ON THE CONCEPT OF FILTER IN
RING THEORY o

by OrLANDO E. VILLAMAYOR

0~ General definitions. — Let ‘K be a set in wich we define
a ring structure R=(‘R,+,.). We may consider also K as
an R-leftmodule R in which addition coincides with ring one
and the operation of R (as ring) on R (as module) is the rin'g
multiplication from the left.

If we represent by @ au element of the module and by a
the same element in the ring (a is a vector, a is a scalar) the

definition given may. by written a.b=ga.b.

We can also build an R-right-module R’ with the elements
of R by making ab=ba. L

Since the.theories of R-right- and R- loft-modules are iden-
tical, we shall study only the last, and sdy, in the following,
R-module for R-left-module.

Let o be an R—homomorphism of R on B. Necessarily, B
is al R—module, since o

@By =s @0 ()
o (ab)=ac (b)

must hold.

" Let us-write = cs()a—), and, since B is a module, it has a
«zero-veotor» O0'. If we search the elements of R which are
mapped by o on 0’ we have: 1) 0'=0,2) ‘the set is an R-sub-
module of R, that is, a set X € R, which is an additive
group such that RA\ € \; but the elements of X form in R a
left-ideal IL by the properties stated before.

anversely, if a set IL of elements of R is a left 1deal we
can find an R-homomorphic image B of R in which the set
mapped onto the «zero-vector» of B is precisely the submodule
formed by the elements of IE. -
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1-The concept of filter. — Let B be lan R-homomorphic
: fmage of R. 1

We shall say ue B is an R-unit vector (or .unit vector) of
B if and only if ru-—-.r, 'for every re R.

Definition. — The set FL of elements of ‘R which
is miapped onlfo. a unit vector. u of B by an R-homomorphism
of R onto B shiall be called a left lfilter of R.

It is known that, in commutative rings, homomorphic map-
pings may be made of rings onto rmgs, moe right-, left- and two-
sided ideals coincide. ,

In this case the concept of un1t-vector may be replaced by

the ring unity of the homomorphic image and the definition
holds.

2- Characterization of filters. — This paragraph is devoted
to prove the following theorem:

Theorem 1. — The necessary and sufficient conditions
for a non-void subset FL (FR) of R be a left (right) filter of
R are:

Fy) fi—fs+ueR'for every f,, fzeF being u a fized ele-
ment of F.

F.RY If feF, then f+r—rfeF for every reR.

For right filters, F,L) must be replaced by

F,L) If feFR, then f-+r—freFR ‘for every reR.

Lemma 1.—If FL is a left filter in R, conditions F,)
and F,) hold. '

Proof.—FL is a left- filter in R if and only 1f there exists an

R—homotmorphm image B of R, with' a unit-vector u, jand f=u
implies fe FL and conversely. Then, fi, fz, ue FL implies

f1—f2—a and i —fotu=Ff— fz ‘uW=u, hence f1 o+
ueFL, and F;) holds.

If feFL then 7‘ u u and, for every reR, f—{—r-—rf f—l—
-—|—r—rf f—l—r—r_F and F,) holds.

Similar conditions may be proved for right filters.

Lemma 2. —Ifina non-void. set F holds F,) then fl—fo
+fseF for every fl, fofs€eF and conversely ,

Proof. f2+fs—fs (fo—fr+u)+u and




— 175 —

fo—fi+u=1fe¢F by F,), then
f1—fz+73=f3 f+ueF.

" The converse is trivial.

Lemma 8.—If FL is a non-void set with propertzes Fl)
and F,L), the set IL= {fl—fz} f1, fo€ F is a left ideal in R.

Proof. — 1) Let be L=f —'f’ and i, =f,—f,, hence
W —b=f—f+f—f; and, by Fy), fy —f"+ f3'=F e FL, hen-
ce iy —iy=f—felL.

I,) Let be i=f, —fs¢IL and reR, then
ri=r(f,— fz)—(’""‘fz—rfz)—(r+f1—rf1)+f1 fe
and r4fy—rfye FL, v 4 f,—rf, e FL, by F,), and.
'(r+f2—rf2)—(r+f1—rf1)+f1_feFL by Lemma 2, then

ri=f—fyell 'q.e.d.

If is given a non-vojid set FL with properties F,) and F,L),
the ideal IV={f, —f,} will be called the corresponding ideal
of FL.

Lemma 4. — If FL is a non-void set with properties 1"1)
and FyL), tand IL its corresponding left ideal (R-subspace of
R), then FL is the inverse imlage of only one unit-vector by the
R-homomorphism R —R —IE.

