
ON THE THEORY OF INTERPOLATION SPACES 

JAAK PEETRE 

INTRODUCTION. In recent yeaTs various interpolation methods (i. e. cons
tructions of interpolation spaces) have been given by many authors (see the 
bibliography, in particular [11], [12], [13], [14], [2], [5], [6], [9], [10]). In 
this article, which is based on three lectures given at the Universidad de Bue
nos Aires in May 1963, we consider two quite general interpolation methods 
called K-and J-methods, the introduction of w;hieh was suggested by the "equi
valence theorem" of Lions-Peetre [16], [17], combined with some considera
tions in Peetre [21]. The K-and J-methods thus generalize the methods studied 
there .. (It turns also out that K-methods are equivalent with the method of 
Gagliardo [6].) A preliminary account of the theory of K-and J-methods was 
given in [22]. In order to avoid unnecessary repetition we shall below concen
trate on further developments not explicit ely included in [22] .. 

The are two parts. In Part I we establish several interpolation theorems 
for K- and J- spaces give also an extention of the above mentioned "equi
valence theorem" to these spaces. Theorems 1-5 are essentially contained in 
[22] while theorems 6,8 are new. As an application we obtain the interpolation 
theorems of M. Riesz [26] and Marcinkiewicz [18] as well as an extention or 
these theorems to Orlicz space. In Part II we consider more general spaces 
called n - and·M - spaces. Some of the results of Part I can be easily carried over 
to the more general situation. The motivation for the introduction of N- and 
M-paces is that in this way we obtain a unified approach to K- and J-spaces on 
one hand and the "approximation spaces" of [21], [22] on the other hand. In 
particular we obtain general results (theorems 6-9) which cointain as a special 
case the "reiteration theorem" of [22] (which again generalizes the "reitera
tion theorem" of Lions-Peetre [16], [17]), as well as its analogue for the 
"approximation spaces" in [21], [22]. The enumeration of formulas etc. in 
the two Parts is independent. 

We warn the reader that we are very negligant what concerns all ques
tions of convergence, concentrating instead mainly on establishing the inequa
lities involved. It is of course clear that this is no serious limitation of the 
value of the theory established; in most cases the reader should have no diffi
culties in supplying missing details. 
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PART I 

Sonte interpolation theorems for K- and J- spaces 

Let A 0 and Al be two normed spaces both contained in one and 
the same complete normed space s/l, the injection of Ai into A being 
continuos, Ai C sf{, (i = 0, 1) . We can then form the sum Ao + At 
of Ao and At and the intersection Ao n Al of Ao and A 1 • Each of 
these spaces is linear. In Ao + .cl1 we consider the family of (equi
valent) norms 

(1) K(t, a) = inf (liaoIIAo+ t IlaIIIA.) (0 < t < 00) 
a ~ "0+ al 

and in Ao n At the family of (equivalent) norms 

(2) Jet, a) = max (1IaIIA. , tllnllA1) (0 < t < 00) 

Fixing t(e.g. t = 1) they become normed spaces. 
Let moreover <I> = <1>[<1>] be a {unction norm, i.e. a positive (fi

nite or infinite) functional defined in the set nt+ of all positive (fi
dt 

nite or infinite) functions on (0, 00) measurable with respect to t 

such that the following axioms hold: 

a) <1>[<1>] = 0 ~ <I>(t) = 0 a.e.; <1>[<1>] < 00 ~ <I>(t) < 00 a.e. 

/3) <I>[a<l>] = <1>[<1>] (a> 0) 
~. 

y) <I>(t) s ~ <l>v (t) a.e. --)0 <1>[<1>] < ~ <I> [cp~] 

We say that <I> is of genus < f where f = f(t) IS a positive 
function if and only if the following inequality holds: 

(3) <I> [ <I> ( At)] < f ( A ) <I> [ cp ( t) ] . 

