ON THE EXTENSION OF CURRENTS

by M. HERRERA

1. Let A be an open set in number space \mathbb{R}^n and F a closed subset of A. Let T be a closed o-continuous current on A - F and $\lambda > 1$ a real number such that the following condition C_{λ} is satisfied on $A: C_{\lambda}$ — For each relatively compact open set G such that $G^- \subset A$ there exists a constant $k(G) \ge 0$ such that $||T||_{B_r} \le \le k(G) r^{\lambda}$ for every open ball B_r of radius r contained in G.

P. Lelong has proved in [2] (theor. 4) that, if F is a submanifold of class C^s ($s \ge 2$) of A of dimension $d < \lambda - 1$, then the simple extension of T on A exists and is closed. This is used in [2] to prove that the integration current on a complex analytic set is closed. Here we give a consequence of the first result and show to apply it to the integration on a semianalytic (orientable) set. The properties of currents we use implicitly here are to be found in [1] y [2].

2. For each open set A in \mathbb{R}^n , let $\mathcal{D}(A)$ be the space of C^{∞} — differential forms on A with compact support. The norm $\|\phi\|$ of a form $\phi \in \mathcal{D}(A)$ is the maximum on A of the absolute values of the coefficients of ϕ . If T is a linear form on $\mathcal{D}(A)$ and G is a relatively compact open set in \mathbb{R}^n , the norm $\|T\|_G$ of T on G is defined by

$$||T||_{\mathcal{G}} = \sup (|T(\phi)| : \phi \in \mathcal{D}(\mathcal{G} \cap A) \text{ and } ||\phi|| \leq 1).$$

A o-continuous current T on A is a linear form on $\mathcal{D}(A)$ such that $||T||_G$ is finite for each relatively compact open set G with $G^- \subset A$. All the currents occurring here are o-continuous. For every open subset U of A, T|U denotes the restriction of T on U.

If A is open in \mathbb{R}^n , F closed in A and T is a current on A - Fsuch that $||T||_{\mathcal{G}}$ is finite for each relatively compact open set G with $G^- \subset A$, then it is proved in [2] that there exists one and only one extension T' of T on A (i.e., T'|A - F = T) that verifies $||T'||_g = ||T||_g$ for such G; T' is called the simple extension of T on A.

2.1. DEFINITION: Let T be a current on the open set A in \mathbb{R}^n and F a subset (not necessarily closed) of A. The norm of T on F is zero ($||T||_F = 0$) if, for each compact set K in A and each $\varepsilon > 0$, there exists a relatively compact open set G in A such that $K \cap F \subset G \subset G^- \subset A$ and $||T||_G \leq \varepsilon$.

 $||T||_F = 0$ if and only if $||T|U||_{U\cap F} = 0$ for each member U of an open covering of A. If (F_i) is a denumerable family of subsets of A such that $||T||_{F_i} = 0$ for all i, then $||T||_{U^{F_i}} = 0$.

2.2. PROPOSITION: Let A be an open set in \mathbb{R}^n , F a closed subset of A, T a current on A - F and T' an extension of T on A. Then the following statements are equivalent:

- (i) T' is the simple extension of T on A.
- (ii) $||T||_G = ||T'||_G$ for any relatively compact open G with $G^- \subset A$.

(*iii*) $|| T' ||_F = 0.$

Proof: The equivalence between (i) and (ii) has been proved in [2]. Let us suppose (ii) true but not (iii). Then there exists a compact set $K \subset A$ and $\varepsilon > 0$ such that for each relatively compact open set $G, K \cap F \subset G \subset G^- \subset A$ implies $||T'||_G > \epsilon$. Choose one such G and, by condition (ii), a form $\phi \in \mathcal{O} (G - F)$ with support K_1 such that $T'(\phi) > \varepsilon$ and $||\phi|| \leq 1$. By the same argument choose a $\phi_1 \in \mathcal{O} (G - (F \cap K_1))$ such that $T'(\phi_1) > \epsilon$ and $||\phi_1|| \leq 1$. After a finite number of steps a form $\psi = \phi + \phi_1 + \ldots$ is obtained such that $\psi \in \mathcal{O} (G)$, $||\phi|| \leq 1$ and $T'(\psi) > ||T'||_G$, which is absurd.

