,
its Poisson type integral representation. (9), perform the dif-
ferentiation 0 /0% behind the integration symbol, interchange
summation and integration and cancel constants, then use the
binomial formula:

M,‘,m'(w) = 2 Clc,m<1/2 E)m+1/2

f {% [($2 ) cosp $} [Bxp(iEcos%)]51n2(=‘=f¢+m’&da—-
oP :

=0,1

=2 Ck’m(l/‘?, E)m+1/2

f (14 cos 9). T2k '.'exp:(i £ cos 9) . sin2(Ekm) § df —
4 .
=2 Clc:m.<1/2 E)”.H'im

f[exp(i €cos 9)] tant2k (1/29) .sin?m & dd =  (12)
0

= 2 Ckrm<1/2 E>m+1/2

f (258 -k [€ cos -+ 2k Log tan(1/29) ]} )sinim & db (5). (13)

Instead of investigating, at each application, the legality
of using the binomial formula and of interchanging integration
with summation or differentiation, it is simpler -t0 check ‘our
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main result (12), and to obtain simultaneously the condition of
its validity, by substituting it into the original equation (1).
A still shorter way (8) is suggested by .the sumlarrty of formula
(12), once it has been derived, to a formula given-by’ Nielsen:

B[1/2(p+v)+1,1/2(p—v)+1]=27

zn 1/2n
j tan¥ o . sinPt (2m) . do=2 ftan* . (1/2sin 200)P+1 do (9) (14)

valid, acoording to the same authority (1), for
R(ptv+1)>—1. (15)

In order to apply (14) (which is, incidentally, a simple corollary
from our (4)) to the B—funct1on in (2a), we assume

12(ptv)+1=n+m—Lk+1/2 and 1/2(p + v)—l—l_m-|-k—|—1/2
whenqe p=n+2m—1 and v=+4(n—2k); n=0, 1,2..
Condition (15) of validity now splits ‘into: 2n+ ‘R (2m—2k)>—1

and ‘R(2m +2k) >—1; these two conditions reduce, for the
critical ‘value n=0, to

o R(Ek+m)>1/2, (16)
or, for the case that both % and m are real,
—|k| +m>—1/2.

(For My, (), the second in the fundamental systen of sol-
utions of (1), the condition of validity becomes even more
strmgent C)Q(j:k—m)> 1/2, or —|k|—m>—1/2).

"As the series in (2a) converges uniformly, 'we may inter-
change in it summation and integration (11) and rewritte it as

(*) [4], p. 879.
(*) . [4], p. 878, eq. Ty
) [1], § 4.7 (p. 78-9).
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My (@) =2 Gy wmH1/2 =20

1/2n o : '
[ 1ZB{(1/25in 20)wm tan 2020 . 27/} doo =
o nr=01

— 2 Ck,m wm+1/2 6—1/2::;

1/2n . -
f (Z{[(3 ©)?. 2]/nt}) (1/2sin 20)2m. tan TP o . deo =

0 n=i 0,

1/2n
= Gy WHI2 g1/20 f {exp[1/2 2(1 T cos 23) |}
0

(1/2 sin 200)2m tan_:F_2k © d(2m) =2-2m G, gt/
f [exp(F-1/2 % cos $)]tanT2k (1/29) . sin2m & d9,
° o . |

which is identical with (12), from which also (10) and (11)
could now be easily derived by reversing the procedure used
above.

It is natural to substitute in (13) 1/27-+9 for & and thus
to obtain

Mim(2) =2 Cim(1/2 E)mi12
1/2n
J ({35 {F{Esin &’ — 2k log tan(1/4 1+ 1/29") ]} ) cosim & d9’ (5),.
-1/2n .

in order to conveniently introduce the anti-gudermannian
p=gd-19'=logtan(l/4n+41/2 ¢') (12); (17)

with gd-1(—1/2n)=—00; gd=1 (1/27) =00 ; sin 9’ =tanh ¢ (13);
cos §' =1/cosh ¢ (18); d9%’'=dep/cosh ¢ (14), it is

() [5], Addenda, § 3, 2nd line (p. 58).
(*®) [5], Addenda, § 13, 3rd line (p. 58).
(%) [5], Addenda, § 9, last line (p. 56).



