SOME REMARKS ON THE POINTWISE CONVERGENCE OF SEQUENCES OF MULTIPLIER OPERATORS

by C. P. CALDERON *

Introduction. The purpose of the present paper is to give some sufficient conditions for the pointwise convergence of operators of the form

$$\int_{\mathbb{R}^m} K_n(x-y) f(y) dy$$

The kernels K_n need not belong to L^1 . Some classes of singular integrals as well as a large family of Féjer-like kernels may be regarded as particular cases of theorems 1, 2, 3. The main results are contained in theorems 1, 2 and 3 and some corollaries and examples are given thereaffer.

Definitions and Notation.

1) f * g will denote the convolution between f and g; namely

$$\int_{\mathbb{R}^m} f(x-y) \ g(y) \ dy = \int_{\mathbb{R}^m} f(x_1-y_1, ..., x_m - y_m) \ g(y_1, ..., y_m) \ dy_1... \ dy_m$$

 R^m denotes the euclidean m-dimensional space.

- 2) By L^p we shall denote the class of all measurable functions defined on R^m such that $\int_{R^m} |f|^p dx = ||f||_{p^p} < \infty$; $p \geqslant 1$.
- 3) By $E(f > \lambda)$; $f \ge 0$, we shall denote the set of points of R^m such that $f > \lambda$ and by $|E(f > \lambda)|$ its measure.
- 4) A multiplier operator (*) acting from L^2 to L^2 is a linear operator such that $T(f) = k \cdot \hat{f}$ for all $f \in L^2$.

$$\hat{f}(u) = \int_{\mathbb{R}^m} \exp(-i < u, x >) f(x) dx; < u, x > = \sum_{j=1}^m x_j u_j$$

^{*} Avenida Quintana 369 - 19 - San Luis.

- (*) we shall be concerned with multiplier operators acting always from L^2 into L^2 .
- 5) By H_{∞} , H, H_0 we shall denote respectively the classes of bounded functions ϕ defined on R^m homogeneous of degree zero, such that
- a) $\phi \in C^{\infty}$ if $x \neq 0$; b) ϕ is the symbol of a singular integral operator K acting continuously from L^p into L^p for all p > 1; c) No further restriction is imposed on ϕ .

By K(f) we shall always denote the operator defined by the multiplier ϕ . In cases a) and b) the corresponding K is a singular integral operator.

- 1) Theorem. Let $T_{n_1 ldots n_m} = T_n$ be a sequence of multiplier operators and $\hat{k}_n(u) = \hat{k}_{n_1 ldots n_m}$ their corresponding multipliers; suppose that
- i) There exists a function ϕ , bounded and homogeneous of degree zero such that

$$\int_{R^m} |k_n(u) - \phi(u)|^2 |g(u)|^2 du \to 0 \text{ as } n \to \infty$$
 [for all g belonging to L^2]

- ii) There exists a sequence $\epsilon_n = (\epsilon^{1_n}_{m}, \ldots, \epsilon^{m_n}_{m})$ of real and positive parameters such that
 - a) $\epsilon_n \to \infty$; $\epsilon^{i} n_j \neq 0$ for all n_j and for all j.

b) The functions
$$\Psi_n(u) = \stackrel{\blacktriangle}{k_{n_1}} \dots_{n_m} (\epsilon^1_{n_1} u_1, \dots, \epsilon^m_{n_m} u_m) \phi^{-1} (\epsilon^1_{n_1} u_1, \dots, \epsilon^m_{n_m} u_m).$$

have the following compacity property

$$\left\| \frac{\partial_{\Psi_n}^{s_1 + \dots + s_m}}{\partial_{u_1} u_1 \cdots \partial_{u_m}^{s_m} u_m} \right\|_{p_0} \leqslant M$$

for some p_0 such that $1 < p_0 \le 2$ and for all $s = (s_1, \ldots, s_m)$ submitted to the conditions $0 \le s_1 + \ldots + s_m \le m$, where each s_j can take the values 0 or 1 only. The constant M does not depend on n and the derivates are taken in the distributions sense.

Under the above assumptions we have

- A) If $p_0 < 2$ and ϕ belongs to the class H_{∞} or H then
- A_1) $||T_n f K(f)||_p \to 0$ for all $f \in L^p$; $p > p_0$.
- A₂) If $f \in L^p$, $p > p_0$ then $T_n f$ converges $a \cdot e \cdot$ to K(f); furthermore the operator $\sup_{n_1 \dots n_m} |T_{n_1} \dots f_m| = T^* f$ verifies
- $||T^*f||_{\mathfrak{p}} < C(p) \, ||f||_{\mathfrak{p}}, p > p_0 \, ext{ where } \, C(p) \, ext{ depends on } \, p \, ext{ only.}$
 - B) If ϕ belongs to H_0 and $p_0 < 2$ then
 - B_1) $||T_n f K(f)||_2 \rightarrow 0$ for all $f \in L^2$.
- B_2) $T_n f$ converges a.e. to K(f) and furthermore, if $\sup \mid T_n f \mid = T^* f$ we have $\mid \mid T^* f \mid \mid_2 < C \mid \mid f \mid \mid_2$.
- C) Limiting Cases. Let $p=p_0$ and ϕ belong to H or H_{∞} ; if $f \in L^{p_0}$ and $|K(f)|^{p_0} \log^+(K(f))^{m-1}$ belongs locally to L^1 then
 - C_1) $T_n f$ converges a.e. to K(f).
- C₂) If $|E| < \infty$ we have, for $1 \le s < p_0$ $\int_E |T^*f|^s dx \le 0_1$ $(s, |E|) + 0_2$ $(s, |E|) \int_E K(f)^{p_0} (\log^+ |K(f)|)^{m-1} dx$.
 - C₃) If $|K(f)|_{0}^{p_{0}} (log^{+}|K(f)|)^{m}$ belongs locally to L^{1} and $|E| < \infty$, then $\int_{E} (T^{*}f)^{p_{0}} dx < A_{1}(|E|) + A_{2}(|E|) \int_{E} |K(f)|_{0} (log^{+}|K(f)|)^{m} dx$.
- D) If $p_0 = 2$ and ϕ belongs to H_0 , the same conclusions of C are valid.
- E) If the sequence $\epsilon_n = (\epsilon^1_{n_1}, \ \epsilon^2_{n_2, \dots}, \epsilon^m_{n_m})$ of ii) is such that each $\epsilon^j_{n_j}$ is strictly increasing to ∞ , then
 - E_1) If ϕ belongs to H or H_{∞} , we have

$$\mid E \mid T^*f > \lambda \mid \mid \langle (C/\lambda^p_0) \int_{R^m} \mid f \mid p_0 dx, f \in L^p_0$$

and consequently $T_n f$ converges a.e. to K(f).