K ,\Ve denote by (Ao, A l ) (J) the set of elements a € Ao + Al such 

that 

<I> [K(t, a)] < 00 
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and by (Ao, A 1 ) : the set of elements a" Ao + Al such that there 

exists a measurable with respect to d: function u = u(t) with va

HieS in Ao; n A1 such that 

(5) 
'" dt 

a=f u(t) - (in Ao+A1 ), <I>[J(t,u(t»] < 00. 
u t 

Bach of these spaces is linear. They become normed spaces if we 
introduce the norms 

(6) 

and 

(7) 

(8) 

and 

(9) 

"Ve may call these spaces K- and J-spaces. 
Let us set 

CK . (<I> [min(l, t)])-1 

'" 
CJ = sup f 

<ll[ <P] ~ 1 0 

. (J 1 ) rl.(t)~ mm ·'t 'f' t 

Then we have the following theorem. 

CK > 0, then Ao n A1 L (Ao, A1) ~ . If CJ < 00, then 

(Ao, A l ) ~ CAo+ A1 and, if CJ > 0, then Ao n Al C (Ao, Al)~. 
All injections are continuous. 

The proof may be found in [22]. 
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We now turn to the following important interpolation theorem. 
Let <I> be of genus <: f. 
Let, besides Ao and AI, Bo and BI be another two normed spa

ces contained in one and the same normed space CJ3, the injection 
of Bi into CJ3 being continuous: Bi C CJ3 (i=O, 1). , 

Theorem 2. Let II be a linear contimwtls mapping from Ao + Al 
into Bo + BI s1tch that 

(10) IIII all Bi <: Mi Iiall Ai' a € Ai (i=O,l) 

where 1v1o and MI are constants. Then 

(11) IIIIallB <: y Mo f ( ~~:) IlalIA' a £ A, 

or 

c.o 1 d>.. 
y = f min ( 1, -) f (>..) -. 

I) >.. >.. 

Proof: vVe note the following inequalities, which follow at once 
from (10) : 

(12) ( Mlt 
K(t II a) <: MoK --, - Mo' 

( lIiIt ) (13) J(t, II a) <: MoJ Mo' a , 

(14) Ket, II a) <: min ( 1, +) MoJ (~~S, a).' 

Case lQ: Using (12) we get, in view of (3) : 

( MIt ). IIII all(Bo, Bl)~ = <I> [K(t, II a)] <: .Mo <I> [K -M-;;' a J< 

<: Mof (!:) <I> [K(t, a)] = 1110 f ( !:) II a II (Ao, AI): . 
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'. MIt dt ; 
Case 29 : We note that II a = J II tl ( Mo )T. Usmg (13) 

we get, in view of (3) : 

and the last term tends to 

M f ( MI) II II J o \ Mo a (An. A,) of> 

if tl is chosen conveniently. 

. .. • If> ]Jilt dt 
Case 39 : We note agam that II a = f II 1t (~M ) -t·-. 

o ~ 0 " 

Using (14) we get: 

K(t, II a) <! K(t, II 1t (~~~S) d: < 

<fao . (l.!\M J(MIS (MIS))~= = mIn , '0 11',1"' U M 
OS, "1.0 . 0 S 

so that, in view of (3) : 

II IT a II(Bo• B l ): = <I>[K(t ,II a)] < 

00 • ( 1) (MltA (.MltA) \ dA < f n1111 1 -- Mo <I>[J -- u -- .] - < 
- 0 ' A lifo' Mo J A-

< T min ( 1,~) f ( A) dA M 0 f (1I11~ I '; <I> [ J ( t, tl ( t) ) ] 
o . A A 1J.0 

and the last term tends to 

00 ( 1 ) dA ( Mo ) K f min 1, -. f(A) -lifo f -M- II a II (Ao. AI) of> 
II A ,\ 1 

if u is chosen conveniently. 
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The proof is complete. 
Taking Ao = Eo, Al = B I , II = identity mapping we get as a 

concequence. 

Theorem 3. We have (Ao, Al)~ C(Ao. At): ,with continuous 

injection, provided 

(15) 
~ 1 dA 

f min (1,-. ) f(A) - < 00. 
o A . A 

Indeed we have then the inequality 

(16) II a II(Ao, AI): < {min ( 1,+) f(A) d: II a 11(040, AI)'~ 

a ~ (Ao, AI)'~ . 

