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ON OPERATIONS OF CONVOLUTION TYPE AND
ORTHONORMAL SYSTEMS ON COMPACT
ABELIAN GROUPS

by A. BENEDEK, R. PANZONE and C. SEGOVIA

InTrRODUCTION. This paper is divided into three sections: the
present one (which contains the motivation of the others) and the
following parts I and II. Part II is devoted to the study of certain
Banach algebras, to which one is naturally led when trying to solve
the problem of introducing a convolution in a general finite measure
space. Part I deals with necessary and sufficient econditions on an
orthonormal system of measurable functions on a compact abelian
group @, to be the image of the character group G*, under measu-
rable transformations on the original group @.

Preliminary results. 1. Given two finite measure spaces (X,
Si, mi), 1=1,2, (u (Xi) < o), we say that they are B-isomorphic
if there exists a o-isomorphism between the Boolean algebras =;/Ny
and 32/N,, where N; denotes the sets of measure zero of 3;. If besi-
des, the o-isomorphism between the measure algebras 3;/N; preser-
ves measure we say that the spaces are m-isomorphic. Following D.
Maharam’s paper ([8]) we call a finite measure algebra homoge-
neous if any two principal ideals admit minimal o-basis of the same
power. The result of Maharam which interests us is the following:
a) A finite measure space (X, 3, u), is m-isomorphic to the measure
theoretic union of a denumerable set of spaces of the form
P, = (II [01);, 3y kn pa) and a purely atomic space. The

1<i<y,
y» are infinite ordinal numbers (and the leading ordinals of their
cardinal classes) and verify v, <s41; 3n represents the o-field of
Baire sets of the compact groups II [0,1);; un is the normalized
1<i<igy

Haar measure and k, a real number such that 0=1F%,= 1. Given
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(X, S, u) the y, and %, arve uniquely determined. b) If (X, 3, p)
is homogeneous (and non atomic) the Maharam’s representation is
reduced to only one product of unit cireles.

9. If we try to introduce a convolution type operation on a
finite measure space (X, 3, ) we can do it as follows. Supposing
that our space has no atoms, it is m-isomorphic to U P,, and there-
fore there is induced a natural isomorphism r between both L!-spa-
ces. Since each P, is a compaet group it has a convolution defined
in the ordinary way. Representing by x characteristic functions, we
define f* g, for f,ge L' (X, 3, p) as:

F)g=r1 (20 xe, “7(9) xe,, )) (1)

If (X, 3, u) also has atoms no problem arises because they are
easier to manage.

This suggests to study locally compact spaces obtained as union
of locally compact abelian groups and to define convolution type
operations in analogous fashion as (1). We do this in part IT and
we see that, as it might be expected, these spaces admit a formal
treatinent like a common locally compact abelian group. However
the Bochner theorem splits into two parts and is the main diffe-
rence with the theory developed in [1] or [T7].

3. Since an infinite product of unit cireles, from the measure
theoretic point of view, can he replaced by product of a set
with the same power of copies of the two-element group, we see that
there are several ways of introducing a convolution operation li-
ke (1). To see how they are related we ean restrict ourselves to
study the same problem for a fixed compact abelian group.

The first observation we need is contained in the next lemma.

Lemma 1. Any compact non-finite group 1is m-isomorphic to
a product of unit circles.

Proof. It is necessary to prove that a compact group G is ho-
mogeneous. Given two homogeneous sets A and B of positive measu-
re, contained in G, there exists a point x such that £ A N B has positi-

ve measure ([2], p. 261). Therefore, 4, B and x A N B have the same
type of homogeneity, QED.

(As it is well-known (cf. [9]) a compact group is isomorphie
to a product of unit circles, [0,1);, 1==1 <y, if and only if, its
dual group is isomorphie to the direct sum of L;, 1 =14 < y, where
each L; represents the set of integers. Therefore, a product of unit
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cireles is characterized as the dual group of a free group. The real
line with the diseret topology is not a free group, and therefore its
dual group provides us of an example of a non-finite compact
group not a product of circles).