- E_2) If ϕ belongs to H_0 and $p_0=2$ we have that the same conclusions of E_1 are valid.
 - F) For ϕ belonging to H or H_{∞} , $T_n f$ admits the representation
 - F_1) $T_n f = \int_{\mathbb{R}^m} K_n(x-y) \ f(y)$ dy for all $f \in L^p$; $p \geqslant p_0$; K_n be-
- longs to L^{p_0} for all n; $1/p_0 + 1/p_0^* = 1$.
- F₂) If ϕ belongs to H_0 and $f \in L^2$, we have $T_n f = \int_{\mathbb{R}^m} K_n(x-y) \ f(y)$ dy where $K_n \in L^2$ for all n.
- G) The kernels K_n belong to L^1 and $||K_n||_1 \leq M$ if and only if ϕ reduces to a constant.

H) If μ is a regular measure with bounded variation, defined on the Borel subsets of R^m then the following multipliers

$$\hat{k}_{n}(u) = \int_{R^{m}} \hat{k}_{n}(u - x)(u - x) \ d \mu(x) = \hat{T}_{n_{1},...,n_{m}}$$

verify A, B and also F with

$$\overline{T}_n f = \int_{\mathbb{R}^m} K_n(x-y) \ g(x-y) \ f(y) \ dy$$
 where the $K_n(x)$ are those

associated to \hat{k}_n and g(x) is the Fourier Transform of μ .

The limit operator is defined by the multiplier

$$\overline{\phi}(u) = \int_{R^m} \phi(u-x) d\mu(x).$$

The key to the most important part of the proof of the above Theorem is the following lemma.

2) Lemma. Let $F_n(x) = F_{n_1} \dots_{n_m} (x_1, \dots, x_m)$ be a denumerable family of measurable functions defined on R^m , and let $\lambda_n = (\lambda^1_{n_1}, \dots, \lambda^m_{n_m})$ be an m-dimensional sequence of real positive parameters such that the auxiliary functions

$$\Psi_{n} = F_{n_{1}}, ..., n_{m} \left(\lambda^{1}_{n_{1}} x_{1}, ..., \lambda^{m}_{n_{m}} x_{m}\right) \prod_{j=1}^{m} \left(\lambda^{j}_{n_{j}}\right)$$

verify the following compacity property

$$(2.1) \qquad ||\Psi_n \prod_{j=1}^m |x_j|^{s_j} ||p_0| \leqslant M, \ p_0 > 1$$

where M does not depend on n or $s = (s_1, \ldots, s_m)$ and each s_j can take the values 0 or 1 only. Then, if $f^* = \sup |F_n * f|$ we have

- i) $||f^*||_p < C(p) ||f||_p$ for all $p > p_0^*$; $1/p_0 + 1/p_0^* = 1$.
- ii) If $|f| \epsilon L^{p_0^*}$ and $|f|^{p_0^*} (\log^+ |f|)^{m-1}$ belongs locally to L^1 ; then, for all measurable set E such that $|E| < \infty$ we have $\int_E f^{*r} \ dx \leqslant A(r, |E|) + B(r, |E|) \int_E |f|^{p_0^*} (\log^+ |f|)^{m-1} \ dx$ where $1 \leqslant r < p_0^*$
- iii) If $f \in L^{p_0^*}$ and $|f|^{p_0} (\log^+|f|)^m$ belongs locally to L^1 ; then, for all measurable set E such that $|E| < \infty$ $\int_E f^{*p_0^*} dx \leq A' (|E|) + B' (|E|) \int_E |f|^{p_0^*} (\log^+|f|)^m dx$
- iv) If the $\lambda^{j}_{n_{j}}$ are strictly decreasing to 0 for each j, we have $\mid E(f^{*} > \lambda) \mid <(C_{0}/\lambda^{p_{0}*}) \int_{\mathbb{R}^{m}} \mid f \mid^{p_{0}*} dx$

Proof. Without loss of generality we may assume that the F_n are zero on the complement of the set $\{x_1 \ge 0, x_2 \ge 0, \dots, x_m \ge 0\}$.

Let f be a continuous and compact supported function; then, by a change of variables we have

(2.2)
$$\int_{\mathbb{R}^m} F_n(x-y) \ f(y) \ dy = \int_{\mathbb{R}^m} \Psi_n(y) \ f(x-\lambda_n y) \ dy =$$

$$= \int_{\mathbb{R}^m} \Psi_n(y_1,\ldots,y_m) f(x_1 - \lambda_{n_1} y_1,\ldots,x_{m-1} \lambda_{n_m} y_m) dy_1 \ldots dy_m$$

The modulus of the last integral is dominated by

$$(2.3) \quad \sum_{0\cdots 0}^{\infty \cdots \infty} \int_{s_{k_1\cdots k_m}} |\Psi_n(y)| |f(x-\lambda_n y)| dy$$

The sets S_{k_1} , ..., k_m are defined in the following way

$$(2.4) \quad S_{k_1}, ..., k_m = [2^{k_1}, 2^{k_1+1}] \chi ... \chi [2^{k_m}, 2^{k_m+1}] \text{ for } k_j > 0,$$

j = 1, ..., m. If $k_j = 0$ the corresponding interval is [0, 2].

By an application of Hölder's inequality, the series (2.3) is dominated by

$$(2.5) \qquad \sum_{0\cdots 0}^{\infty\cdots} \left(\int_{s_{k_{1}}\cdots k_{m}} |\Psi_{n}|^{p_{0}} dy\right)^{1/p_{0}} \left(\int_{s_{k_{1}}\cdots k_{m}} |f(x-\lambda_{n}y)|^{p_{0}*} dy\right)^{-1/p_{0}*}$$

Estimates for the terms $t_{k_1},...,t_m=(\int\limits_{s_k...k_m}|\Psi_n|^{p_0}dy)^{1/p_0}$

If $k_j > 0$, j = 1, ..., m; then

$$(2.6) \quad 2^{k_1+\cdots+k_m} t_{k_1}, ..., t_m \leqslant \left\{ \int_{s_{k_1,\dots,k_m}} \left(\left| \Psi_n \right| \prod_{j=1}^m |x_j| \right)^{p_0} dx \right\}^{1/p_0} \leqslant M_0.$$

The last inequality holds from Hypothesis (2.1). Then we must have

$$(2.7) t_{k_1}, ..., t_m \leq M_0 2^{-k_1 - k_2 - ... - k_m}$$

If the m-tuple $(k_1, ..., k_m)$ contains zeros in its coordinates, according to Hypothesis (2.1) we have

$$(2.8) \quad 2^{s_1 k_1 + \dots + s_m k_m} t_{k_1}, \dots, k_m \leqslant (\int_{s_{k_1 \dots k_m}} (\mid \Psi_n \mid . \prod_{j=1}^m \mid x_j \mid s_j)^{p_0} dx)^{1/p_0} \leqslant$$

$$\leq M_0$$
 where $s_j = 1$ if $k_j \neq 0$, $s_j = 0$ if $k_j = 0$.