The following theorem is a sort of converse. 

Theorem 4. We have (Ao, AI) ~ C(Ao, Al)~ , with conti

nnous injection, provided CK < 00 and 

( 17 ) min ( 1, ~) f( A) -+ 0 as A -+ 0 or 00 • 

Indeed we have the ineqnality 

(18) 

This follows easily from the proof of theorem 1 (cf. [22]) and 
the following lemma. 

Lemma 1. Let a € Ao + Al be s1/.ch that 

(19) min ( I,!) K(t, a) -+ 0 as A -+ 0 or 00. 

Then there exists a measumble with respect to ~~ function u = 1£ (t) 

with valtles in Ao n At sttch that 

(20) 
00 dt. 

a = f u(t) -t (m Ao + AI), J(t, u(t)) < 4 K(t, a). 
o 

For details we refer to [22]. 
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Remark 1. Note that (15) and (17) are fulfilled in the im
portant special case teA) = An, U < 8 < 1. This leads in view of [21], 
[23], to the "equivalence theorem" of Lions-Peetre [16], [17] 
mentioned in the Introduction. 

With the aid of theorem 4 we can give the following com
plement to theorem 2. 

Theorem 5. Ass~t1}w that (17) holds tnw. '['hen the conclusion of 

them·ern 2 holds also in the following case: 4Q 11 = .-1 0 , A 1 ) ! ' 
B = (Ro, B1)~ ,y = 4. 

Let us now observe that, in view of the definition (1), K (;t,a) 
is concave considered as a function of t. 'fherefore K (t, a) can be 
represented in the form 

(21) 
t 

K(t, a) = f lees, a) d s 
(J 

where k (t., a) is non-increasing considered as a function of t, provi
ded we impose also some auxiliary condition which assures that 
K(t,a) ~ 0 as t ~ O. (This is always the case in example 1 below). 

Theorem 6. We have a f (Ao, A 1)! 1:[ and only if q) 

[t k(t, a)] < 00, p1'Ovided 

(22) } I ( A) dA < 00. 
o A 

Proof: i) Since X(t, a) > t le(t, a) we get 

II a II(A", Al)K = <1> [K(t, a)] > <1>[t k(t, a)] 
If. 

and the "only if" part follows. 
ii) Let us make a change of variable in the integral (21) : 

1 dA 
K(t, a) = f t A k(tA, a) - . 

o A 
(23) 

Therefore 

I i~< 
11 a IlcA", AI): = <1> [K(t, a)] ::; f <1> [tAk(tA, a) 1 \ = 

,... 0 "-

1 dA 
< {, I(A) T <1>[t k(t, a) 1 

and the "if" part follows. 
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"\Ve illustrate the above results in a concrete case. 
Example 1. Let Ao = Lh Ai = Loo (with respect to some po

sitive measure on some locally compact space). Then one can prove 
(cf. [22]) that k(t,a) = a*(t) where a*(t), as customary, denotes 
the non-increasing rearrangement of a on (0, 00) with the measure 
dt, i.e. a* and a are equimeasurable (cf. e.g. [7]). 

a) (Lebesgue spaces) Let us take 

1 
One sees easily that 1> is of genus < A 1- P . Then 

1>[t k(t, a)] = II a* IILp = II a IILp 

so that by theorem 6 (Lh Loo)~ = Lp provided p > 1. Applying 

theorem 2 one gets as a special case the interpolation theorem of 
M. Riesz [26]. 

b) (Orlicz spaces). Let 1I1(A) be a positive, non-decreasing 
convex function and letHA) be a positive increasing function 
such that 1I1(Ap..) < ~ (A) 1I1(p..). Let us take 

<YO 

1>[1>] = :~~ r max (J 111(1);:)) dt, !) = II ~ IILM 
() 

(which is Luxemburg's definition of the norm in Orlicz space, cf. 

e.g. [8]). One sees easily that 1> is of genus <-~-~A) . Then 

1>[t k(t, a) 1 = II a* IIL j1! = II a tIL]}! 