Lemma 1 and Maharam’s theorem show that if we have a measu-
re space (which, for the sake of brevity, we shall suppose without

atoms) (X, 3, u), which is m-isomorphic to the spaces U Pn, U Qum,
n m

P,, Qn, compact abelian groups, then the study of the relationship
between the convolution operation defined by (1) and

) g=r=" (G (= () xon * 7 (9) xap ) )

is reduced to the study of the relationship between the convolutions
of two compact spaces of the same homogeneity. (We have suppo-
sed that two different @,, have different homogeneity types).

4. Lemma 2. Two compact (non-finite) abelian groups (1)
are m-isomorphic if and only if their duals groups are of the same
power.

Proof. By lemma 1 it is sufficient to prove that any compact
non-finite eommutative group @, is m-isomorphic to a product P of
as many copies of the unit eircle as is the power of G*.

(It is immediate that the power of the set of unit circles taken
into consideration is the same as that of the character group P*).
Since a m-isomorphism preserves orthonormal ecomplete systems of
funections in L2, the power of P~ is the same as that of G*, QED.

The same argument proves also the following extension :

Two compact (commutative or not) groups are m-isomorphie if
and only if their families of sets of equivalent, irredueible, unitary
matrix representations have the same power, (ef. § 32 and § 33
of [9]).

5. Given a compaect abelian group @, let (e;) be its character
system. For two functions f and ¢g of L?*(G) with Fourier series:
f=23c;e;, g=3d;e;, we have:

F(*) g=Zcidie; (3)

Formula (3) permits to define an operation of convolution type
with any complete orthonormal system of funetions of L2. Among

() TFor compact groups we always suppose that they have been provided
with the normalized Haar measure.
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these systems there are some which can be considered as the image un-
der an m-isomorphism of the character system of certain compact
groups. An orthonormal system (7;) of this type must verify cer-
tain conditions, for example, its functions must be uniformly boun-
ded and constitute a multiplicative group, t.e., for any j and %,
|9 | =1 a.e., 9j . =1ne a.e., and so on,

The interest of these particular systems may be justified as
follows. Let f, ¢ ¢ L*(G) and f =3 ¢;m, g == d;in; and consider
the convolution defined by (3):

F(*) =3cidim
and that defined by (1) :

) g=r(=() *7(9)),

where (y;) is the image of (e;) under the m-isomorphism »—! from
the group F onto the group @, and where the convolution in the
second member of the last equality must be understood in the usual
sense. It is easy to see that both definitions provide the same fune-
tion (e.e.). In other words, with these particular systems, (3) de-
fines a convolution which is “essential” in the sense that, except
by a m-isomorphism, it is the convolution on a certain commutative
compact group.

6. It arises naturally the question, what are the conditions
which must satisfy an orthonormal complete system to be the
m-isomorphic image of the character system of a certain group.
This question receives several answers in Part I. Now we consider
an example of this situation. Liet G be the unit interval [0,1), with
the operation of sum (mod. 1), and F the product of countable
many copies of the two-element group. It is well-known that there
exists a measure preserving transformation of F onto G constructed
with the dyadic intervals. But this is exactly the transformation
which sends the family of characters of F' onto the Walsh system
of the interval, (ef. [10], p. 34, Ex. 6). We leave the easy verifica-
tion to the reader.

Partr I

Almost everywhere multiplicative systems. 1. Let G and F be
compact abelian groups and G*, F~, their dual groups. It is well-
known that:




81 —

Theorem 1. G and F are isomorphic if and only if G~ 1s iso-
morphic to '~ .

Our purpose in this section is to extend theorem 1 to other
situations. What theorem 1 says is that if there exist an isomorphism
between the character systems G~ = (e;) and F* = (v;), then there
exists an isomorphism 7: F— G, of F onto G, such that:
7i (¥) = e (Ty).

Theorem 2. Let '~ = (n:(y)) be @ complete o.n. system of
functions of L2(F), which is under the multiplication a.e. (?) an
isomorphic group to G~ = (e (x)). Then, there exists an m-isomor-
phism between F and & such thot F~ is the image of G~ . The
converse s obviously true (3).