Now we conclude that in every case

$$(2.10) \quad \left(\int_{s_{t} \dots s_{m}} |f(x-\lambda_{n}y)|^{p_{0}^{*}} dy\right)^{1/p_{0}^{*}} \leqslant \left(\int_{-2^{k_{1}+1}}^{2^{k_{1}+1}} \int_{-2^{k_{n}+1}}^{2^{k_{m}+1}} |f(x-\lambda_{n}y)|^{p_{0}^{*}} dy\right)^{1/p_{0}^{*}}$$

The second (right hand) member of (2.10), by a change of variables, is readily seen to be equal to

$$(2.11) \begin{bmatrix} \frac{m}{(\prod_{j=1}^{m} \lambda^{n'_{j}})^{-1}} & \lambda^{n'_{1}} \cdot 2^{k_{1}} & \lambda^{m_{m}} \cdot 2^{km} \\ \frac{j=1}{2^{2m}} & \prod_{j=1}^{m} 2^{k_{j}} & -\lambda^{n'_{1}} \cdot 2^{k_{1}} & -\lambda^{m_{n}} \cdot 2^{km} \end{bmatrix}^{f} (x-y) \Big|_{p_{0}^{*}} dy \\ & \cdot 2^{2m/p_{0}^{*}} \cdot 2^{(1/p_{0}^{*})} \cdot (k_{1}^{*} + \dots + k_{m}^{*})^{m} dy$$

If M(f) is the maximal operator of the strong differentiation (see [4], pp. 306-307) we have

$$(2.12) \left(\int_{\substack{s_k \dots s_m \\ 1}} |f(x - \lambda_n y)|_{*^{0_d}} dy \right)^{1/p_0^*} \leq 2^{2m/p_0^*} 2^{(1/p_0^*)(k_1 + \dots + k_m)}$$

$$\cdot \left\{ M \left[|f|^{p_0^*} \right](x) \right\}^{1/p_0^*} \text{ Now from } (2.9) \text{ and } (2.12) \text{ we have}$$

$$(2.13) \quad |F_n * f| \leq M_0 \, 2^{2m/p_0 *} \quad (\sum_{0 \cdots 0}^{\infty \cdots \infty} 2^{(-1/p_0) \cdot (k_1 + \cdots + k_m)})$$

$$\cdot \{M \, (|f|^{p_0 *})\}^{1/p_0 *}$$

Consequently

$$\begin{array}{ll} (2.14) & f^* \leqslant M_0 2^{2m/p_0^*} (\sum 2^{(1/p_0)} {k_1 + \ldots + k_m}) \left\{ M(\mid f \mid^{p_0^*}) \right\}^{1/p_0^*}) \\ \text{and} & f^{*p_0^*} \leqslant C(p_0) M \left\{ \mid f \mid^{p_0^*} \right\} \end{array}$$

If $p > p_0^*$ then $p = rp_0^*$ with r > 1, and from the Jessen-Marcinkiewicz-Zygmund Theorem (see [4], pp. 306-307) we have

$$(2.15) ||f^*||_p^p = \int_{R_m} (|f^*||_{p_0^*})^r dx \leqslant C(p_0) \int_{R_m} \{\mathbf{M}(|f||_{p_0^*})\}^r dx \leqslant C(p_0) C'(r) \int_{R_m} |f||_{p_0^*}^r dx = C(r, p_0) \int_{R_m} |f|^p dx = C(p, p_0) ||f||_p^p.$$

Now the inequality (2.15) can be extended by continuity to all L^p , $p > p_0^*$ (see [5], p. 165) and part i of the Thesis follows. Taking $f \in L^{p_0*}$, an application of the Jessen-Marcinkiewicz-Zygmund Theorem to the function $|f|^{p_0*}$ also gives ii) and iii).

Part iv) requieres a different technique. Let us return to (2.11) and consider

$$(2.16) f^{(n)}_{k_1}, ..., k_m = \int_{-\lambda^{1}_{n_1}}^{\lambda^{1}_{n_1}} \frac{2^{k_1+1}}{2^{k_1+1}} \int_{-\lambda^{m}_{n_m}}^{\lambda^{m}_{n_m}} \frac{2^{k_m+1}}{2^{k_m+1}} y) \mid_{0}^{p_0^*} dy \}$$

$$2^{-2m} \left(\prod_{j=1}^{m} \lambda_{n_j} 2^{k_j} \right)^{-1}$$

Putting $f^*_{k_1}, ..., k_m = \sup_{\substack{d \in f \\ n}} f^{(n)}_{k_1}, ..., k_m$, we shall show that

(2.17)
$$|E(f^*_{k_1}, ..., k_{m_1}) > \lambda)| < (C/\lambda) \int_{R_m} |f|^{p_0^*} dx$$

where C does not depend on k_1, \ldots, k_m or on the function f.

The λ_{n_i} are strictly decreasing to zero for each j, j = 1, ..., m.

Therefore we can construct a family of continuous and strictly decreasing to zero functions $h_j(t)$, $j=1,\ldots,m$, such that there exists a sequence t_n of real numbers, strictly decreasing to zero, verifying

(2.18)
$$\lambda_{n_j} = h_j(t_n) \qquad (j = 1, \dots, m)$$

Now, the differentiation operators of (2.16) are in the same conditions as those of [4], p. 310, (3.5); therefore (2.17) follows. Let us rewrite (2.5) taking into account (2.16); namely

$$(2.19) \qquad |F_{n} * f| \leq M_{0} 2^{2m/p_{0}^{*}} \sum_{\substack{0 \dots 0 \\ 0 \dots 0}}^{\infty \dots \infty} 2^{(-1/p_{0})} {}_{1}^{(k_{1}^{*} + \dots + k_{m}^{*})}$$

$$\cdot [f^{(n)}_{k_{1}^{*}}, \dots, k_{m}^{*}]^{1/p_{0}^{*}} \leq M_{0} 2^{2m/p_{0}^{*}} \sum_{\substack{0 \dots 0 \\ 0 \dots 0}}^{\infty} 2^{(-1/p_{0})} {}_{1}^{(k_{1}^{*} + \dots + k_{m}^{*})}$$

$$[f^{*}_{k_{1}^{*}}, \dots, k_{m}^{*}]^{1/p_{0}^{*}}$$

Calling
$$a_{k_1}, \ldots, k_m = 2^{(-1/p_0)} {k_1 + \ldots + k_n} {\sum_{0 \cdots 0}^{\alpha \ldots \alpha} 2^{(-1/p_1)} {k_1 + \ldots + k_m}}$$

and using the convexity of $u^{p_0}^*$ we have

and also

$$(2.21) f^{*p_0}^* \leqslant C \sum_{0...0}^{\infty...\infty} a_{k_1}, ..., k_m f^*_{k_1}, ..., k_m$$

