ON THE DIFFERENTIABILITY OF FUNCTIONS
WHICH ARE OF BOUNDED VARIATION
IN TONELLI’S SENSE (*)

by A. P. CALDERON and A. ZYGMUND
(Departament of Mathematics of the University of Chicago)

1. In this note we generalize some of the results of our note [1].
These generalizations are not difficult but seem to be of interest
in applications.

We shall consider complex — valued measurable functions
f(z) =f(x1, 22 ..., z,) of n real variables defined for simplicity
over the whole n — dimensional Euclidean space E,, and we write

15 1= [17 @ as

where the integral is extended over E,. By (f, g) we mean ff g dz,
assuming that the integral converges absolutely, and by f * g the
convolution of f and g.

We shall also consider completely additive functions w (E) of

Borel subsets E of E,. By (f, ») we meanffd w and by f * u the
convolution f fx —y) du(y). By D we denote the class of
infinitely differentiable functions in E, with compact support.
Finally, C will stand for a constant depending only on the dimension
and the parameters displayed.

A locally integrable function is said to have first derivatives

fi(x), 5 =1, 2, ..., n, in the sense of distributions if
a
<%m=~w—inﬁ
0 x;
. . of
for all ¢ e D. We shall also occasionally write for fi(z).
Zj

(*) Research resulting in this paper was partly supported by the National
Science Foundation, contract NSF (-8205 and the Air Force, contract AF-49
(638) - 451.
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‘Similarly we say that f has measures y; for first derivatives if

((P)dp‘j)'__—(;q) 7f)y

L

for all ¢ ¢ D.

We recall now some notions introduced in [1]. We considered
there classes T,2(xo) and t,2(xo) of functions. A function f belongs
to TyP(x¢), where 1< p=< «» and u > — n/p, if there exists a
polynomial P (z) of degree strictly less than w (in particular,
P = 0if u < 0) such that

1 N vz
{?/|f(x)—P(x)|deJ} SMer , 0<p <. [1]

lz—20 | < p

The polynomial P is uniquely determined by f. In [1] we also in-
troduced a norm in the space T,2(xy). The norm of an f & T,?(w),
which we denoted as T,?(x, f), is defined as the sum of the norm
of f in L?, the absolute values of the coefficients of the Taylor
expansion of P at xzy, and the greatest lower bound of the cons-
tants M for which [1] holds.

The space t,°(xo) consists of those functions in T,2(x;) for which
there exists a polynomial @ (z) such that

{fi [f(z) —Q (x) |? dx}llp < M ou

{ pjz—xoSp
and, in addition, the expression on the left is o (¢%) as ¢ tends to 0.
Here @ () is unique, and is equal to the polynomial P (x) of [1]
if u is distinet from 0, 1, 2, ... The degree of Q is equal to the
integral part of w for w > 0. .
In the present note we study an extension of the classes T,7(xo)
and £,7(xo) in the case p = 1. Let u > — n/p. We denote by S,(z0)
the class of countably additive finite functions of Borel subsets
of E, for which there exists a polynemial P (z) of degree strictly
less than u (in particular P = 0 if w < 0) such that
-%fld{p,—~P(x))\}|sMp“,O<p<oo. [2]
o |z—x| <o
Here P (z) A stands for the indefinite integral of P (x) with respect
to the Lebesgue measure A, and the integral denotes the total
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variation of the set function y — P (#) X in |z — 20| 5 p. The
norm of p in S,(zo) is analogously defined, namely, as the sum of
the total variation of.p, the absolute values of the coefficients
of the Taylor expansion of P (z) at z, and the greatest lower
bound of the constants M for which [2] holds.
. The subclass syu(xo) of Sufxo) is obtained in the same way/as
tuP(20) was singled out from 7T',2(wo). : :
The classical theorem about Lebesgue sets of 1ntegrable functlons
is valid also for set functions p. and asserts that for almost all o
we have ' » :

L fld{u~u'(xo)l}|¥0(‘l), e —> 0,

n

lz—mlsoe

Where !(x0) is the derivative of w at zo. In other words, w belongs
to so(xo) for almost all zq.