Proof. Consider the unitary operator U defined by the corres-
pondence e; — 5;, given by hypothesis. We see next that for any
fel?(@) and g e L> (@), it holds

Ulfe) =0().Ulg)  ae, (1)
Since, U(ei e]') = U(Eji) = Nij = Ni.-Nj = U(ei) .U(Ej), we have:
N M N M
U((? (fye) e) Elge) ) =U(EFa)a) . U (2 (g,i) @) (2)

If M — o, we obtain:

N N
U((? (f,ef)e-z)g):U(El (fra)e) . U(9), (3)

If in (3) we make N — oo, the first member tends in L2(F)
to U (fg), and the second in L' (F) to U (f). U (g).

Therefore: U(fg) =T(f) U(g), ae. .

The theorem follows now from the next theorem 38, which is
essentially Von Neumann’s multiplication theorem, (ef. [8], [4] and
the crossed references there mentioned).

Theorem 3. Let (X,3,n) and (Y, ®,v) be probability spaces.
If U is a unitary operator from L?(X) onto L2(Y) which verifies

(®) Given 4 and y, of F~, m .7, is equal a.e. to an element of F~ and
there exists %y such that n, =1 a.e.

(*) An m-isomorphism gives a correspondence between classes of functions
and - without mentioning it every time - we pick out a representative function
when it is necessary.
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U(fg) =U() . U(g) ae.,

for any fe*(X), ge L*(X), then U is induced by an m-isomor-
phism.

Proof. If x is a characteristic function, since U(yx) is finite
a.e., we have: (U(x))?=U(x), and therefore U(x) is a characte-
ristic function (a.e.). Besides, x and U(x) define sets of the same
measure, and U determines a measure preserving mapping of 3/Ns
into ®/Ns. From:

U (X1 +X2—2x1x2) =U (X1) + U (xe) — 27U (Xl) .U (Xz),

we see that, U (x1) = U (x2) a.e. if and only if 1 =2 a.e, and
the mapping is one-to-one. The continuity of the operator U implies
that it is a o-isomorphism. It is also onto. In fact, it is necessary to
prove that if U(h) =y, then & is a characteristic funetion. Let
hu(x) = h(z)if | h(z) | =n, and =0 if | A(z) | > n. Then,

U . U(ha) = U(h) = x . U (hy), and
v (X . U<h'n)) =h.h.

Since U(hy,) = x and h,—h we have: lim U~ (x . U(hy)) =
= U~ (x). Besides, hh, tends (pointwise) to A2 Then,

U=t (x) =h=Um U~ (x.U (k) = B2,

and % is a characteristic function.

This proves theorem 3 (and 2).

2. This paragraph deals with several generalizations of theorem
2. To find the right conditions to be imposed to the 5-system, we
make some observations. a) If 7 is a measure preserving transfor-
mation from F into &, (both compact abelian groups), it may happen
that T(F) is not a mesasurable set, however, it is a thick subset of @,
ie, u*%(G@ —T (F)) =0. Besides the functions #;(y) = e (Ty),
(es) = G*, are measurable functions and form a multiplicative
(a.e.) group isomorphic to the e-system (because T’ (F') being thick,
is dense in G). Since:

S (W) 5 (y) dv=Jei(Ty) ¢;(Ty) dv= e (z) ¢ (z) dv T~ =

= fe(®) ¢(x) dp=28;,

then y-system is orthonormal.




63 —

b) For any 7 and v, 7:(y) € «(G). And also the funections »;
are measure preserving transformations from F into the compact
subgroup ¢ (@) of the unit cirele (always with the normalized Haar
measure). This follows from the next lemma.

Lemma 1. . Any character e of a compact abelion group G, is a
measure preserving transformation from G onto the compact group
e(@).

Proof. Cf. [2], § 63.

e¢) If we ask T(F) to be dense on &, then the family
e (Ty) =9:(y) is isomorphic to (&) without asking 7' to be
measure preserving.

d) If T is also continuous, the 5; are eontinuous funetions. Now
we pass to the converses of the preceding observations.

Theorem 4. Let '~ = (9:(y)) be a system of measurable func-
tions on the compact abelian group F isomorphic as ¢ multiplicative
(a.e.) group to the character group G™~= (e;) of the compact abe-
lian group G. Suppose that for any i, ni(F) C & (G). Then there
exists @ measurable transformation from F into G such that T(F)
generates (*) G and for any 1, ¢ (Ty) = n:i(y) a.e.y. (The measu-
rability of #; and T' is with respect to the Baire o-rings. If the
measurability of the »:’s is assumed to be with respect to a o-field
containing the Baire o-ring the same result holds).