.. K fl dA 
so that by theorem 6 (Li' Loo) = L!J[ provided < 00. 

1> U ~-i (A) 

Applying theorem 2 one gets as a special case a sort of generaliza
tion to Orlicz space of the interpolation theorem of M .. Riesz [26}. 

Remark 2. A quite different approach to such interpolation 
theorems can be based on an idea in eotlar [3], p. 197. 

We discuss next some extentions of theorem 2 in the case 3Q• 
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Theorem 7. Let II be a continuous linear mapping from Ao + A1 
into Bo + B1 such that 

(24) 

where Q(A) is a positive ftlnction and J![o and JIIl1 are constants. 
Then (11) holds with 

(25) 

Proof: Identical with the proof of theorem 2 (case 39 ). 

Theorem 8. Assume, instead of (24), that II satisfies 

where q (A) is a positive f1ulction and .1110 and 1111 are· constants. 
Then (24) holds with 

(26) Q(A) = l q(Ap..) dp. 
o p. 

Therefore hold also the conclusions of theorem 7. 
Proof: Using (23) we get at once 

K(t,a) < J q (~) dA J![oJ ("'11S, a) 
o S A J![o· 

and (24), with Q defined by (26), follows. 
Example 2. An important special case is q(A) = min (1, A). 

Then Q(A) = A if A < 1,= 1 + logA if A> 1. 
Example 3. Let Ao, A 1,c:f> be as in example 1 and q(A) as in 

example 2. Applying theorem 8 we can now get as a special case. 
the interpolation theorem of Marcinkiewicz [18] as well as a gene
ralization of it to Orlicz space. 

Remark 3. We conclude Part I with a few observations of 
heuristic nature intended to facilate the proper understanding of 
the above results. First we wish to point out that theorem 2 in the 
case 39 and theorem 7 are related to each o~her roughly as the 
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theorems of lV1. Riesz and Marcinkiewicz. 'Ve. also wish to point 
ont that the special case J(A) = 1..0 (thus essentially the case con
sidered in Lions-Peetre [16], [17] is related to the general case 
roughly in a similar way as Lebesgue spaces Lp to Orlicz spaces LM• 

PART II 

A geneml reiteration theorem. 

Let sIl be a complete normed space. We consider two arbitrary 

families of norms (l) insll, N(t, a) and M(t, a) (0 < t < 00). Let ~ 

be a function norm (see Part I). We denote then by F: the set of 

elements a € A snch that 

(1) <p[N(t, a) 1 < 00 

and by E ~ the set of elements a € A snch that there exist~ I'l measu

dt 
rable with respect to t function u = 'll(t) with valnes in ,r:;il such 

that 

(2) 
= dt 

a = J u(t) -t- (insll), </>[111(t,11(t»)] < 00. 

Each of these spaces is linear. They become normed spaces if we 
introduce the norms 

(3) II a II F ~ = <P [N (t,a) ] 

and 

(4) IlalIE! =inf<p[lIJ(t,1l(t»]. 

We may call this spaces N- and M-spaces. 

(') vVe use the word norm in a very wide sense including in this concept 
also what is usually called semi-norm (the value 0 is permited) and pseudo
norm (the value 00 is permited). 
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Let us discuss the tvYO principal examples of N - and 111-spaces. 
Example 1. I .. et . .:10 and .Li1 be two normed spaces both contai

ned in .91, the injection of .Lii into .91 being continuous (i = 0,1). 
We may take N(t, a) = I1.(t, a), 1.11(t., a) = J(t, a). Then wen have 

Exa.mpZe 2. Let W n (n = 0, 1, 2, ... ) be a family of linear sub
spaces of .<tl such that 0 = lV 0 C lV 1 C lV 2 C . .. We may take 

(5) N(t,a) = inf II a-w 1:_<tL 
'we:U"'-n 

and 

(6) 1I1(t, a) = II a 11.91 if a E W,,, e- n < t < e- n -- 1 or t> 1 

\Ve will start with some straight forward generalizations of 
<:ertains results of Part I. 