It is well known (see [2]) that a locally integrable function whose
first derivatives are set functions y; of finite total variation coincides
almost everywhere with a function of bounded variation in the
sense of Tonelli, and conversely. The main result of this note con-
cerns the differentiability of functions of bounded variation in
Tonelli’s sense.

THEOREM. Let f (21, X2, . . ., Zn) be a function of bounded variation

in the sense of Tonelli. Then

(i) there is a constant a such that f —a belongs to L"1;

(i) p; = is a countably additive set function of finite total
Zj
variation, and if u; = belongs to Sy(x0), u > —n, u= —1, j =1,

n

2,...,m, then f —a ¢ Tu+1 (xo) and

'n

u+1 (xg,f”‘a)<0 2 S (xo, l"‘]))

f belongs to su(xo), > —mn, u= —1,j =1,
Tj

(iii) if u; =

2,...,n, then f —act' " Y (x0).
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If f is of bounded varlatlon in Tonelh S sense then as we have
pointed out, its derivativesin the sense of distributions are countab-
ly additive set functions. Therefore, as we also pointed.out, these
derivatives belong to so(z) for almost all . Therefore, after the
‘subtraction of an approprlate constant f will belong to tl(xo) for
almost all | z. = : :

In other"words, a function f (x) whwh 18 of bounded variation in
the sense of Tonelli has a first differential almost everywhere, provided

. b .

5

the remainder s estimated in the metric L1 .

2. In the case when the y,; = - 9
l i i) Xj

with respect to Lebesgue measure, our theorem is contained in
Theorem ‘11 of [1]. Our proof will consist'in ‘rediicing' the 'présen’t
case to that one. T o ‘
In what follows we will regularize functlons and measures by
convoluting them with a kernel ' ‘

9e() =}IE‘.”¢(%>, |

where ¢ is a function in D, Wii’;h support in |2 | =<1, of integral
equal to 1, with the additional property that for any polynomial
P (x) of degree not exceding a fixed integer m the identity -

ot P =P

are absolutely cOnfc-inﬁous

holds. It is not difficult to construct such a function ¢ (see [1],
Lemma 2. 6)

LEMMA 1. Let p. be a completely addztwe set function belongmg to
Su(@o), w > —n. Letf, = ¢, * p, where ¢ 18 a function as described
above with the property' that 9. ¥ P = P for all’ polynomwls P of
degree mot exceeding u. Then f,, T, l(950) and '

Tu (xo 1) fs) = l?,u S(xﬂ b 9‘) |

Proof. For simplicity of notation we will assume that Zo =0
and we will write S,(zo, u) = Su(u), etc. Suppose first that u >0
and let r be the largest integer strictly less than u. The function
f. is infinitely differentiable and we denote by P, the Taylor
polynomial of f of degree . We then have '

fo(@) —P.() =j[q> <x-y> ) —'W“)(*y)}du(y

lal<r &
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Here « stands for the multiple index (a1, @2, ..., ®a), Where:
the «; are non-negative integers, a! = a1l 2! ... anl,
la| =a0+ ot ... + an, T = 21T ... Ty,
and

<P<¢)=( 6__“({):( 9 m( 9 \* 9 “n(P
dx d LR 02Xy,

On account of the property ¢.* P = P the last integral can be
written

/[%(x ) — 3 e (— y)] dlo@) —P @) 2@,

lal<r %]

where P is the Taylor polynomial associated with u. Integrating
with respect to # we obtain

1fo(@) — P.(@) | do = [ vz —y) —
l/x-lSp /[;/l-ﬁo
— oy e (—y) dx] 1Al —r@) PG =1
laj<r &1

say.
If o> ¢ then

<[ [tle = @ 1d@ —P@ NI+

+ o3 wew‘(—yﬂ/ 2% | de |d [u () — P @) A @)1]. 3]

la|<r
lyl<e lz]<e

Since the support of ¢.(x) is contained in |z | < ¢, we have
oz —y) =0if |z| = ¢ and |y|>2¢>2 ¢, and consequently
the first integral above is dominated by

/ ld[u(y) — P @) A /lcpe(x) | d <

lyl=2¢

< CoBu (1) (2 0)n** = CouSy(u) omtu.