Theorem &. If besides of the hypotesis of theorem 4 we require
the 7; to be continwous functions then T is also continuous.

Theorem 6. If besides of the hypothesis of theorem 4 we re quire
every function »:(y) to be & measure preserving mapping from F
mio ¢ (@), then T is measure preserving.

Theorem 7. If besides of the hypothesis of theorem 4 we require
the system (x;) to be orthonormal, then T is measure preserving.

Proof of theorem 4. First of all, we want to show that we can re-
place the system F~ = (»;) by another one with the same proper-
ties and which is everywhere multiplicative, e, if 5; <> e and
€; €5 = e, then n;(x) 9;(x) = (x) for every xzeF. We give a proof
by induetion. Suppose that a certain subgroup /A of F~ has been
replaced by a family A in such a way that: a) if 7 (¢ A) replaces
n (e ), then =7 a.e., b) the elements of A form an everywhere
multiplicative group isomorphic to A. Let « be an element of F~,

(*) G is the least closed subgroup containing T (F).
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6 é/\, an [a] the subgroup generated by a. If «™ does not coincide
(almost everywhere) with a function of A whatever be n £ 0, then
we define [A, a] = [A, a], where [ . ] indicates the subgroup ge-
nerated by the set of elements contained between the brackets. If
for some ns£0, a® coincides a.e. whith a funection of A\, then let
m be the least positive integer with such a property. Then,

m ——

a" =7 (e \) ae. Let us define a=a">™ for every x where
a(z) %<7 (z), and &=a where o” (z) =7 (z). Then, [A,a] is
an everywhere multiplicative group, and [A, a] ~ [A, ], and we
define [A, o] = [A, @a]l. Tt only remains to prove that
@ (F) c « (@), where ¢ is the image of o in the assumed isomor-
phism between F~ and G*. It is obvious if €« (&) coincides with the
unit cirele. If not, ¢ (G) is the set of all k-th roots of the unity,
for some k. Since 5 (F') € ¢ (), by the inductive hyphotesis we
have, 4 (F') ¢ ¢ (@). From the very definition of a we get
a@ (I') © «(G). Therefore, we can suppose that our system /'~ is an
everywhere multiplicative group such that »; (F) C e (G).

Let P=1I¢; (G) be the cartesian product of the image groups
¢ (@) when ¢ runs through G4. It is a compact abelian group.
Let S be an application from F into P defined by (Sy): = 7:(y).
Let G’ be the compact subgroup of P generated by S(F). Then
S(F) € & and pri(8(y)) =n(y).

It is well-known that the family of proyections pr; of P onto
& (@) is a set of generators of the free group P*. Then, the functions
pr; restricted to G’ form a set of generators of the character group
G4, (ef. [9], IT).

Let ¢ = pry® pro®2 ... pra®", (e; integers) be a character of
@. Then, ¢(Sy) =m® ... 7, will be, by hypothesis, equal to
some »-function, say mx : ¢(Sy) — 7 (y). This means that ¢ coinei-
des with pr; on S(F). Since G is the least compaet subgroup of P
containing S(#) and since ¢ and pr; ave characters of G’ which
coincide on S(¥), we have: ¢ = pr on &’. Then G’ is isomorphie
to (pr;), and therefore to (4:) and to (e;) = G* By the Pontria-
gin duality theorem G and G’ are isomorphic. Let ¢ be the iso-
morphism, ¢ : @ — @, for which pr; = &, and T be defined by
T(y) =y (S(y)). T is therefore an application from F into G.
We have also: pri/G’ =e 0 ¢, and (e 0 ¢ 0 8) (y) =& (Ty) =
=pri(Sy) =4 (y). For any set M of the Borel field in the unit
circle, 7= (e;=*(M)) = 4~ 1(M) belongs to the Baire o-field of 7,
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and since the family of sets { &=*(M); ¢ ¢ G*, M a Borel set | ge-
nerates the o-ring of Baire sets, we conclude that for any Baire
set of G, T—1(@) belongs to the Baire o-ring of F. This conecludes
the proof of theorem 4.