Theorem 1. Let II be a continnons linear mapping f1'om Sit into _<tL 
snch that 

(7) 

where Q(A.) is positive fltnction and Mo and M1 moe constant.~. 

Suppose <I> is of genus < f. Then 

(8) 

Ill1allF : <1Q (:)f(A.) ~A.Mof(~~~)llaIIE:,a€E:: 

(9) 

Proof: Identical with the proof of theorem 1. 2 (Case 39 ). 

If II = identity mapping, ,ve get as a consequence. 
Theorem 2 . .LisSltme ,that 

M(t, a) < Q (+) N(s,a) 
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where Q(A) is a positive function. Then we have E: CF:, with 

continuous injection, provided 

(10) 

Indeed we have the inequality 

Example 3. In the case of example 1 we may take Q (A) = 
min (1,-A) and in the case of example 2 Q (A) = 0 if A < 1, 

lifA<:1. 
(l 

Let us denote by sf{ the space of elements a € .9'1. such that there 

exists a constant R and a measurable with respect to ~t function 

function 1l = 1l(t) with values in sit such that 

(12) 
oc> dt 

a= [n(t) t' 1f[(t,n(t)) <RN(t,a). 

o 
Example 4. In the case of example 7 a € sf{ with R = 4 provided 

(see Lemma 1.1) 

(13) min( 1, ~) K(t, a) -)- as.t -)- 0 or 00 

n 
and in the case of example 2 a € sf{ with R = 2 provided (cf. [22]) 

(14) N(t,a) -+ Oast-+O. 

VIf e can now give a converse of theorem 2. 

n 
Theorem 3. If a € pN implies a € sf{ with R independent of a. 

~ . . 

then F: CE: ,with continuous injection. Indeed we have 

the ineq~wlity 
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(15) II a liE! < R II a II F: ' a EF: 
Example 5. In the case of example 1 it suffices that f satisfies 

(see theorem 1.4) 

(16) min ( 1, ~) f(A) -j- 0 as A -)- 0 or 00. 

In the case of example 2 it suffies that 

(17) fCA) -r 0 as A -;. O. 

Let f = fCA) be any positive function. Let i:l be a normed space 
contained in s1. 

Dcft"nition 1. IV e saiy that i:l is of class ClJ r. if and ouly if 

(18) N(t, a) .L Df(t) II a II A 

whc'rc D is a constant, and that A, is oj' class C JJ[ if and only if r 

(19) II aliA < C f ( ~ ) JYI (t, a) 

whet"e C is a constant. 

Example 6. Assume that <I> is of genus < f. In the case of 

example 1, (A,o, ~1i)K is of class ClJK provided CK < 00 and of class 
ip r 

e J provided CK > 0; (Ao, Ai) J .is of class ClJK provided cJ' < 00 
f ip f 

and of class ClJ~ provided CJ > O. (Here CJ[ and CJ are as iIi (1.8) 

and C1. 9)!) This follows easily from the proof of theorem 1.1 
(cf. [22]). 

Spaces of classes ClJ~ and e~ are characterized by the following 

theorems. 

Theorem 4. A is of class ClJ ~ if and only if 
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(20) 

Theorem 5. A is of clas~ e~ if and only if 

The proof of these theorems is obvious. 

Let us from now on assume that f(A) is of the from Act. ,Vo 

h 11 't r7I N d eJ1 • d" r7I N d e M L t 3 a wrI e 'U a an a Instea or 'U i..a an A'a. e Uo < Ul 

be given. If <P is any function norm we define n by 

(22) 

If <P is of genus -< f then n is of genns -< r whore r is given by 

ao 1 
(23) rCA) = A - a, ad f (J\. ai-aO'-

,Ve can now announce onr main results. 

Theorem 6. Let Ai be of class CZJ N (i = 0,1). Then 
ai 

so that (Ao, A l ); OF: with continuous injection. 