After a new normalization of the coefficients a_{k_1}, \ldots, k_m such that $\sum_{0\cdots 0}^{\infty \ldots \infty} a^{1/2}_{k_1}, \ldots, k_m = 1$, the inequality (2.21) holds for such coefficients, but with a modification on the value of C. Now

$$(2.22) E\left(\sum_{0\cdots 0}^{\infty\cdots\infty}a_{k_{1}},...,k_{m}f^{*}_{k_{1}},...,k_{m}>\lambda\right) \subset \bigcup_{k_{1}\cdots k_{m}} \\ E\left(a^{1/2}_{k_{1}},...,k_{m}f^{*}_{k_{1}},...,k_{m}>\lambda\right)$$

Therefore

$$\begin{split} (2.23) \qquad |E\left(\sum_{0\cdots 0}^{\infty\cdots\infty}a_{k_{1}},...,k_{m}\,f^{*}_{k_{1}},...,k_{m}>\lambda\right)| \leqslant \sum_{\substack{k_{1}\cdots k_{m}}} \\ |E(a^{1/2}_{k_{1}},...,k_{m}\,f^{*}_{k_{1}},...,k_{m}>\lambda)| \leqslant \sum_{\substack{k_{1}\cdots k_{m}}} a^{1/2}_{k_{1}},...,k_{m} \\ (A/\lambda) \int_{R_{m}} |f|^{p_{0}^{*}} dx = (A/\lambda) \int_{R_{m}} |f|^{p_{*}} dx \end{split}$$

The last inequality of (2.23) follows from (2.17). Now, from

(2.21) and (2.23) we have

(2.24)
$$|E(f^*>\lambda)| = E(|f^*|_{p_0^*}>\lambda_{p_0^*}) < (A'/\lambda_{p_0^*}).$$

$$\int_{R_n} |f|_{p_0^*} dx.$$

This ends the proof of part iv).

- 3) Remark. The Hypothesis (2.1) can be replaced by a weaker one, namely
- (3.1) $||\Psi_n \prod_{j=1}^m i| x_j \beta_j||_{p_0} < M_0; p_0 > 1; \beta > (p_0 1)/p_0$ M_0 does not depend on n or on $s = (s_1, \ldots, s_m)$ and s_j can take the values 0 or 1 only; $j = 1, \ldots, m$.

The condition $\beta>(p_0-1)/p_0$ ensures the convergence of $\sum\limits_{k_1,\ldots,k_m}a^{1/2}_k$, ..., k_m

4) Proof of Theorem 1. Since $k_n \phi^{-1} \in L^{p_0}$ for some p_0 such that $1 < p_0 \leq 2$, there exists a function $F_n \in L^{p_0^*}$ such that

its Fourier Transform in the distributions sense coincides with $k_n \cdot \phi^{-1}$. Furthermore, from the Hausdorff-Young-Titchmarsch.

Theorem it follows

$$||F_n||p_0^* \leqslant A(p_0)||\mathring{k}_n \phi^{-1}||_{p_0}$$

Calling $\varphi_n = (1/\prod_{j=1}^m \epsilon_{n_j}) F_{n_1}, ..., n_m (x_1 \epsilon^{-1}_{n_1}, ..., x_m \epsilon^{-1}_{n_m})$ we have that the Fourier Transform in the distributions sense of φ_n is Ψ_n and also

(4.2)
$$||\varphi_n||_{p_0}^* \leqslant A(p_0)||\Psi_n||_{p_0}$$

By a similar procedure we obtain

(4.3)
$$|| \varphi_n \prod_{j=1}^m |x_j| ||_{p_0}^s < A(p_0) . || D_{s_1}^{s_1} ..., ||_{s_m}^{s_m} \Psi_n ||_{p_0} < M_0$$

 M_0 does not depend on n or $s = (s_1, ..., s_m)$ and each s_j can take

the values 0 or 1 only.

Now it is clear that the functions F_n with auxiliary functions φ_n are in the conditions of Lemma 2. If f belongs to the space \mathcal{S} of C^{∞} rapidly decreasing functions, then

$$(4.4) T_{1}^{n}, \dots, T_{m}^{n}(f) = \hat{k}_{n}, \dots, T_{m} \cdot \hat{f} = \hat{k}_{n} \phi^{-1} \cdot \phi \hat{f}$$

The Fourier Antitransform in the distributions sense gives

(4.5)
$$T_{n_1}, ..., n_n(f) - F_n^* K(f)$$

Let us observe that $F_n \in L^p$ for all p such that $1 \leq p \leq p_0^*$; this follows from the fact that $\|F_n \prod_{j=1}^m |x_j|^{s_j} \|_{p_0^*} < \infty$ for all $s = (s_1, \ldots, s_m)$ such that each s_j takes the values 0 or 1 only.

On the other hand, we shall show that $||F_n||_1 \leq N_0$ where N_0 does not depend on n. In fact, from (2.5)

$$(4.6) \int_{R_m} |F_n(x)| dx = \int_{R_m} |\varphi_n(x)| dx \leqslant \int_{\substack{k_1, \dots, k_m \\ k_1, \dots, k_m}} |\varphi_n(x)| dx \leqslant$$

$$\leqslant \sum_{\substack{k_1, \dots, k_m \\ k_1, \dots, k_m}} t_{k_1}, \dots, k_m \cdot 2^{2m/p_0} 2^{(1/p_0)} (k_1 + \dots + k_m) \leqslant$$

$$\leqslant M_0 2^{2m/p_0} \sum_{\substack{k_1, \dots, k_m \\ k_1, \dots, k_m}} 2^{(-1/p_0*)} (k_1 + \dots + k_m) = N_0.$$