On the other hand, | ¢.@ (—¥) | < C4 4 e~~1=l, and thus the
terms of the sum in [3] are dominated by

Cq;,u Su(p') P|a|+n gl gntu < Cv.u Su(“‘) pntu



— 107 —
Consequently,
S CouSulu) emtv , if o 2 e

If ¢ < &, using Lagrange’s remainder formula we obtain, with
0<0=0(,9y) <1,

/.2,

lzl < e

] 4 [u(y) — Py) 2@)] | <

al

IA

Co g7+ f ld[w—P@) A | =
lyls2e

Con Su(n) o7 +1#n c=n—r=1 (2 g)n+u <

0 r+l—u
< Cou Su(p) ot (—) < Cou Sulp) e,

A

€

Thus
I < an,u Su((“-) pmtu

Yor all e
We now estimate the coefficients of P, in terms of S,(w). If

P.(zx) = 2 d'? 22 then

ald= —17 [ o (—y) duy) = —17 / @ (—y) d [u(y) —P(y) \@)] +

4

+ %/@ﬁ“)(-—y) Py dy.

Thus
: 1 1 9
o] < _cw,—n-[a{/[dm_p@ A+ —](—
al al
lyl £ e
< Cou e7mld 8y(u) ente 4 Sy(w) < Cou Sulw) .
Finally, since |
= O Su(w)

flfeldqcs_cq,/|dp.|

collecting results we obtain
Tyt (f) = Copu Sulw).

i
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If u< 0, we merely have to show that

|fe(@) | da = Cyu Sulw) om+v.

el < e
We have
[ 7.2) | da = ‘ oo —1) dul |dz s
lzllp Imlép/ . v
S/Idu(y) |[|¢.<x—y> ldz [4]

lz] <o

If o > ¢ the last integral is dominated by

| du () |f| 0u@) | dz = €y Sulw) omHv.
lyl < 20

If, on the other hand, ¢ < ¢ thén, since |¢.(z)| < C, 7, the last
integral in [4] is dominated by

«, (i) [1ae W) | = C, Su®) (i) @ 9 =

lyl S 2

= Cq.u- Su(p) e¥ ¥ ~

This completes the proof of Lemma 1.
3. LemMa 2. Let ¢ be a function in D such that / (@) dz =1
' x
and let g.(x) = "¢ (-—) , € > 0.
. €

(i) If wis a countably additive set function such that Ty (xo, u¥¢.)
< M for all <, then u ¢ Sy (zo) and Sy(xo, w) <= M.

Gi) If feLr,1<p=< =, and Ty? (xo,f * 9.) < M for all ¢, then
feT2(xo) and TP (xo, f) < M.

Proof. Let Pc(x) be the Taylor pelynomial of f. = f* ¢, or
f = w* g, of degree r, where r us the largest integer strictly less
than wif u > 0, or P(z) = 0if w < 0. Then our assumptions imply
that the coefficients of P, are bounded, and we can select a se-
quence ¢ = ¢ such that Pe(z) converges to a polynomial P (x)
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uniformly on bounded sets. Let now ¢ and 3 be posmve Then,
assuming z, = 0, in case (i) we have

ld[b—P@2| < Tim fl:[(u—Pk)*mk](x)ld'x
k>

lz! S o lz| S o+ 3
_ / lfg,—(P*q:.QldeTiI—n/ | fo — Pu | dz
k>o : k> f v
lz]| <o+ 3 ' lzl <p+3
+ Tim | Py, — (P * o) | dz,
k>
le| o+ 3

and similarly in case (ii) we have

[[lfm—P(x)\vdx]' thlfsﬁ X ..]””+

lzl <o lzl <o+ 3

— 1/p
+ lim [/iPE,‘-— (P *g,) \pdx]., .
L ke | o]
C Tl et '
Now P * ¢, and P, converge to P uniformly on bounded sets and
o | e =+
[/Ifw—Ps!”‘dx] <M G4BT, s <
z| <o

Thus, passing to the limit we get

[!d(u¥Pk>l < M (o + B
lz]l < ¢
and ‘
1/p n
/lf—Plpdx] < Mo+ 37T

lz] <o

in the cases (i) and (ii) respectively. Making 3 — 0 in the preceding
inequalities we conclude that p eSu(zo) and f e T3 (20).