Proof of theorem 5. Since (Sy); =#:i(y), S is a continuous
mapping from # into G’. From 7 = o 8, we gel the desired con-
tinuity of 7'

Proof of theorem 6. This theorem reduced to theorem 7 in the
following way. We have seen that T—1(e;=1(M)) = %™ (). From
lemma 1 and the hypothesis we obtain:

v(T=t (&=t (M) =v(e™ (M) =m; (MNe () =
=p(e=t (M), (4)

where m; is the normalized Haar measure on ¢ (G).
From:

S (¥) 95 (y) dv=fm W) dv=Ffea&(Ty)dv=F e (z) dv T~ =

=by (4) =fa& (2) dp=fe (%) ¢ (z) dp =8, (5)

we see that the family F~ is orthonormal. Then, the preservation of
measure follows from theorem 7.
Proof of theorem 7. From (5), we get

(? cini (¥), ?di 7 (¥)) = F’. cidj (e (Ty), ¢ (Ty)) =
i=1,j=
=3c¢id; (e (2), ¢ () = (Zcie (%), 2dje (%)) (6)
1 1

Therefore finite linear combinations of functions of G* have
an image of equal norm. We want to show that v(T—1M) = u(M)
for any Baire set M. We shall prove it for J open.

From this it follows that the preservation of measure holds
for any null set. An easy L? approximation argument together with
the last observation and (6), conclude the proof.

If M is an.open Baire set, it is o-compact, and therefore it can
be constructed a sequence (g.) of linear combinations of funetions
of G* such that g,(z) — xur (z) everywhere and houndedly. The
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same happens to 2, (y) = g.(Ty) and xr~'x(y). Since ||gn — gnllz =
= ||~y — hmll2, it follows that (h,) converges in L2(F) to a cer-
tain funetion which must coineide with xr—*x(y). Moreover,
lxe =%t flo = 1im | e [lz = L || g lls = If x Il=

Independece. 3. In this paragraph we want to see how the con-
cepts of free group and independence in the sense of probability are
related. We call almost free an abelian group @ which is isomor-
phic to the direet product II Z; of a family (Z;), iel, of cyeclic
groups. We also say that a subset T' of G is an almost free family
of gemerators of @G if in the isomorplhism between G and II Z;, the
image of T is exactly a family of generators of the cyelic groups Z°.
Finally, we say that a set T' of functions on a compact group G is
p-independent if it is a set of generators of G independent in the
sense of probability.

Proposition 1. Let G be a compact abelian group end G 1ts
character group. Let /\ be a subgroup of G* Then T is a p-inde-
pendent set of A\ if and only if it is an almost free family of genera-
tors of A.

Proof. Let us see the “only if” part. First of all we observe that
the results mentioned in [2], pp. 191-193 remain true, even for
not necessarily real funetions. We need only to prove that:

N—1 pn, n . . n
II = ¥ implies o1,
j=1 eij eiN Z'N
We have:

1= J( . N1 ?Zj ) e_nN du = (by the hypothesis of
! j ‘v independence) =

N—1 N n n
= (H je] clp).jeNdp—: J'eNdlL
j=1 ) 3 iN

2
, and therefore:
iN

n
From the last equality we obtain that e_N must be identically
N

one.
We pass now to the “if” part. Suppose first that A = G".
Then @ is isomorphic to a product of compact groups G; and such
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that (II G;)* =T Z;. From this follows immediately the p-indepen-
dence of T. If A is not all of G*, let us consider the subgroup
H=n{zeG; g(z) =1, ge A }. Observe now that the produect
measure of the (normalized) Haar measures on H and G/H is the
Haar measure on G. Besides /A is the character group of G/H.

These two observations reduce the case A =% G to the case
A =G, QED..

To finish this paragraph we shall observe how these concepts
are invariant under measure preserving transformations.

Proposition 2. Let T be a measurable transformation from F
into G, F and G compact abelian groups. Let (e(x)) = G* and
7:(y) = e(Ty). a) If T(G) is dense in G then T = (&, (x)) is an
almost free family of G* if and only if (n:, (y)) is almost free (5).
b) If T 1s measure preserving, then (e, (x)) is p-independent if

and only if (q:i. (y)) s p-independent (°).