If for some p > 1, K(f) maps continuously L^p into itself, by using the Young inequality we can extend by continuity the representation (4.5) for all $f \in L^p$ and furthermore, we have

$$(4.7) || T_{n_1}, ..., n_m(f) ||_p = || F_n * K(f) ||_p \leq || F_n ||_1 || K(f) ||_p \leq N_0 \cdot C \cdot ||f||_p.$$

- (4.8) As we have already shown, the F_n are on the conditions of Lemma 2 and, therefore, if K(f) maps continuously L^p into itself, $\sup_n T_n f = \sup_n |F_n * K(f)|$ verifies similar inequalties to those proved for $\sup_n |F_n * f|$.
- (4.9) On the other hand, $T_n f$ converges pointwise in a dense subset. In fact, if $f \in \mathcal{S}$ we have

(4.10)
$$T_n f = (1/(2 \Pi)^m) \int_{R_m} e^{i \langle x, y \rangle} \hat{k}_n(y) \cdot \hat{f}(y) dy$$
 and

$$(4.11) | T_n f - K(f) | \leq \int_{R_m} | \stackrel{\wedge}{k}_n - \phi | | \stackrel{\wedge}{f} | dy \leq (\int_{R_m} | \stackrel{\wedge}{f} | dy)^{1/2}.$$

$$(\int_{R_m} | \stackrel{\wedge}{k}_n - \phi |^2 | \stackrel{\wedge}{f} | dy)^{1/2}.$$

Since $f \in \mathcal{S}$, then $|f|^{1/2} \in L^2$; therefore, the last term of the inequality tends to zero. (condition i)).

A suitable combination of the two preceding arguments (4.8) and (4.9) gives parts A, B, C, D and E. (see [4], p. 307 and [5] p. 160).

(4.12) If $f \in L^p$ and $p > p_0$ we shall show that $T_n(f) = K_n * f$, where $K \in L^{p_0}$.

Let us observe that $\hat{F}_n = \hat{k}_n \phi^{-1}$, that is $\phi \hat{F}_n = \hat{k}_n$, and since K maps continuously L^p into itself for all p > 1 when ϕ belongs to H or H_{∞} , then in both cases we have

(4.13) $K(F_n) = K_n \epsilon L^p$ for all p such that $1 since <math>F_n \epsilon L^p$ for the same values of p.

On the other hand, if $f \in \mathcal{I}$, taking (4.5) into account, we have (4.14) $T_n f = F_n * K(f) = K_n * f$.

Now we can extend (4.14) by continuity to all L^p , $p \geqslant p_0$, since both sides of the equality verify respectively

$$(4.15) |F_n * K(f)| \leq ||F_n||_{p/(p-1)} \cdot ||K(f)||_p |K_n * f| \leq ||K_n||_{p/(p-1)} \cdot ||f||_p$$

Therefore part F_1 is proved.

Part F_2 is also valid since this case requires

$$||K(f)||_2 \leq A||f||_2$$
 only.

- (4.16) Proof. of Part G. If $\phi = C_0$ then $F_n = C_0^{-1} K_n$; therefore
- (4.17) $||K_n||_1 < M'$ where M' does not depend on n.

Let us suppose that $||K_n||_1 < M'$; consequently k_n must be continuous for each n, and furthermore

- $(4.18) \quad \phi = \hat{k}_n / \hat{F}_n$
- (4.19) If $F_n(0) \neq 0$ for some $n = n_0$; then ϕ must be continuous at x = 0; and since ϕ is a bounded homogeneous of degree zero function it must reduce to a constant.
- (4.20) If $F_n(0) = 0$ for all n we shall show that K(f) = 0 for all $f \in L^2$.

In fact, let us consider a subsequence $\{n'\}$ of $\{n\}$ such that $F_{n'}$ and $\varphi_{n'}$ are in the conditions of iv) of Lemma 2. Then

$$(4.21) \mid E(\sup_{n^{j}} |F_{n^{j}} * f| > \lambda) \mid \leqslant (C_{0}/\lambda^{2}) \int_{\mathbb{R}^{m}} |f|^{2} dx$$

On the other hand, from the compacity conditions on the φ_n , for each $\epsilon > 0$ the φ_n admit the decomposition

(4.22) $\varphi_n = \varphi_n^{(1)} + \varphi_n^{(2)}$; $|| \varphi_n^{(2)} ||_1 < \epsilon$ $\varphi_n^{(1)} = 0$ if $x \in Q$, where Q is a cube centered at the origin and depends on $\epsilon > 0$ only. If $x \in Q$, $| \varphi_n^{(1)}(x) | < M_2$, where M_2 depends on $\epsilon > 0$ only.

Thus, if $f \in D$, by changing variables and taking into account that $\mathring{F}_{n'}(0) = 0$, we obtain

$$\begin{aligned} (4.23) \quad | & (F_{n'} * f)(x) | = | \int \varphi_{n'}(y) \cdot f(x - \epsilon_{n'}^{-1} y) \, \mathrm{d}y | = \\ & = | \int_{R^{m}} \varphi_{n'}(y) \left[f(x) - f(x - \epsilon_{n'}^{-1} y) \right] \, \mathrm{d}y | \leqslant \\ & \leqslant \int_{R^{m}} | \varphi_{n'}^{(1)}(y) | \cdot | f(x) - f(x - \epsilon_{n'}^{-1} y) | \cdot dy + 2\epsilon | | f | |_{\infty} \end{aligned}$$

where
$$f(x-\epsilon_{n}^{-1}y)=f(x_{1}-\epsilon_{n}^{7}y_{1},\ldots,x_{m}-\epsilon_{n}^{-1}y_{m})$$

Now if $Q \epsilon_n$, denotes the cube obtained from Q by dividing its edges by $\epsilon_{n'j}$ respectively, then the right and term of the inequality (4.23) is readily seen to be less or equal than

$$(4.24) \quad |Q| M_2. (1/|Q_{\epsilon_{n'}}|) \quad \int_{Q_{\epsilon_{n'}}} |f(x) - f(x-y)| dy + 2 \epsilon ||f||_{\infty}$$

Therefore

(4.25) $\overline{\lim} | F_{n'} * f | \leq 2 \epsilon || f ||_{\infty}$. Consequently, for all $f \in D$ it is valid

$$(4.26)$$
 lim $F_{n'} * f = 0$

Thus, (4.26) together with (4.21) shows that $\lim F_{n'} * f = 0$ a.e. for all f belonging to L^2 , whence $\lim F_{n'} * K(f) = 0$ a.e. for all f belonging to L^2 . This completes the proof of Part G, since $F_{n'} * K(f) = K_{n'}(f)$ and by Hypothesis i) $||K_{n'}(f) - K(f)||_2 \to 0$.