To prove that S,(xo, &) < M and T% (x, f) < M we denote by
a® the coefficients of P, (z) and by a, those of P. Then, given
3 > 0 we can find ¢o > 0 and v > 0 such that -

(ro,u)</ldui+zlaa1+m:;/l (= PN | + 3

lzol S Po
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in case (i), or

T? (a0, 1) = []Wfl?dx}p S aal +

1 ) i/p
+ | /lf'~P|de] +3
p‘ou+n,’p .
lzl < ea
in case (ii). Since lim [a(k)‘ = | 0./, and, in case @),
fim fIfalde= [laul Gimf1f, —Pyldr =
lz] = e0 +n
Z/ld(u~—P7~)|
lz] = o0 ,
/lfek!dx-*_v I((k)l_!_‘—l__"_’/»‘fekmp%ldx -<-=M
- (po + m)mtu

lz] < oo+

passing to the limit we find that S,(xo, ‘&) < M + 3. Since 3 is
arbitrary it follows that S,(xo, y) < M. Similarly we find that
Tu2(xo, f) < M in the case (ii).

4. The lemma that follows is essentially a result of Gagliardo and
Nirenberg (see [3]), but we give a proof which is slightly different
from theirs.

Lemma 3. Let pj, j = 1, 2, ..., n, be countably additive set func-
tions such that, in the sense of distributions,

Op; _ Oyq
a X d Xj
for all © and j. Let
1 T;
Bi@) = — ——Z_,
on Tz
where wy s the surface area of the unit sphere |z | = 1. Let
F=3h*w
i=1
oF =

Then 3 =y;, FeLr 1 and

1P [waw]

7
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Proof. Let ¢ be a non-negative and even (i. . ¢ (—2) = ¢ (2))
function in D. Then, if ¢.(x) = e™9 (f—) we set
e

Fo@) = o * S *k) = 3 (0% 00 * Iy

i=1
We will show that
oF, | OF ln
=U':i*(?s ’ HF:Hn S<|[ ) ’
axi =1 j=1 Ox,- 1

and a passage to the limit will yield the desired result, as we shall
see.
First, let us observe that y; * ¢, tends to 0 at infinity. Further,

F n
or, ? [

axi i

(o5 * m] * [k (x) =

0 x;

-3 [ (w*,w} * (k)] (a).
j=1] 0 x;

Integrating by parts the integrals that give the external convolu-
tions over the region between the spheres of radii 3 and 1/3 with
center at the singularity of k; and observing that

i}

dx;

2 kj=0’

and letting 3 tend to 0, we easily see that

Fe @) = (u* 00 @.

axj

Let now kN(x) = ki(z) if |z | £ N, kN(z) = O otherwise, and
write

Fe<x>=z(aaF‘ *w)+z e v oy — )

Tj 9 x;

Since

5 * ¢, tends to 0 at infinity, the first sum tends
Zj

to 0 at infinity; since the

. are integrable, the second sum
Tj

tends to 0 as N —> ». Consequently F, tends to 0 at infinity.
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Now we will show that if G (2) is any continuously differentiable
function tending to 0 at 1nf1n1ty and havmg 1ntegrable derlvatlves

then ’ : \‘ ]
1/n
This we will do by induction on the number of varlables Fo,r

/
n
NG o s [
Con=1 1

= 1 the statement is obvious. Assuming the mequahty to hold

for functlons of n —1 Va.rlables we have on the one hand,

G

. 0x;

n-—z

l n—1 n—1
[/IG (xl, T2y %) P72 A d‘x,,] -

-

3G '
D, (21) =/] e (xl’ixz.' ey Tn)

where

\

dxg‘... adxy,

and

| G (&1, 2, .. Saa) | 5/ L0G

21

(21, o, .".’., Tp) day= (2, . . a,n)

on the other. Fryom:"‘uhe’last iﬁequalitj) we obtain

n . ' o1
[G (21, 22y oy ) [P0 < Y (2, ..oy @) "L | G (21, 29, ey T) |
Integrating with respect to s, . .-, z; and uéing Holder’s inequality”
with the pair of con]ugate exponents n —1 and (n—1)/(n —2)
we get