M (%) =2 Gy (1/2 €)1/

/ (53 (8 tanh @2k @)} coshrtnt g d (%) (). (18)

For k=0 equation (1) degenerates into one of the standard
forms of the Bessel equation, solyed by a Bessel function (of
an imaginary argument, or modified) (16). From (11), and using
later also (6), we obtain the relation

Mo n(z)=2712Cy,, T (m+1/2). (1/2E)mH2 I (8)/(1/2E)m=
=2wmI'(m41).212.1,(1/2%), (19)
which is essentially identical with the «second Kummer form-

ula»17) and also otherwise well-know (18) But from (18) we
would have now

Mo (8) =2 Com(1/2EymitR f [£28:( & tanh )] cosh-2m—1 ¢ dep (%),

and by comparing this with (19), we obtain
L(a) =[x L (v + 1/2)] (1/22)"

[T (e etanh )] coshtv-i g dp (9); (20)

this could have been derived also directly from (9) by intro-
ducing, again, for &, first 9’ and then the anti-gudermannian
¢, according to (17). Hyperbohc, instead of tr1gonomzetnc func-
tions could be used, with occasmnal advantage, in the Poisson
type mtegral representations of numerous other Bessel and asso-
ciated functions (1%). We single out for this treatment, in view

*(*) A ‘contact (in the ease of m = 0) :appears possible ‘with Sharpe’s
integral: [3], § 4.48, (2) (p. 105).

(*®) [5], VIII, § 7, 3rd case (p. 146).

S () [1], § 1611, (II) (p. 838).

(®) [1], § 17.212 (p. 360- 1), [6], eq. (1,12) (p. 129); [10], C 227'3
(p. 474); follows also from [7], § 18.43, title (p. 276)

(*) An mtegral representatlon “close enough to this type seems to have
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of a later utilization, the modified Struve funetion = -

; C1/2n .
L(z)= [nm T (v4+1/2) (12 2" [sinh(z cos ) v d§ =
0

= ZO i (1/2 Z)”*”“’P“/[I‘ (p + 3/2) P (vt+p+3/2)] (2°) (21)
p=0,

and write
L,(2)=2[n121"(v+1/2)]71 (1/22)¥

. / sinh(ztan ) . c:o.'sh—?"*—‘1 ¢.do. (22)
0

Also the condition (16) of validity reduces, for k=0, to the
well-known condition R (v) >—1/2 for (9) and (21) and con:
sequently for (20) and (22).

2. Connection of the Whittaker function- with. Bessel and
Struve functions. By the addition theorem for the braced factor
in the integrand of (18),

M m(%) =4 Cin(1/2 E)m4172 [ [cosh(E tanh ) cosh 2k p —
: 0

— sinh(E tanh ) sinh 2/ ¢] cosh—2m~1 ¢ . dp. (23)

In order to transform this expression with the aid of (20) and
(22) it remains to expand cosh 2k ¢ ‘and sinh 2k ¢ into conver-
ging series in powers of cosh ¢. Expansions of this type (for
a non-qualified 2k) are not, probably, available in the literature,
but can be derived when it i3 noticed that

been given for the first time in [8], p. 142, (3), where it suffices to subs-

titute # cosh ¢ for ¢ in order to obtain Jy(z) =2=—l f sin (¢ cosh ¢) @ ¢,

as apparently noticed by the author of [9], p. 294 who, however, de-
rives this formula-also by a, different method. For a few more general formulae
of Mehler’s type see [3], § 6.13 (p. 170) and § 6.2 (p. 180)

(®) [3], § 104, (11) (p. 829).
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v(u) = :_3:?11 (i}* d(-)-sh'_fi‘u);-.; K

where u—ooshcp and ® 1s r.eal satlsfles, ‘in"each case, the dif-
ferential equation

(u2 —1) (d?v/du?) + u(dv/du) — =0 (21)

The two solutions of the iisual type in descending (because
|lu| =1) series df powers of u, w1th the mdeflmfe constant
factors omitted, appear as

coshttp = [4-P (T u, p) coshFe—2p ] =

P=1,2
—Fp B[P H(Fn p) cosh*w-2p <P] (24)
p=0.1
where , ] .
fG.p)=Y (j+2p)/[L' (p+1).1 (j+1+p)] (25)

with the understanding that the equality in (24) is correct also
for p=0, as in this case the first (for p=0) ‘term on the right
side becomes (Fp) I'(Fp)/[L (F p+1)]=1, like on the left
side, and.all other terms vanish on either side. The series in
(24) are convergent by the elementary ratip test for cosh ¢ >1
and by the Raabe test for cosh ¢ =1. The numerical factors
necessary for combining linearly the two series (24) into
ook () are found by causing ¢ to increase beyond any positive
l1m1t with p assumed first positive, then negative, and- compar-

ing the limit values of the series with lim %8 (ue) in each

Q>

case. The resulting formulae are:

b (ne) =201 (—p) Z[4Pf(—p, p) . cosh 2P ] 4-2-4—1 (4-p)
p=0.1

S [4P f(, p) . cosh- -2 ] (26)

p=0,1

It follows from their derivation that they hold only for a Teal

(=) [10], O 2.235 (p. 453).
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and positive ¢; the restriction, however, is merely formal, as
k is unrestricted. ‘