(4.27) Proof of Part H. The k_n and ϕ are supposed to be Borel measurable. Let us consider the functions

$$\overline{k_n}(x) = \int_{\mathbb{R}^m} k_n(x-y) \cdot d\mu(y)$$
.

By an application of the Minkowski Integral Inequality we have

$$(4.28) \quad ||\overline{k_n}||_{p_0} \leqslant (\int_{\mathcal{D}_n} dw(y)) ||\overset{\wedge}{k_n}||_{p_0} \leqslant V(\mu).M'$$

dw(y) denotes the variation of μ and $V(\mu)$ the variation in the whole R^m . Now if $g(x) = 1/(2\pi)^m \int_{R^m} e^{i\langle x,y\rangle} d\mu(y)$, from (4.12),

(4.13) and (4.28) we conclude that

$$(4.29) \quad \overline{k_n} = (K_n.g)^{\wedge}$$

On the other hand if $f \in \mathcal{S}$, we have

$$(4.30) \quad \overline{T}_n f = (K_n \cdot g) * f$$

Since $||g||_{\infty} < V(\mu)$, $(K_n.g) * f$ verifies the same type of inequality as that of (4.15). Therefore, by the same density argument we conclude that

$$(4.31) \overline{T}_n f = \int_{\kappa}^{\infty} K_n(x - y) g(x - y) f(y) dy$$

for all $f \in L^p$ with $p > p_0$ and ϕ belonging to H or H_{∞} . By a similar method, one obtains the representation for $f \in L^2$ and $\phi \in H_0$.

(4.32) Now we are going to show that $\overline{T}_n f$ converges pointwise for all $f \in \mathcal{S}$.

$$(4.33) \quad \overline{T}_n(f)(x) = (1/2\pi)^m \int_{\mathbb{R}^m} e^{i\langle x, y \rangle}.$$

$$\hat{f}(y) \left(\int_{\mathbb{R}^m} \hat{k}_n \left(y - s \right) d \mu \left(s \right) \right) dy$$

Interchanging the order of integration (which we may) we have

$$(4.34) \quad \int_{R^m} d\mu(s) \cdot (1/2\pi)^m \cdot \int_{R^m} e^{i \langle x, y \rangle} \hat{k}_n(y - s) \quad \hat{f}(y) \quad dy$$

By a similar procedure than that employed in (4.9), (4.10) and (4.11), it is easy to show that the inner integral of (4.34) converges pointwise and uniformly to

(4.35)
$$(1/2\pi)^m \int_{\mathbb{R}^m} e^{i\langle x, y \rangle} \phi(y-s) f(y) dy$$

On the other hand since $V(\mu) < \infty$, $\overline{T_n}(f)$ converges pointwise for all $f \in \mathcal{S}$ to the operator T(f), whose multiplier is $k_n * \mu$.

(4.36) Estimates for the maximal operator associated to \overline{T}_n . In this part we shall use a technique introduced by A. P. Calderón and A. Zygmund in [2]. Let ϕ belong to H or H_{∞} . Then, if $f \in L^p$, $p > p_0$, we have

$$\begin{array}{ll} (4.37) & \overline{T}_n f = \int\limits_{R^m} K_n(x-y) \ g(x-y) \ f(y) \ dy = \\ & = (1/2\pi)^m \int\limits_{R^m} K_n(x-y) \ (\int\limits_{S^n} e^{i<(x-y),\ s>} d\mu(s)) \ f(y) \ dy \end{array}$$
 Interchanging the order of integration we have

(4.38)
$$(1/2\pi)^m \int_{\mathbb{R}^m} d\mu(s) e^{i\langle x, s \rangle} \int_{\mathbb{R}^m} K_n(x-y) f(y) e^{i\langle s, y \rangle} dy.$$

The modulus of the integral (4.38) is dominated by

(4.39)
$$1/(2\pi)^m \int_{\mathbb{R}^m} dw(s) \left[\mathring{T}(f e^{-i < s, y >})(x) \right]$$

Taking the L^p norm of (4.39) with respect to x we obtain

$$(4.40) \qquad (1/2\pi)^{m} \cdot (\int \int T(f e^{-i\langle s,y\rangle})(x) \cdot dw(s)]^{p} dx)^{1/p} \leqslant$$

$$\leqslant (1/2\pi)^{m} \int_{\mathbb{R}^{m}} dw(s) \left[\int_{\mathbb{R}^{m}} T(f e^{-i\langle s,y\rangle})(x) |^{p} dx \right]^{1/p} \leqslant$$

$$\leqslant (V(\mu)/(2\pi)^{m} \cdot C_{p} ||f||_{p}.$$

Thus

$$||\sup_{n} |\overline{T}_{n}f||_{p} \leqslant (V(\mu)/(2\pi)^{m} \cdot C(p) \cdot ||f||_{p}.$$

A similar estimate holds for $\phi \in H_o$ and $f \in L^2$. (4.41) and (4.32) give the corresponding convergence results. This completes the proof of Part H.

- 5) Examples.
- (5.1) Let us consider the single Hilbert-Transform, that is

$$\tilde{f} = \lim_{n \to \infty} \int_{|x-y| > 1/n} f(y) \cdot (x-y)^{-1} \, dy$$

We know that
$$\int_{|y|>1/n} e^{-iuy} y^{-1} dy = -2i \ sg(u) \int_{|u/n|} (\sin t) \cdot t^{-1} dt$$

Here, the role of $\phi(u)$ is played by $-i \, sg(u) \, \pi$; the role of \hat{k}_n is played by $-2i \, (\int\limits_{|u|n|}^{+\infty} \, (\sin \, t) \, t^{-1} dt) \, sg(u)$; the role of ϵ_n are played by the natural numbers $\{n\}$.

Finally, the function $\int_{|u|}^{+\infty} (\sin t) \cdot t^{-1} dt$ and its derivate in the distributions sense belong to L^p for all p_0 such that $1 < p_0 \le 2$. Now an application of Theorem 1 will give the well known results concerning pointwise convergence of the Hilbert Singular Integral in L^p , p > 1.

(5.2) If K_n and \tilde{K}_n denote the Féjer Kernel and its conjugate, respectively, then $\hat{K}_n = (1 - |u/n|)_+$ and $\hat{K}_n = (1 - |u/n|)_+$ (- $i \circ g(u) \cdot \pi$.)

Here the roles of k_n , ϕ and ϵ_n , are played by K_n , 1, $\{n\}$ and \hat{K}_n , $(-i\pi sg(u)) \{n\}$ respectively. Finally, since $(1-|u|)_+$ and its derivate in the distributions sense belong to L^p for all p_0 such that $1 < p_0 \le 2$, then the same conclusions as in (5.1) hold.