/|G(x1,x2, " ‘.v.,-xn)ln—l d.’l}g ey dx,, =<

1
n—1"
S[/@(ﬁ:g,...,xn)dixg..'.dxn:, v . DN

n—2

n—1 =T :
. [/G(wl, i ) P2 dxy oL dwn] .=

1 1
< ‘ 0 G n-—1 [ﬁ(‘b](’t]):‘n_l )
o i=2 . '

31?1 1
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Integrating this inequality with respect to z; and applying to the
integral of the product on the right Holders inequality with
exponents (n — 1) we obtain -

—-1

fl G,(xlx Loy -0 xn)l : dxl dx2 dx"

ll%, | U«b (xl)dxl]%f

;
.\7=1.
which is the desired result. ‘

Returnmg to our functlon F, we thus have

o | . ( - 1(“ N
OF, [\w [ T
; [) =(1 ||1EJ‘7'*(PEH1> =
ij 1 1 .

eliafie

that is, [[F.||_»n_is bounded. By restricting ¢ to an appr,opfi‘ate
=1 o ' ' ‘

-IA

.G

L0z

4G
<
” E

1
KRl
b

[

A s(r"-

1

sequence tending to zero F will converge weakly to a limit F in

L= 1 (we exclude here the case n =1 .where, to begin with, the
theorem is obvious), for which also

HE |l W s[ﬁ !'dg,. ;]“

n—1

Let now ¢ be an arbitrary function from  D.. Then, since ¢y

is even,
afvj ' -
*_/(u, <P)¢d%'=—f(<p=*¢)du“

and letting ¢ tend to 0 we obtaln

JFoas=—[vau,

. oF
which shows that = ;. Furthermore,

ax,-

/F,, vdo =/’¢“[¢e*z (0 * k)] da =[(¢*q>,> (S *ky dz,
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and passing to the limit again we find that
fF ydz =f¢<2ui*ki>dx,

whence F = 3 y; *k;. This completes the proof of the lemma,

5. We can now prove parts (i) and (ii) of the theorem.

Let f be locally integrable: and let 691; = y; in .the sense of
i
distributions, where the p; are countably additive set functions.

dup:  0p;
Then — el

01:," ax.'

and according to Lemma 3 the function

F=2XZu*k

=y; and F eL»—1!. Consequently

has the property that ZF

H
a—‘l (f—F)=0forj=1,2 ..., n, and f — F is (essentially)
i

a constant. This establishes part (i) of the theorem.
Suppose now that p; ¢ Su(xo) and let ¢ be the function of
. a 7 .
Lemma 1. Set F, = F * ¢.. Then aﬁx“ = w; * ¢. and, according
: i

to Lemma 1,

IA

Co, u Su (To, i) -

8117,'

T, (.’,Eo, 9 Fe) =T, (xor i * ‘?s)

Now Theorem 11 of [1] asserts that

j= ax,- j=1

_nr L oF, n
Tn:(xo,Fe) <C X T,}(wo, )scy,uZSu(xo,uf),
and from Lemma 2 it follows that
Tn—l(x07F) SCmuESu(x07U'1‘)y
u+1 i=1

which proves part (i4) of the theorem.

6. For the proof of part (iii) we need two more lemmas.
LevMmaA 4. Let
i)

(?;)zf‘ =y ¢ 8y (%0) (—:—x)af =ves (xg),
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where the derivatives are taken in the sense of distributions, p. and v
are countably additive functions and |« | + [u] = | 8| + []. Let P
and @ be the Taylor polynomials associated with y and v respecti-

vely. Then
8 «
Ge)r=G)e
dx ox
Proof. Let ¢ be a function from D with support in ] =1 and

with integral equal to 1, and assume for simplicity that z, = 0.
Then

/f(x) (aix)a+<§j(?fx) dz = (—l)lzl/(aix)aﬂ o (—2)du =

- <~1>la!/(§;)“q%3<-x>d[u—P(m) A+

+ [Pw (%)ﬁ&-@m -
=0 (S R —PE
P >e+y

+ (~1)la+8+ﬂ/q;,(~x) (6_ Pdx =

X

_ (_1>r«r/(%)623<—x> dls —P @ +
4+ (—Dlet+e+r] (i)“}}(o) + o (1)
iz

as ¢ ->0. Since ¢.(—2) is supported by |z | < ¢ and

(L)“;j(_ )

