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In this note, we propose to write Maxwell's equations for 
singular multipoles with variable moment, uSing derivativas of. 
tbe delta function. 

For the case of a dipole in the origin, oriented in the po­... 
sitive Wrectionof the x-axis, we have for j and p the 
following expressions 

(1) p=- ~'(x) ~(y) ~(z) F(t) j:z:=~(x) ~(y)~(z) F'(t) 

where F (t) is the dipole moment. 
In order to gei the sohition-of Maxwell's equations we apply 

Schwartz's definition of convolution (1) .between two distributions 

(2) 

The solution will be (2) the convolution of the second mem­
oor with theGreen Junction oí the wave equation. 

The condition for the existence of the convolution (2) -in 
the sense of the distribution thoory- is that (8), being both 
supports non-CQlllpacts, ~ s A, 11 e B (A, support of B j B <support 
of T) ~ + 11 canuot be at finite distance unless ~ and 11 are both 
at finite distance. This condition is always fulfilled if tha ve­
locity of the dipole is less than the velocity of light. 

We will show that tbis solution reduces to the ordinary 
one (4). Let us take thescalar potencial 

Aa. cP =- ~(r-:-t) * F(t) ~'(x)~(y)~(z) . q, 
r 

(1) L. SCHWARTZ, Théorie des distributions, n, p. 11. 
(9) Ibid. n, p. 68. 
(a) Ibid. II, p. 26. 
(') FB.A.NK-v. MISES, Di!!. Gl. der Phy8Ík, II, p. 789. 
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~(r-t) 
-= r F('r) b'(t;) b(l1yb(s). cp(x+ t;,Y+l1,Z+~, t+'t)= 

= i)(r:-t) F('t) oCPe x, y, z, t + 't) 
r . ax 

. F('t)jff ! Oip(x, y~;, 't+r) dxdydz 

- . 

= ffff F~'t) ~cp(:, y~;,'t.+r) dxdydzd't 

putting 

Ao·cp ffffdxdydzdtF(:-r) d~ cp(xyzt). 

But, according to the definition of derivative of a distri~ 
bution, this menos 

Ao=_A F(t-r) 
ax r. 

In' general, for a multipole in the x-direction .~ the orig-en~ 
we have 

P:¡;= (-l)n-l i)(n-l)(x) bey) hez) F(t) 
~ 

:- dP 
J=Tt p=-divP with P y =0 Pz=O. 

If the multipole is moving, but always having its moment in 
the x-dir·ection, we simply replace the arguments x,y, z, t. by 
3)'- t;(t); y-l1(t}; ~(t). . 

Of course, for practical purposes one does not need to work 
with distribution theory, but simply work with the deltas as. 
ordinary" functions. 

It is possible to solve probl'ems with temporal multipoles, 
. and multipoles· oriented arbitrarily in space . 

. If, insteadof using the wave equation, w-e use tha Klein 
Gordon equation, we could calculate the field of «DucleOníc' 

-- multipoles». 

, . 