Remark. Analog considerations are valid for the Poisson Kernel and its conjugate.

6) Theorem 2. Let k(x) be a function belonging to $L^1(\mathbb{R}^m)$ submitted to the following two conditions

i)
$$\int_{\mathbb{R}^m} k(x) dx = 1$$
.

ii) There exists $p_0 > \text{such that } k(x) \prod_{j=1}^m (1 + |x_j|) \in L^{p_0}$

If K is a singular integral operator with symbol belonging to H, we shall denote by $\tilde{f} = K(f)$. By k(nx) we denote $k(nx_1, \ldots, nx_m)$. Nuder the two preceding assumptions we have

- a) $\int_{\mathbb{R}^m} n^m k (nx) f(y-x) dx \rightarrow f(y)$ a.e. for all $f \in L^p$; $p \geqslant p_0^*$; $1/p_0 + 1/p_0^* = 1$.
- b) $\int n^m \widetilde{k}(nx) f(y-x) dx \to \widetilde{f}(y)$ a.e. for all $f \in L^p$; $p \geqslant p_0^*$ Calling $f^* = \sup_n |\int_{\mathbb{R}^m} n^m k(nx) f(y-Tx) dx|$; $\widetilde{f} = \sup_n |\int_{\mathbb{R}^m} n^m k(nx) f(y-Tx) dx|$
- c) $|E(f^*>\lambda)| \leqslant (C_0/\lambda^{p_0^*}) \int_{\mathbb{R}^m} |f|^{p_0^*} dx; |E(\widetilde{f}>\lambda)| \leqslant \le (C_0^1/\lambda^{p_0^*}) \int_{\mathbb{R}^m} |f|^{p_0^*} dx$
- d) If $p > p_0^*$, then $||f^*||_p < C(p) ||f||_p$; $||\widetilde{f}||_p < C'(p) ||f||_p$ and therefore the convergence in mean of order p of a) and b) is valid.

Proof. If $f \in \mathcal{S}$, then

(6.1)
$$\int_{\mathbb{R}^m} n^m k(nx) f(y-x) dx = (2\pi)^{-m} \int_{\mathbb{R}^m} e^{i \langle y, u \rangle} \hat{k}(u/n)$$

$$\hat{f}(u) du$$

Since $\|\hat{k}(u/n)\|_{\infty}^{\leq} \|k\|_{1}$ and the fact that $\hat{k}(n/u) \to 1$ for each u, it follows that, for $f \in \mathcal{S}$,

(6.2)
$$\int_{\mathbb{R}^m} n^m \ k(nx) \ f(y-x) \ dx \to f(y)$$
.

Now, $n^m k(nx)$ and k(x) are respectively under the conditions of the F_n and Ψ_n of Lemma 2; the condition ii) implies the condition (2.1) of Lemma 2. Finally, since (n, \ldots, n) are in the conditions of iv) Lemma 2, the maximal inequalities c) and d) with respect to $\overset{*}{f}$ follow. A combination of (6.2) and the maximal inequalities gives a) and also the convergence in the mean of order p for all $p \geqslant p_0^*$. Now, if $f \in \mathcal{O}$

(6.3)
$$\int_{\mathbb{R}^m} n^m \tilde{k}(nx) f(y-x) dx = (2\pi)^{-m} \int_{\mathbb{R}^m} e^{i < y, s > \int_{\mathbb{R}^m} f(s) \phi(s)$$

$$\int_{\mathbb{R}^m} n^m \tilde{k}(nx) f(y-x) dx$$

The representation (6.3) may be extended by continuity to all $f \in L^p$ with $p \geqslant p_0^*$, since $n^m \ k(nx)$ belongs to L^q for all q such that $q \leqslant p_0$. (A similar argument was given in (4.12 - 13 - 14 - 15)). Now the representation proved above gives the results concerning $n^m \int_{\mathbb{R}^m} \tilde{k}(nx) \ f(y-x) \ dx$.

- 7) Remark. A large family of Féjer-like kernels are particular cases of Theorem 2, namely: the m-dimensional Poisson kernel and its conjugates by the Marcel Riesz Transform, the multiple Féjer kernel, the multiple Weierstrass kernel, etc.
- 8) Remark. Example 1 shows that there exists a kernel k under the conditions of Theorem 2 such that, for all $f \in L^p$, p > 1,

$$(8.1) \int_{\substack{|x-y|>1/n}} \left[(f(y)/(x-y)) \right] dy = \int_{-\infty}^{+\infty} n \, k \left[n(x-y) \right] \, \widetilde{f}(y) \, dy$$

The kernel is precisely the function whose Fourier Transform is $(2/\pi) \int_{|u|}^{+\infty} (\sin t) t^{-1} dt$.

- 9) Remark. Another type of Féjer-like kernels is studied in [8] (see Lemma (1.5), Part I) and also in [1].
- 10) Singular Integrals of Odd Non-homogeneous Kernel. Let k(x) be a measurable and odd function defined on the real line, belonging to L^2 , submitted to the following conditions
 - i) $\hat{k}(0+)$ and $\hat{k}(0-)$ exist and are different from zero.
- ii) k(|u|) and its derivate in the distributions sense belong to L^{p_0} for some p_0 such that $1 < p_0 \le 2$. Now let S(x) be an odd homogeneous function of degree (m-1), defined on R^m such that

$$(10.1) \quad \int_{|x|=1} |S(x)| d\sigma < \infty$$

If K(x) = S(x), k(|x|); then we call Old Singular Integral of nonhomogeneous kernel to

$$10.2) \qquad \int_{\mathbb{R}^m} n^m K(ny) \ f(x-y) \ dy$$

- 11) Lemma. Let k(x) be under the conditions of 10), then the operators
- (11.1) $k_n(f) = \int_{-\infty}^{+\infty} n \ k[n(x-y)] \ f(y) \ dy$ have the properties
 - i) If $f \in L^p$, $p \geqslant p_0$, $1/p_0 + 1/p_0^* = 1$; then $k_n(f) \to T(f)$ a.e. where T(f) is a multiple of the single Hilbert Transform.
 - ii) If $f \in L^{p_0}$ then $|E(\sup |k_n(f)| > \lambda) < (1/\lambda^{p_0})$ $\int |f|^{p_0} dx$
 - iii) If $p > p_0$ then $||\sup_{x} |k_n(f)||_{p} < C(p) ||f||_{p}$

Proof. Let us consider the function $\phi(u) = k(0+)$ if u > 0 and $\phi(u) = k(0-)$ if u < 0. Since k(u) is odd we have

(11.2) a) $\phi^{-1} \hat{k}(u) = c_0 \hat{k}(u)$

b) $\phi = c'$ I (where I is the symbol of the single Hilbert Transform.