< Cg—"—|a|_|7|7
Jdzx

integral in the last expression is dominated by

Cs—n—!ﬁl-lﬂ/ ldlu —P@)A] | =
‘]xIS_s

= (Ce-n—l8l—Irl g (En‘HL) =0 (]_)’

provided [8 |+ [v [ =[ul, or |y | =< ([u] —|8|. Thus

(—1>'«+ﬁ+ﬂff(x> (;‘%—)“fo—*x) do = (%)‘”?(m +o(l),
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and similarly" -

(,; i)‘ll q.}jsJ{-y l./f (z) ( aax

«+B8+7 ‘3" ety
) gy de = (——) Q(0) +0 (1),
o o ‘

provided [y| = [v] — |«|. Consequently we have
6
(L)Y [(_a ) P— (_a_) ] 0) =0
dx [ |\dx /- \Nozx/ | S
for |y not ‘excee'din.‘g the number [u] — |(3| = [v] — |a|, which

is not less than the degree of both
. 15 N . a N
(_6_) P and (L) Q,
or ox
and the lemma follows. o

7. LEMMA. Let f be a continuously differentiable function and let

n af
A = 11 d
) x / [2 7 ]

() If §(0) = 0, then
/lf(x) ldo < o A0 | pn/"A_“ldt.
) n 0 1A

|zl s e
(ii) If f () = O for |z| = 1, then for 0 < o <1 we have

@) |de < 21 pn/ At(t) dt+A(1) -
) n A n

lzl <o

Proof. Let o’ = -—l—l Then, if f(0) = 0,

lz]
17 @) | sf zli’;‘(tx’> dt,
o - 9 z; :

|z
/]f(x)vldngdx/ Ndit =
lzl S e ‘ lol < ‘
=/dz’ /Os"—ldsf 9f ) dt,
0 0 dx
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where .d z’ is the surface area. element, of .|z| = 1. Changing the
order of integration we obtain

f]f(x)[dng gy
n
!z|<o '
_ eon —tn dA (1) <_9‘n_/‘_odA(t) -
L n A R ¢ trn1 -

240 .p,,f"A_(f)dt.
0 t

n

() do =

IA-

If f(z) =0 for |z| =1 we have for:|z| < 1: L

lf(x)l < 2‘——|(t:c’)dt=
=/|f(x)[dx< dvcj af (ta') dt =
lzl <o zSa I=!

fdx’/: s"—’dsj; z‘%l(m')dt,

and changing the order of integra,tion:we gét

flf(x)!dwé —dt |¢ta)da +
lzl 0
+— Y (t2) da =
- [ laam+ 2 fﬂ_A_@_é
0 n n o t’nl
—1 1AM dt .
. pn/ Wit , AQ®
n o in . n

This completes the proof of the lemma.

8. We will now prove part (iii) of the theorem, first considering
the case u > -— 1. Since y; & s,(x0) © S.(xo), part (i) of the the-

n
orem asserts that f — a ¢ T »—1 (x,) for a suitable a, and thus there
2 : ‘ T utl ‘ “ .
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exists a polynomial P of degree stricly less than « + 1 such thét

n n—1
[‘:;/U(w) —a—P(z) I”—:ldx]_"— < C et

lz]l <o

Let Q; be the Taylor polynomial of ;. According to Lemma 4 we

have B—Q’— (x) = 9 Q (z), and therefore there exists a polyno-
i i :
mial @, @ (0) = 0, such that Q; = ZQ . We will prove that
Ty

! IR I
|:.9_’n/ [f(x) ——a—P (0) —Q (x) ln—-l dx n = o(pu+1)
lz] <o (p _ 0)

n

and this will show that f e{»—1(x,). For this purpose it will be
u-F1
enough to show that

—:7/|f(x),—a—P(O) —Q@) |dz = o (pv+)

2]l €0

for if ¢ () is function in D such that ¢ (z) = 1 for || <=1 and
¢ (z) = 0 for |z| = 2, and if we write