Conversely, if (iii) holds but not (ii), let G be a relatively compact open set in A such that $||T||_{G} \neq ||T'||_{G}$; then $||T'||_{G} - ||T||_{G} = 2d > 0$ and there exists $\phi \in \mathcal{D}(G)$ such that $||\phi|| \leq 1$ and $T'(\phi) > ||T||_{G} + d$; let K be the support of ϕ . By (iii) there exists an open set U which verifies $K \cap F \subset U \subset U^- \subset A$ and $||T'||_{U} < d$. Let $\phi_1 \in \mathcal{D}(U)$ and $\phi_2 \in \mathcal{D}(G-F)$ be forms such that $\phi = \phi_1 + \phi_2$, $||\phi_1|| \leq 1$ and $||\phi_2|| \leq 1$. Then $|T(\phi_2)| \leq ||T||_{G}$ and consequently $T'(\phi_1) = T'(\phi) - T'(\phi_2) \geq T'(\phi) - - ||T||_{G} > d$, which contradicts the choice of U.

2.3. COROLLARY: Let A be an open set in \mathbb{R}^n and $\mathbb{F}_0 \subset \mathbb{F}_1$

closed subsets of A. Let T_0 be a current on $A - F_0$ such that $|| T_0 ||_{F_1-F_0} = 0$ and let $T_1 = T_0 | A - F_1$. Then if one of T_0 or T_1 has a simple extension on A, so does the other, and both simple extensions are equal.

2.4. LEMMA: Let A be an open set in \mathbb{R}^n and T a current on A which verifies condition C_{λ} ($\lambda > 1$) on A. Then $||T||_{\mathfrak{M}} = 0$ for each submanifold M of A of class C^s ($s \ge 1$) and dimension $d < \lambda$.

Proof: Choose $P \,\epsilon M$ and a coordinate map $\chi : U \to R^n$ of class C^s of a neighborhood U of P such that $\chi (U \cap M) = R^d \subset R^n$. It suffices to prove $||T|U||_{M\cap U} = 0$. As χ is a C^s — isomorphism, this is equivalent to $||T'||_{R^d} = 0$, where $T' = \chi (T/U)$. As T|U satisfies C_{λ} on U, so does T' on R^n and, because of an usual reasoning in measure theory (see [2], theor. 3), we have $||T'||_{R^d} = 0$.

2.5. PROPOSITION: Let A be an open set in \mathbb{R}^n and F a closed subset of A. Let T be a closed current on A—F. Let us suppose the following two conditions are verified:

(a). — F is contained in a denumerable disjoint union of submanifolds V_i of A, of class C^s $(s \ge 2)$, of dimensions $d_i \le d$ $(0 \le d < n)$, and such that $(V_i^- - V_i) \cap A \subset \cup (V_j : j > i)$ and $\cup (V_j : j \ge i)$ is closed for all i.

(b). — T verifies condition C_{λ} on A with $\lambda > d + 1$.

Then the simple extension of T on A exists and is closed.

Proof: By (b) || $T ||_{\mathcal{G}}$ is finite for each relatively compact open G with $G^- \subset A_i$; then the simple extension \widetilde{T} of T on A exists ([2], Prop. 1). By (b) and 2.4 || $T ||_{V-F} = 0$ for all i, therefore $||T||_{\bigcup V_i - F} = 0$ and the simple extension \widetilde{T}' of $T' = T|A - (\bigcup V_i)$ on A exists and is equal to \widetilde{T} by 2.3. Consequently it suffices to prove that \widetilde{T}' is closed. For each i let T'_i be the restriction of \widetilde{T}' on $A - (\bigcup V_j : j \ge i)$, where $(\bigcup V_j : j \ge i)$ is closed because of (a). Let us prove by induction that each T'_i is closed. Since T is closed, so is $T'_1 = T'$. Let us suppose T'_i is closed. By 2.3 T'_{i+1} is the simple extension of T'_i on $A - (\bigcup V_j : j \ge i+1) =$ $(A - (\bigcup V_j : j \ge i)) \cup V_i$ and, according to the theorem of Lelong quoted in § 1, it is closed. This implies that \widetilde{T}' is closed, as was to be shown.

By simplicity we have worked in an open set in \mathbb{R}^n . All remains valid in a differentiable manifold of class C^s $(s \ge 2)$.