Now the corresponding multipliers of the operators (11.2) are

 $(11.3) \quad c \phi(u) \stackrel{\wedge}{k} (|u/n|)$

Thus, taking into account (10,ii) the multipliers (11.3) are in the conditions of Theorem 1, with $\epsilon_n = n$, since the condition (10 ii) also shows that k(|x|) is the Fourier Transform of a function belonging to $L^{p_0*} \cap L^1$ and therefore

$$(11.4) \quad \int_{-\infty}^{+\infty} |\hat{k}(u/n) - \phi|^2 |\hat{f}(u)|^2 du = \int_{-\infty}^{+\infty} |c \hat{k}(|u/n|)$$

- $-1 \mid 2 \mid \phi \mid 2 \mid \hat{f}(u) \mid 2 du \rightarrow 0$ from the boundedness of $\hat{k}(\mid u \mid)$ and the continuity at u = 0. Now, an application of Theorem 1 gives i), ii) and iii).
- 12) Theorem 3. The operators $K_n(f)$ defined in (10.2) converge pointwise, almost everywhere and in mean of order p to a limit operator K(f), for all f belonging to L^p ; $p_0 . Furthermore$
 - i) $\|\sup_{p} |K_{n}(f)|\|_{p} < C(p)\|f\|_{p}; p_{o} < p < \infty.$

Proof. We shall use the "method of rotation" introduced in [2].

(12.1)
$$\int n^m K(nx) f(y-x) dx$$

Taking polar coördinates and using the fact that K is odd,

(12.1) is readily seen to be equal to

(12.2)
$$\int_{\Sigma}$$
 (1/2) $|S(a)| d\sigma \int_{-\infty}^{+\infty} n k(n \rho) f(y - \rho a) d\rho$

If $\sup_{n} |k_n(f)| = k(f)$, then the inner integral of (12.2) is dominated in modulus by

$$(12.3) \quad \sup_{n} \mid \int_{-\infty}^{+\infty} k(n\rho) \ f(s + (R - \rho) \ a) \ d\rho \mid = k (f(\rho, s, a)) \ (R)$$

where (s, R) are the coordinates of the point y in the system defined by the direction of a and a hyperplane (m-1) dimensional orthogonal to the same direction. Now

(12.4)
$$\int_{\mathbb{R}^{m}} (\sup_{n} | \int_{-\infty}^{+\infty} n \ k(n\rho) \ f(y - \rho a) \ d\rho |)^{p} \ dy =$$

$$= \int_{\mathbb{R}^{m-1}} ds \int_{-\infty}^{+\infty} k(f(\rho, s, a))^{p}(R) \ dR \leqslant \int_{\mathbb{R}^{m-1}}^{+\infty} ds \ C(p) \int_{-\infty}^{+\infty} |f(s + aR)|^{p} dR = C(p) \|f\|_{p^{p}}$$

Taking into account that

$$(12.5) \sup_{n} |K_n(f)| \leqslant \int_{\Sigma} (1/2 |S(a)| d\sigma.$$

$$\sup_{n} |\int_{-\infty}^{+\infty} n \ k(n_{\rho}) \ f(y - \rho a) \ d\rho |$$

From (12.4) and using the Minkowski Integral Inequality we have

$$(12.6) \quad \|\sup_{n} |K_{n}(f)| \|_{p} \leqslant [(C(p)^{1/p} \int_{\Sigma} (1/2) |S(a)| d\sigma] . \|f\|_{p}$$

(12.6) shows that the integrals (12.1) always exist a.e. and also proves part i) of the Thesis. Now, we are going to prove the pointwise convergence in a dense subset.

Let us observe that for $f \in D$

$$(12.7) \quad k_n(f) = \int_{-\infty}^{+\infty} n \ k(ny) \ f(x-y) \ dy = \int_{-\infty}^{+\infty}$$

$$n \ \tilde{k}(ny) \ k(f) \ (x-y) \ dy$$

where $k \in L^1$ and is precisely the function whose Fourier Trans-

form is c_0 k(|u|), see (11.3), and k(f) is a multiple of a single Hilbert Transform. Therefore

$$(12.8) \parallel k_n(f) \parallel_{\infty} < A \parallel \widetilde{f} \parallel_{\infty}$$

Now if $f \in D$ in R^m we have

(12.9)
$$K_n(f) = \int_{\Sigma} (1/2) |S(a)| d\sigma \left[\int_{-\infty}^{+\infty} n \ k(n\rho) \ f(y-\rho a) \ d\rho\right]$$

According to (12.8) the inner integral is uniformly bounded by

(12.10)
$$A. \sup_{y \cdot \alpha} | \int_{-\infty}^{+\infty} f(y - \rho \alpha) \cdot \rho^{-1} d\rho |$$

Since the inner integral converges pointwise, the bound (12.10) gives the pointwise convergence of $K_n(f)$. The above argument together with the maximal inequalities already shown complete the proof of Theorem 3.

Remark. If we take k(x) = 1/x if |x| > 1 and zero otherwise, the integrals of (10.2) become truncated singular integrals of odd kernel. See [2] and also [6].

REFERENCES

- [1] González Domínguez, A., The representation of functions by Fourier Integrals, Duke Math. J., 6, nº 1, 246-255 (1940).
- [2] CALDERÓN, A. P. and ZYGMUND, A., On singular integrals, Amer. J. Math., 78, no 2, 289-309 (1956).
- [3] —, Algebras of certain singular operators, Amer. J. Math. 78, n° 2, 310 320 (1956).
- [4] Zygmund, A., Trigonometric Series, vol. II, Cambridge (1959).
- [5] COTLAR, M., Condiciones de continuidad de operadores potenciales y de Hilbert, Cursos y Seminarios de Matemática, 2, Universidad de Buenos Aires (1959).
- [6] CALDERÓN, A. P., Integrales Singulares y sus aplicaciones a ecuaciones diferenciales hiperbólicas, Cursos y Seminarios de Matemática, 3, Universidad de Buenos Aires (1960).
- [7] Merlo, J. C., Algunas observaciones sobre multiplicadores y su aplicación a los núcleos singulares, Revista de la Unión Matemática Argentina, XX, 210-230 (1962).
- [8] Calderón, Calixto P., Some remarks on the multiple Weierstrass transform and Abel summability of multiple Fourier-Hermite series, to appear in Studia Math.. 32. nº 2.