S
Proof. a) follows from the definitions. b) is a consequence of

v (A= O0) = (AT (71 () =

i=1 i=1

= (T‘i{ A =t (M) ] )—

i=1

=u ( N e~ (M) =T (e (M) =Ty (g™ () .
f== i=1 ]

i=]

Part 11

1. Let{ G;} be a family of locally compact groups, pairwise
disjoint and all of them commutative. We denote by G the
union U @&; with the supremum topology, i.e., a set is open if and

i€l
only if it intersects in an open set every G;. Therefore, G is a locally
compact, space and every Baire (Borel) set in G is of the
form 'S M;, M; C G;, where J is a denumerable subset of I and
ied i
M, is a Baire (Borel) set of G;. For any function f on G, f; will

. 1 m . .
(*) 1In the following sense 5 "L q I =g implies gf = 1.
B! tn

(°) In an obvious sense.
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denote its restriction to the clopen subset G;. Evidently, fe L'(G)
when and only when f=3;sfi, J is finite or countably
infinite, f; e L'(G:) and ||f|i=3 iesf e |fi|dpi < 0. Briefly,
LMNG) =3 L'(G;). We define now the convolution between two
funetions f, g of L*(@) by:

fxg=3fixgi . (1)

From, [[7%g =13 fi* gi lp < 3 filla 1 gi llp <
K Ngl-SNfll = I flli-1l g llp we see that L'(G) is a Banach al-
gebra with this operation as multipliecation. Of course, convolution
is commutative, associative and bilinear. To avoid long proofs and
to reduce the repetitions we stick to Loomis’ book for the nomen-
clature and references on Banach and group algebras.

Let M be a regular maximal ideal of L'(G). From the very
definitions follow that: 1) the restrictions 1{; to G; of the functions
of M constitute an ideal; 2) the restriction to G; of an identity of
LY(G) modulo M, is an identity of L*(&;) mod. 1;; 3) every M; is
maximal or equal to L'(@F;), and there is one and only one different
from L'(G;). Then,

Lemma 1. The space of regular mazimal ideals of L'(G) coin-
cides with the set theoretic union of the spaces of maximal regular
ideals of the L'(G;).

Each maximal regular ideal is the kernel of a multiplicative
linear functional, and conversely. Since, the space G is such that
(L'(@)) * =L~ (@), (ef. [7], p. 43), any maximal regular ideal
is associated to a funetion of L= (&). This function will be called
a character of @. Let I be the index for which M;, s« L'(Gy), and
ay(z) the character associated to M. For any funection f such that

fr=0 ae, it holds: f(M)=[f(z) au(z) du=0, since feM.
Therefore, ax(x) is zero execept on Gy, and obviously, coincides
there with a character of G%. Then,

Lemma 2. The characters of G define o set in one-to-one co-
rrespondence with the union of the character groups G;; each cha-
racter of G s zero on every G; excepl on one of them and there
coincides with a character of that group.

The topology of the family of characters G* of @, is by defi-

nition the weak topology induced by the functions f(M) = f(ax) =
= [ f(x) ax (z) dz, f e L1(@). Tt follows easily that,
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Lemma 3. The topology of G* is equal fo the supremum of
the topologies of the spaces G,;. It coincides with the topology of
the uniform convergence on compact sets of G.

The last assertion of lemma 3 is very easy, and also the Pon-
trjagin’s theorem. The space of maximal regular ideals of G*
is homeomorphic to G.

Moreover, two locally compact spaces like G, G* and G2, such
that there exists a homeomorphism which is a group isomorphism
from every group contained in G' onto a group in G2, will be ca-
lled an isomorphism between Gy and G Therefore, G 1is iso-
morphic to G.

2. LY(@) has a symmetric involution defined by f*=3 f#;
where f;* — f;(z—1). Obviously,/#* — f~—. This involution is an
isometry on L(G). :

Let L°(G) be a dense ideal in L'(G) defined as: f e LO(@) iff
feL'(@), f is a continuous function and 3 || f; || . < . Let ¢(f)

be the positive linear functional (i.e., ¢ (f* f#) >0 for any f < L")
on L? defined hy:

¢ (f) =371 (es),
where e; is the identity of Gi.