Proof. — Since f—f,+fo=fs ¢ FL or every f of FL (f,,
fa€ FL), hence f=Ms— fs+f, and, fixing flzueF , every
fe FL may be written f=i+u, ie IL hence FL is contained in
only one lateral class of I- and since every i+ueFL, it will
be mapped onto only one element u of R— IL.

We shall prove u is_a unit vector. Since r+u—ruelFL,
r—l—u—zu_f hence r—l—u——r u=u, then ru_-F as ‘we wish
to prove.

' Proof of the theorem. — The conditions .are necessary by
Lemma 1, and sufficient by Lemma 4.,

8-The ring unities. — Ring unities play an important réle
in filter theory, as is established by ‘the two following theorems:

Theorem 2. — If R has a.left unity el (that is, rel=r
for every reR), then every R—homomorphw mmge of R has

at least one unit-vector.
Proof. — Let IL be a left ideal in R and R—IL the hom—
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omorphic image of R given by L. as kernel. Hence the set
fel +i}, iell is a left filter FL, since F,) and F,L) are ven—
fied. Proof: F,) trivial, F,L) (el+-i) +r—r(el-+i)=el
+l-—rl—reL—I-l£{lBL-|—l} :

Theorem 8. — If R has a right unity R, eReFL for
every FL € R, then there is not more than one unit-vector in
each R-homomorphic image of R.

Proof. — Let feFL, by F,), f-eR— eRfe F’-‘ and, since
eRf=f, eRe FL.

Coroll,ary 1. — If R has a unity (two-sided) to every
left' (right) ideal corresponds one and only one left (right) filter.

The converse is true without p‘qstu'late the existence of unity
(Lemma 3).

Now we can priove certain pr.opertws between ideal- and
filter-lattices.

Lemma 6. — If F,L and F,L are left,filters and
F.L' 2 F,L, then the relation I,“ 2 LY, between its correspon-
ding ideals, holds. .

Proof. — Let ieI,L, hence i=f;— ¥, (f1,fa€ _F2L) and since
F,.L c€F.Lf, fs¢ FiL, then teI,L.

Lemma 6. — Let I,L and I,L be left ideals in R and
11’"212'", if some F,L exists, then an F.L exists such that F.L
D F,L; where F{ are left-filters which corresponding ideals
are the LL.

Proof. — Let be fe Fol, hence {f+i},ie 11 is a left filter:
Fy) (F+i)—(F+is) +(f+b)=F+(—is+is), and'iy —is+
+i3=iel,, hence (f +11)—(]‘+12)+(]‘—|—i3) f+ie {f+i};
F,L) Since feF,-, f--r—rfeFsL, hence iy=r—rfel,L for
every re R, then (f—l—z)+r—r(f+v,)_-f+L-{—r—,rf—rl_f—|-12
e {f+i}.

Let ‘us call F,k _{f—l-z} ie L. 1f f,¢F,L, f1 f=iel,L
hence f, — f=i¢ I, f,¢F,L, then F.LDF;L.

Theorem 4. — If R has unity (two sided), ideal- and
filter-lattices are isomorphic.

Proof. — By Lemma 3, to every left- (right-). filter corres-
ponds one and only left- (right-) ideal; if R has umty the
converse also-holds (Corollary 1).

{
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If we order ideals and filters by inclusion, Lemmas 5 and
6 prove the theorem.:

4-Two-sided filters. — Let B be an R-homomorphic image
of R. If the ideal I defined by this homemorphism is two
sided we can give in the set 3 of ‘the elements of B a. ring
structure B, homomorphic to R, as follows: The.sum in. B
coincides with the sum in B, the product a. b in B is given by

a.b=ab. It is well known that the operations sodefined make
in B a ring B. If B has a unity 7’ (two-sided), the set F of
elements of R mapped onto 1’ will be ‘called a two-sided filter
in R.

Since the unity. 1 of B has the propertles z.1'=1. rzE—
for every ac( B, if we consider the R-monule B, if fe¢F, f 1

and a:f—-:cf_:c 1’ =, hence F is a left filter./ Since I is two-
sided, we can consider the R-,nght -homomorphic image r—1,
and, if feF f=1', hence zf=fr= f t=1.z=z and F is
a right filter. Then, conditions F,), F,L) and F,R) must hold.

Let F be a non-void set with properties:F}), F,L) and F,R).
Then, it is simultaneously lefi- and right-filter, and its corres-
ponding ideal is two-sided (Lemma 3). We can find the ring
R/I, homomorphic to R, in which F is mapped onto a two-
sided unity. (Lemma 4), then, I is a two sided filter.

Hence, necessary and sufficient conditions for a given non-
void set F € R be a two-sided filter are F,), F,L) and F,R).

In commutative rings, since every filter is two-sided, all
the theory may be stated using ring-homomorphisms.

5- Further properties. — We shall prove now some addi-
tional properties of filters (left-, right-, or two sided-).