) = 4»(-96—)

then, setting f (z) = f () —a — P (0) — Q (x) we have

n n—1 n—1
[;,./I?(x) [mdx]—”_ S — [/If(r)d)(x)["—ldx} n

lel <o
and, by Lemma 3, the right-hand side does not exceed

1 o 1 1 1 2 —_—
_1[|| - (74, ]né Ly ) s
" 1 p" n o1 Zj 1
1 d 1 1 - 0
< — 2L 4 —Z.f—" ,
en L 07 |

where, of course, the derivatives are meant as measures. Since ¢,
is bounded and vanishes for |z | = 2 ¢, the terms of the first sum
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on the right are dominated by

C af C |
" / ! dx=‘—/|d[w—Qj7\]l=0(9"“)-
pn 695,- pn—l ! .
) lz] <20 ] <2
.. . C
Similarly, since — , we have
%
1 3 C =
: ” o = /lf(x> da.
pn— 311}] 1 pn .
lzl €20

It is therefore enough to show that

—pl;f!7<x>\dx=o(pu+1>.

lz| <o

Let now ¢ be a function like the one in Lemma 1 with the pro-
perty that ¢.* P = P for all polynomials of degree not exceeding

u -+ 1, and write f. = f * ¢.. Then | @) | = < and
€7L

- _ C -
7.0 | =| @ eu(—myde| s S [ 17@) de.
J -]
Now, according to part (ii) of the theorem, f —a ¢ u+1 (:co) and
thus
n n—1
—fmm) ldz < C [-:T/\f(w) ln‘—‘ldx] =

z! < e lz] < e

— O{emin(1,u+1)} =0 (1)

from which we conclude that f.(0) — 0 with .
Using now part (i) of Lemma 5 we find that

Ae(p>+/°A;—f‘)dt, (5]

1 - — 1
F/Ifa(x) ~7.0) [da s ——

[zl <o



— 120 —

where, according to Lemma 1,

A0 = ﬁ ff dz= [ 3 [0~ [des
lz I<_t' v - |,,|<Jt= o :

n !
< frhe 3 Tu‘,(.xo, 9“.7 <Pe) q>u tn+u 2 Su((x(b p“] .
j=1 i . | ji=1

If we now let here 3 tend to 0, since f (0) — 0 we have

f!f(x) — F0) |dx—»flf<x> a.
lzl < y lzl.Sa‘_“
On the other hand, if we set _
AW =3 fld[w—wx)m
i=1

lz| <t

we have Ae(t) —>A (t) at all po1nts of contmulty of A (), and
since A.(t) < C {n+u we can pass to the limit in [5] gettmg '

—[F@iar s — A(H/ 40 ,

lzl <o

Since p;e sy(xo) we have A (t) = o (»*) ast — 0, and the preced-
ing inequality implies that

ifi?(x) ldz = o ().
o lrlSo

This completes ’ohe proof of parﬁ (111) of the theorem in the case
u > —1.

9.If —n 2 u < — 1 we may assume Without loss of generality
that f () = 0 in ]xl > %— and argue as above setting f (z) =

=f(z) and ¥, = f % cp,»and using the second 1nequahty of Lemma 5
instead of the first. In this way we get

N Add) A1)
7/|lfe(x)|dw— — [ ary 2
z|se '
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instead of [5], and 2 passage to the limit gives

;—nfﬁ(x)ldx=%/lf(x)!dx=

Izl <o

e "‘Lf‘lA“)’dft+0(1‘>‘!

Q

Since A (t) = o (i"*¥) and w < — 1, this implies that

1@ e = oy £ 0) = 0
P

lz] <o
as ¢ —> 0 and completes the proof of part (iii) of the theorem.

Remarks. a) Since the proof of part (iii) of the theorem is rather
long, it may he worth noting that in the case when u is a non-
negative integer (and in particular when u = 0, which is the most
interesting special case) part (iii) is almost everywhere a conse-
quence of part (ii), on account of the known fact (see [1]) that
if feTQ(x),l <¢=<o,u=01,2 ..., forall z inaset E of
positive measure, then f ¢ t,9(x) for almost every z in E.

b) The theorem of this paper admits of an extension to the case
when all derivatives of a given order are measui'es while the deri-
vatives of lower orders are functions. This extension is however
an immediate consequence of our theorem and Theorem 11 of [1]
and need not be stated here explicitly.
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