An element p of L=(G) will be called positive definite if
¢ (p*f) =0,(f) is a positive functional on L!'(G).

Auxiliary the orem. If peL® is positive definite and extendi-
ble (") then there exists a wnique Baire measure m on. G such

that ¢(p*f) = fGA}:(a) 2,;(@) dm(a) =3 (pi * i) (e;), and

pell (GNm).

Proof. Notice that L' (@) is semi-simple and self-adjoint. Then
the theorem follows from theorem 26. J of [7].

The restriction of p to G;, p;, verifies:

(pi = fi) (&) = fe] f (a) p (a) dm(a)

and the proof in 36. B, [7], shows that the restriction of m fo G
coincides with its Haar measure there.

(" 6r(f) can be extended so as to remain positive when an identity is
added to L,
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3. First Bochner Theorem. The formula,
p(z) = fa(z) dp(a),

establishes an tsomorphism between the functions p(x) e L* (@)
which define positive Ulnear functionals and the positive Baire
measure w such that:

JGi"d,u. (a) =k < o, for any 1.

Proof. If pe L= (G) defines a positive functional (that is,
(f = f*, p) = 0) then p; defines a positive funectional = and

1Dille =12 [lao -

From the Bochner theorem (36.A, [7]) it follows that:

pi(z) = JG,\ a () dp; (a), where u; is a Baire measure, positive

2

2

and such that JGA dpi(a) = Dille =P lle ="k

Then, p (ac)‘._:J. na(z) dp(a), where u (a) coincides with
¢
mi O Gi.

Conversely, given a u (o) with the mentioned properties,

pi (x) :J ar® (z) d u (a), is a funetion of L= (G;) which defines

K3

a positive funectional on L' (G;). Besides, || pi e = JG ndp(a) =

=k oand (Fx ¥, p) = 3 (fix fi,p:) =0.
(As in the corollary to 36.A, [7], every p; is essentially uniformly
continuous on G;).

Second Bochner theorem. Let pe L™ (G) . p defines a positive
and extendible linear functional iff ferndp (a) < 0.

Proof. 1t is a direct application of the Herglotz-Bochner-Weyl-
Raikov theorem (cf. [T]).

Corollary. If p(x) defines an extendible positive linear functio-
nal then 3 || p; l|o < . If besides p(x) e L* (@), then p(x) ¢« L° (G).
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Proof. It follows from the preceding theorem, ohserving that

JG ~ dpi (a)=| pill» and that p; is esentially uniformly continuous.
]
Lemma 4. p e L* (G) defines an extendible positive linear func-

tional if and only if p defines an extendible positive definite linear
functional.
Proof. If p defines an extendible positive funectional, then

(f,p) = (et. p.96, [7]) = (f*, p) = (p,[*) = (f, p¥), and there-
fore, p = p*. Since ¢ (px ) =(f, p¥) = (f,p), p is positive de-
finite.

If p is positive definite, the functional (f, p*) = ¢ (px f) is
positive and extendible, and therefore, p¥ = (p¥ )¥ = p defines a
positive functional. ,

For the group algebra L' (G) of a locally compact abelian
group G, a linear positive functional is continuous if and only if
it is extendible, (ef. [7], p. 126). However, for locally compact spa-
ces of the type defined in the first paragrapl, the continuity of a
linear positive funetional is not equivalent to its extendibility as
first and second Bochner theorem show. For G a group, peL® (&)
defines a positive functional iff it is definite positive (e L° (G)).
An essential role is played by the extendibility, but this is not showed
up because of its equivalence with continuity. This ean be seen from
lemma 4. If in that lemma we drop the condition on extendibility
on the positive linear functional defined by p (z) e L* (&), from
Bochner theorems it follows that, in general, is mot true that
peL®(@). This different behaviour is a consequence of the lack

of an approximate identity on L' ( U G;) when I is not finite.
iel

4. Inversion theorem. If peIr (G) N L* (@) and defines an

extendible positive linear functional, then pe L' (G*) and

p(z) =fa(z) pla) da,
where d a s a certain measure on G* which coincides with a Haar
measure on every G~
Proof. From lemma 4, it follows that p (z) is positive definite.
Since p; is positive definite on G, p may be assumed to be conti-
nuous, and therefore p e L® (G).
Then by the auxiliary theorem,