1) A filter is a maultiplicative system. Proof: Let z,yeF,
hence z+4y—azy=zeF by F,L) or FyR), then ay=z—z+
+yeF by Fy).

2) If 0¢F, then F=R. Proof: Let F be a left-filter (si-
milar proof may be employed for right-filters) and z¢ R,. then
2+0—x.0=x¢F, hence F 2R, that is F=R.

To exclude the case F=R we shall call proper filter a
filter I for which O is not in F.

8) If F is a proper filter and I is its corresponding ideal,
F and I are disjoint. Proof: Suppose' F and I not disjoint,
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then there is an element ae¢ F such that ael. If ael, a=f, —

"'fz, (fl,fze F) and by Fl) a—‘fl +]c2€F but a—'fl—l"]cc)—o
hence O¢F and F can not be proper.

6~ Duality. — Let R be ‘a ring with two-sided unity 1.
Then, theorem 4 holds. With the elements of the ser <X [if R=
=(R,+,.)] we wish to build ;a new ring R* such that its
ideals be formed with the elements of the filters of R and
conversely.

Since 1¢F for every filter F (left-, rlght— and two-sided-)
by theorem 38, we can replace condition F,)' by.

F'y) For every f,,fo¢F, fi—fs+1¢F. "

Let us remember conditions for ideals:

L) Ifi,iyel, then iy —izel.

LL) If iel, then riel for every re R (left zdeals)
LR). If iel, then irel for every reR (right ideals).

If we compare conditions I;) and F’;) we see that both
connect two variable elements of each set with a new element
obtained from them by known operations.

It is known that I,) states, by an «inverse operation», that
I is a subgroup of the group defined by the «direct operation»
(+) on R.

We shall see that Fy’) states a similar property.

First we shall prove that the operation a+*b=a+b—1
makes ‘¥ an abelian group.

G,) a+*b is defined for every a,be ‘K. .

G,) (a+*b)+*c=a+*(b+*c).

Gg) a+*b=>b-+*a.

Gy) a+*1=a for every ae ‘¥, hence 7 is the «neutral»
. element of (‘R ,+%*).

G;) For every ae CR there is an «invere element», that is,
the equation a-+*z=1 has always solution.

Proofs of G;— G, are trivial.

We can prove Gy by proving the existence of an «inverse

operation» —*, defined as follows:
| (a—*b) +*¥b=a
Hence - (a—*b)+b—1=a

a—*b=a—b+1.
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Then, (R,+*) is abelian group and condition F’;) says
that the elements of a filter in R form a subgnoup of (R, +%).

We shall define a new binary operation on (R which must
be associative and distributive over --*.

F;) [FoL) and F,R)] leads us to it, in view of I,) [I,L) and
I,R)] respectively. I,) says that any ideal is «absorbent» for
the operation «mul’uphca‘uon » (from the left- or right-hand,
respectwely) ;

F,) says also that a filter is absorbent respect to the com-
bination a+f—af or a-+f- fa.

This induce us to define the new operation
ax*b=a+4+b—ab
and we can prove easily- that: :

A,) ax*Db is defined for every a,be ‘R
) (ax*b) x*c=ax* (bx*c)

A;) ax*(b+*c)=(ax*b)4* (ax*c)

A’y) (a+*b) x*e=(ax*c)+* (bx*c)

A,) ax*0=a for every ae

Then, R*= (R, +*,x*) is.a ring in which the set of ele-
ments of each filter of R has the properties:

I*) If a,bel* then a—*bel* (see F'y)).

LL*) 1f feIL* then rx* f ¢ IL* (for left-filters). See FoL).

LR*) If feIR*, then fx*relR* (for right-filters). See
F2R)c I

If we wish to write the operations of R= (%, +,.) in terms
of those of R*= (R, 4*,x*), we arrive to:

at+b=a4*b—
ab=a+*b (a—* (ax*b).
(Observe that 0 is the x*-unity of R*!!).
This shows that:
1) (R*)*=R.
2) The filters of R* are the ideals of* R.

Property 1) shows that the operation * on rings with unity
is inyolutorial.

Referred to commutatwe rings with unity, Foster and Berns--
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tein-(1) have proved certain proporties of the operation * which
can be stated also for general rings using in general the same
proofs.

The most important of them are: ~

B,) R and R* are isomorphic, using the transformation

z «>1—z

Since 0—*z=1—z, then (1—z)*=1—z.

R and R* are called dual rings.

B,) If R is a Boolean ring, R* is the; classical dual Boolean
ring. o

(*) Foster and BERNSTEIN, Symmeiric approach to commutative rings, with
duality theorem: Boolean duality as special case. Duke Mathematical Jour-
nal, vol. 11-(1944), pp. 603-616,