Interchanging summation and integration in the uniformly
converging series (26) (1) and applying to it (23) for u=--2k
and then using (20) and (22),

-]

Mium(2)= 2k Cium(12 B2 [ Z {2-sin f(2k, p)
0o p=0a -
[cosh(& tanh ¢) -+ sinh(E tanh ¢) ] cosh—2k~2m-2p~1 ¢ —
— 922I—2p f(_ 2]9, p)
[cosh(E tanh ¢) — sinh(E tanh ¢)] cosh2*—2m=2p—1 ¢} dp =

— lentl2 Gy, 2 {f(2k, p) a=—24D T (Je -+ .+ 1/2-+ p)
p=0.1
[Litmep(1/2 @) + Ly mip(L/2 2) ] —
— f(—2k, p) s~ T (—k 4+ m+1/2+ p)
[I—Ic-"m'fp(l/z m) - L—-ld-.m'i'p(l/z w)]} . (27)

It is possible to derive this result from (12), instead of
from (18), by using Poisson integrals of the original type and
certain formulas partly appearing in handbooks (22), where.
however, no hints as to their derivation or further authorities
are given. By retaining the %% functions alone in the brac-
kets of (27) we obtain the part of M,,,(z) which is g3 in k.
Further, the factors in (27) clearly split into two groups of
functions of which one does and the other does not contain m.
We finally represent: the Whittaker function in the formally
simple shape

My (z) =k Cpppy Z [K(k—1/2+ p, p, &) . MO iy n(1/2) —

p=0,1
—K(—k—1/2+p, p,x) . M®_pipyp(1/22)], (28)
where

Mﬂv;ig)z) = w1 (v 4 1/2) [L(2) & Lo(2)] (%) =

(*) [11], p. 265, (9). '

(®) The essential pait of My @ (2) is known in the literature: [3],
§ 13.51, (7) and after (p. 425). In the case of v =0 a relation to Thei-
singer’s integral appears probable: [3], § 10.46 (p. 338).
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1/2x
=2(1/2 z)"fexp(i zcos¥) sin? & df=
0

=2(1/2 z)"fexp(j_—_ ztanh @) cosh—2v-1 g dp =nt/2 T (v+ 1/2).
0 ‘ ‘ -

Z {(4 1)n(1/22)vn/[I(1/2n+1) B(v+1/20+ 1)} 5 (29)

n=0,1
K(v,p,z2)=f(2v+1—2p,p)z¥v= {I'(2v+ 1)/[I‘(pv—l— 1)
I(2v+2-p)) #v= p'l(p_l) v,

for p=0,1,1..., with, for p=0, the convention K(v,0,z)=
=(2v+1)"1zv, and, for p=1, the usual assumption ( 23 )=L

In our case it is easy to see that K(4+k—1/2+4p,p,z)=

=[I'(+2k+2p) /1" (+2k+1+p)]/ [plxi’f—1/2+P] 7= for any
0<x<o, at p7=0; also for p=0 it is K({+k—1/2,0, x)_
= (42k)" 1 gTht1/2:/:00, as it is assumed k/:0.It may. also be
written K(v, p, z) = -s(2v—|—2 psP) - (pz¥)~1, with reference to
the recently introduced special function s(a,b)=I'(a+4b—1)/
[0 (@) F®))=[(a+b 1) Bla, )} (%),

As, from (9) or (20), I,(—z)=(—1)1,(z) and, from (21)
or (22), L,(—z)=—(—1)* L,(z), it follows, as also from the-
last form in (29), that M,)(—z) =(—1)¥ M 2)(z) and M, 2(—z) =
=(—1)¥ M,(z); as, besides, obviously, K(v,p,—z)=(—1)"
K(v,p,z), the well known property M, .(—z)=(—1)mr/2
M_, (2) («Kummer's first formula») (25) is derived in a parti-
cularly easy way from our (28).

For an estimate of the convergence of our result, we first
apply the asymptotic (for z— o) form of the Stirling for-
mula (26): I' (x4 1) ~ (27)1/2 e2gatl/2, to each of the three
‘Gamma-functions in (25) and thus obtain the asymptotic value

¢ [11], p. 296, a), (1); ib., (3), an expansion of s(z,p), for & po-
sitive and integer, into a series with Stirling numbers. A more detailet
theory probably ineluded in the author’s book (maccemble to the" writer)
on ‘‘Special funections’’. :

(*) [1], ¢ 16.11, (I) (p. 338); [10], C 2.273 (p. 474).