3. AN APPLICATION.

3.1. Let X be a connected real analytic manifold. For each $x \in X$, let S(x) be the smallest family of germs of sets in x such that: (1) $a \in S(x)$ and $b \in S(x)$ imply $a \cup b \in S(x)$ and $a - b \in S(x)$; (2) S(x) contains all the germs defined in x by sets of the form (f(y) > 0), where f is a real analytic function defined in a neighborhood of x. Following S. Lojasiewicz ([6]), a subset M of X is semianalytic if, for each $x \in X$, the germ of M in x belongs to S(x).

Let M be a semianalytic set in X; a point $x \in M$ is p-regular if there exists an open neighborhood U of X such that $U \cap M$ is an analytic submanifold of X of dimension p. The set of regular points (i.e., p-regular points for some p) of M is dense in M. The dimension $\dim(M)$ of M is $\leq p$ if there are not q-regular points in Mwith q > p. We set $\dim(M) = p$ if $\dim(M) \leq p$ but not $\dim(M) \leq p-1$. If $\dim(M) = p$, we denote by M_p the set of p-regular points of M and define $\partial(M) = M - M_p$; $\partial(M)$ is a semianalytic set of dimension $\leq p-1$ and we can call it the singular part of M; if M is closed, so is $\partial(M)$. Now it is possible to decompose $\partial(M)$ in its (p-1) - regular part and its singular part, and so on.

If M is closed semianalytic of dimension p, we can then write $M = (\bigcup V_i : i = 1, ..., p)$ where the V_i are disjoint analytic submanifolds of X of dimension i and $V_i^- - V_i \subset \bigcup (V_j : j < i)$ for each i = 0, ..., p (cf. 2.5). The family of the connected components of M_p (dim (M) = p) is locally finite (1).

3.2. Let M be a closed semianalytic set of dimension p of an open set A of \mathbb{R}^n such that M_p is oriented. The restriction of each form $\phi \in \mathcal{D}(A - \partial M)$ to M_p is a form $\phi^* \in \mathcal{D}(M_p)$ with compact support. Then the current

$$I^{0}_{M}(\phi) = \int_{M_{n}} \phi$$

on $A = \partial M$ is well defined, and is a *o*-continuous current of di-

⁽¹⁾ All this properties have been proved by Lojasiewicz (unpublished). They were enunciated in a course given in 1964 at the University of Buenos Aires. Summaries of results will be given in [4] and [5]. Some of the facts are treated in [3] and [6].

mension p. In a forthcoming paper it will be proved that I^{0}_{M} satisfies condition C_{λ} of § 1 with $\lambda = p$. Then the simple extension I_{M} of I^{0}_{M} on A exists; we call it the integration current on M. (cf. [2]). If we recall the decomposition of $\hat{c}(M)$ into submanifolds (3.1) and Proposition 2.5, we see that I_{M} is closed when dim $\partial(M) \leq \dim(M) - 2$. Trivial examples (consider the interval [0,1] in R) show that I_{M} is not closed in general if this restriction is not imposed. Moreover, the extension of this definition and properties to a semianatytic set M in a real analytic manifold X is immediate. In the case X is a complex analytic manifold and M a complex analytic set in X of (complex) dimension p, the current I_{M} defined in this way by considering the canonical orientation of M_{p} coincides with the one defined by Lelong in [2]. It is always closed because dim_R $\partial(M) \leq \dim_{R} M - 2 = 2 p - 2$.

BIBLIOGRAPHY

- [1] DE RAHM, Variétés différentiables (Actualités Scientifiques et Industrielles nº 1222, 1955. Hermann, París).
- [2] P. LELONG, Integration sur un ensemble analytique complexe (Bull. Soc. math. France, 85, 1957, p. 239 - 262).
- [3] S. LOJASIEWICZ, Sur le probleme de la division (Studia Mathematica, T. XVIII, 1959, p. 88 136).
- [4] S. LOJASIEWICZ, On the triangulation of semianalytic sets (Univ. of Pisa, to be published).
- [5] S. LOJASIEWICZ, Sobre la división de distribuciones y la triangulación de conjuntos semianalíticos (Fac. C. Exactas y Naturales de la Universidad de Buenos Aires, por publicar).
- [6] S. LOJASIEWICZ, Une propiété topologique des sous ensembles analytiques réels (Colloques du CNRS, Paris, Juin 1962).