(£,0) =6 (0% ) = S f (a) D (o) da, and peL? (GM).
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On the other hand we have:

(p, ) = (f, p¥) = (f¥,p) = fftpda=fpfda
From the last formula we obtain:

(p,f) =(fp(a)a(x)daf) for any felL

We shall denote by P ( c L° the family of funections of
L' N L* which define positive definite and extendible linear fune-
tionals on L' (@) and by P?, the analogous family on G*. By [P]
we designe the subspace generated algebraically by P. :

Plancherel Theorem. The Fourier transformation f—f preser-
ves scalar products when confined to [P]. Its L2-closure is a

unitary mapping from L? (@) onto L2 (G) .

Proof. For peP, we have p—=p¥* and therefore p—=p.
Then ¢ (p1 * ps = (P1, Pa™*) = (1, P=2), equals by the auxiliary theo-
rem do (p1, P2) = (P1, p2). Then, (pi, p2) = (py, p2). This equa-
lity can be extended to [P] and to the L>-clousure of [P], i.e.,
to L? (@). The Fourier transformation is onto because it is so for
L2 (G;) and L2 (GY;) . ‘

We want to prove now that [P]* = [PA]. Given peP, let us

take the positive part ¢ of its real component. Then, ¢ defines a po-
sitive definite funetional on L' (G*) . Besides,

gille=31qillh < oo

From second Bochner theorem it follows that it is extendible,

and from the inversion theorem, that g e L* (@). Therefore, p e [P] .
The inclusion in the other sense follows from the inversion and

Pontrjagin theorems.

5. Finally, we observe that the regularity of L (G), the taube-
rian theorem, the theorem on invariant subspaces, and the condition
D for L (@), admit the same statement for G a locally compact
abelian group or G a locally compact space as defined in paragraph
1. The proofs are trivial or follow the same lines as given in [T7].
(Under a translate of f () in{y;}, ¥i«@G;, the function equal to
f (xyx) on Gy, kel, is to be understood). The generalized Wiener
tauberian theorem can be translated in almost the same way as it is
very easy to verify. It has no content if every G; is compact.
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BIBLIOGRAFIA

RENATO CaccroppoLi, Opere, en dos volimenes, Cremonese, Roma 1963.

La Unién Matem#tica Italiana, con la contribucién del Conmsiglioc Nazio-
nale delle Ricerche, encomendé a una comisién presidida por el Prof. Mauro
Picone e integrada por ocho profesores, entre los cuales se cuentan quienes fue-
ron discipulos avanzados y, posteriormente, estrechos amigos del singular mate-
mético napolitano, la realizacién de esta obra en la que se ha reunido, pricti-
camente, la totalidad de las publicaciones que, desde la primera de 1926 (resu-
men de su tesis de doctorado) hasta la dltima de 1955 traducen el pensamien-
to cientifico de Remnato Caccioppoli.

Las mismas se han distribuido en dos volimenes siguiendo el eriterio, se-
gln se aclara en el prefacio, de incluir en el primero los trabajos sobre argu-
mentos de la teoria propiamente dicha de funciones de variable real: integra-
cién, totalizacién, funciones de conjunto, investigaciones vinculadas al anélisis
funcional, a las ecuaciones diferencialés ordinarias y en derivadas parciales, a
las funciones de una o varias variables complejas y las referentes a las funcio-
nes pseudo-analiticas. También en el prefacio se incluye un ftil comentario, a
modo de orientacién, de las publicaciones contenidas en el texto, seflaldndose
en él, fundamentalmente, las ideas centrales, varias de ellas originales del propio
Caccioppoli, que le sirvieron de guia en sus trabajos de investigacién. Se in-
cluye, por tltimo, una lista en orden cronolégico de la totalidad de las publi-
caciones por él realizadas.

La obra satisface una necesidad evidente. Los trabajos en ella reproduci-
dos traducen (*) ‘“una personalidad cientifica de un vigor y de una originalidad

(*) GiusEpPE Scorza DRAGONI, Renato Caccioppoli, Appendice necrol. ai
Rend. dei Lincei, Fase. III, Roma 1963. (Esta necrologia contribuye en mu-