(=) [1], § 12,33 (p. 253),
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of 2-/-2rf(j, p):

U (j+2p) ~ (2n)1/2 e=(jt2p-1) ( j+2p— 1)]“‘21"1/2 = (21:)1/2 e-(iep1)
[1+(—1)/(2p) 2P [1 4 (j—1)/(2p) =2 (2p)i*2p—1/2 ~
~ (2r)1/2 ,17-1/2 g2 (2p)1+2p—1/2 F(p+1)~ (2n)1/2e—p ppiiz;
I(j+1+ p) ~ (2m) 24P (j + p)fipif2 =
= (2=)2e~G*P[1 + (j/p)Jp [L + (J/p)]l“”2 pitPH/E ~
(2n)V/2 , 1j+1/2 g=p pj+pHif2; T
2-12P f(j, p) ~171. 271 n-1/2 €0 p—8/2—=1/2 n—1/2 p~8/2 (30)

for j=-2k or any other value.

Now, from the first expression in (27), rewritten in terms
of the original Poisson (trigonometric) integrals, we remove:
such a number N of initial terms that :

R (£k+m)+N>1/2, (81)

especially in the case when condition (16) is not satisfied; the
finite number of removed singular terms may then be immag-
ined to havé been replaced originally by their converging power
series from (29), so that result of the present reasoning will
not be affected. If, now, N increases indefinitely, it follows:
from (30) that ‘if the sum of the remainder of the series ap-
proaches asymptotically, say, S(N), it is

. o 1/2n : :
S(N) =1/2 n=1/2 X {(N +r)-32 [ €122 0o 9 sin2(ekm+N+r) § 49 — -
=01 . 0
1/2n
) .

The moduli of the integrands are finite in the entire range,
because of (32), and so

IS(N)| < 1/271/2 2 {(N 4 r)-4

r=0,1

1/2x
[ f 21z cog 9 sin? Rlk+mtN4r) § 9
0
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72 S - R
/ e~1/22 cos 9 sin> R(-k+m+Nir) § d&]}<

<1/2 ﬂ-m{z: [(N—|—r) 3/2]

r=0,1
"1/2m . .
/ [exp(1/2  cos &) +- exp(—1/2 % cos ¥)]sin $ d¥ = n~1/2

0 0 .
{Z[(N+r)-32)} [ cosh(:1/22cos8)dcoss.
r=0,1

1/2n
The value of our last integral is (1/2 z)~1sinh(1/2x) =

—Z{xﬂn/[223(2n+1)l]} and that of the numerical factor prec-
n=0,1

eding it is finite. Thus the serial part of the expression:in (27)
converges better than the series in the original form (2) of
M,.,(x), which, by applying the Stirling formula to the coef-
ficient I' (—k+m+1/2+n) /T (2m—|—1+n) therein, proves to
approach asymptotically the. series 2 {an/[n| nktmi1/2]}

Function K(vsp, z) conlains, besuies the simple monomml
(pat)t (27), in which p is a positive integer, merely ( )

or s(2v+2—p,p), for whose adequate tabulation the turn may
como some day (28). The tabulation of M,)(z) and M(2)(z), should
require little computational work beyond that involved in tabu-
lating 1,(z) and L,(z) (2?); v should run through integer and
appropriate fractional values; one ‘and the same set of tables
should then suffice for both v=k+m+p and v=—k+m+p.
In the case of —|k|+m <O (of course, k and m are assumed

(*) On existing tables of functions of this type see [7], section 2
(pp. 23-33).

(®) Bee, meanwhile. [12], p. 363-4; ep. [7], § 3.57 (p. 39).

(*) On tabulation of I,(2): [7], §18-1-2 (p. 271-3; 280), and (18] p.
224-88; on that of L, (2): [7], § 20.57 (p. 296, 308).
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real), function K,(z) (3°) would become involved in calciilating
I—py|(2); as for Struve functions With negative paraifieters, they
seem to have aroused no interest in the literature so far; we
hope to turn to this problem in another connection. After the
necessary tabulations are completed, a simple mult1phcat10n of
a few factors would be needed for evaluating a term in the
summand of (28), and we saw that the terms converge fast
enough. The number of tables and operations involved is as
yet perhaps less formidable than the difficulties in tabulating
function M), (x) envisaged in a recent treatise on mathema-
tical physics (31).
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