Theorem 7. Let Ai be of class e ~. (i = 0,1). Then , 

(25) 

so that 

Since the proof of theorem 7 is similar though slightly longer 
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(cf. [22] for details) we shall only indicate the proof of theorem 6. 
Proof of theorem 6: 11et a = ao + Cll. '1'hen we have 

N(t,a) <N(t,Cln) +N(t,Cll) <Do tao IlaollAo+Dt ta11IalIIA,= 

= Do tao (II ao 11.,1, + ~: ta, -uo II al IIAl) . 

:;\Iaking vary ao and a1 we get 

N(t,a) <Do tao K (~: t Ul - ao , a) 

from which the result easily follows by (22) and (23). 

Theorem 8. Let A. i be of class CD; and of class e:~ (i = 0,1). 

injections, provided 

(26) 

Proof: Apply theorem 2 (or theorem 1.3). 

Theorem 9. Let again Ai be of class CZJ ~ and of class e~~ 
(i = 0,1). Suppose that the assumptions of theorem 3 w'e fulfiUed. 

Then FN 
<J? 

injections, provid,ed (26) holds 
Proof: Apply theorem 3. 

E:cwnple 7. Consider the case of example 1. Let Ai be of 

class CZJ~i andofclasse~ (i=O,l). Then (Ao,Ad! = (jto,A.1)~ = 
:--K --J = (.cio,Ad g = (Ao,A1)<J? provided (26) and (16) hold. This is 

the "reiteration theorem" of [22]. (A "reiteration theorem" of so
mewhat different nature connected with the "complex variable" 
methods of [2], [9], ]H[ was recently found by [lions [15].) 

Remark 1. ~With the aid of the reiteration theorem we can 
also extend the results of example 1.1 to the case ;10 = Lv", 

A1 = Lv,' 
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Example 8. Consider the ease of example 2. Let Ai be Df class 

CZl~i and Df class e~i (i = (0,1). Then.F~ =E: = (Ao,Al)~ = 
= (Ao, Al) ~ provided (26) and (17) hDld. This is an;:tlogue Df 
the "reiteration theorem" for the "approximation spaces" (cf. [21], 
[22.] ). 

"'rVe conclude by applying example 8 in a concrete case. 
Example 9. Let sfl be Lp with respect to' the Haar measure dx 

on the additive group of real numbers, i. e. the intervall (- 00, 00). 

Denote W;' the space of functions a whose generalized derivatives 

up to order m are in Lp: (!) j a € Lp if 0 < j .c:::. m. Let W n be 

the space of functions a in Lp such that the generalized Fourier 
transform vanishes outside (- en, en) ;i. e. a is entire of exponential 

type en. Then (trivial) Lp is of class CZl~ and of class e~ and 

(using Fourier transforms) W; is of class CZl! and of class e~. 

Therefore .F~ = E: = (Lp, W; ) ~ = (Lp, W;')~ where n is 

given by (22) with ao - 0, al m provided J min ( 1,~) teA) 
I) ",n 

dA . 
X < 00 and f (A) --* ° as A -+ o. Let us specialize to iP [<p] = 

<P (t) . = sup ·-tt- ,0 < a < m. Thon ,ye may take t (A) = A a so 
t 

the above assumptions Df tare fulfilled. On the order hand it is 

known (cf. [12], [17], [25], [22]) that in this case (L p, WlIl) ~ = . p 

= (Lp, W;') ~ is the space of functiDns a € Lp satisfying the fDllo

wing Holder type condition: sup h -a, II (6. (h) ) rna IILp< 00 where 6. (h) 
. h 

is the operation of taking differences of increment h: 6. (h) a (x) = 
= a (x + h) - a (x). In this way ,ye are lead to the classical 
theDrems of Jackson and Bernstein in the constructive theory Df 
functions (cf. e g. [1]). One can also cDnsider the case Df v va
riables (v >( 1), in which way we Dbtain various results fDund 
in recent years by Nikolskij and his school (cf. e. g. [19]), as well 
as other extentions. The full details will be published in a forthco
ming paper. 

Stockholm, July 1963. 
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