ON MEASURABLE SUBALGEBRAS ASSOCIATED TO COMMUTING CONDITIONAL EXPECTATION OPERATORS, II,

by A. Diego and R. Panzone

SUMMARY. The objective we pursued was the same as in $\{M\ P_2\}$, i.e., to give necessary and sufficient conditions to make sure that two conditional expectation operators E^B and E^C commute. We restricted ourselves to seek for conditions on the σ -algebras $\mathcal B$ and $\mathcal C$. We found that $E^BE^Cf=E^CE^Bf$, V folds, a sesentially when and only when in a partition of sets: $\mathcal B=\mathcal C$ or $\mathcal C=\mathcal B$, $\mathcal B$ is independent of $\mathcal C$, or $\mathcal B$ and $\mathcal C$ behave as the algebras of Borel measurable sets of $\mathcal R^3$ independents of $\mathcal C$ and $\mathcal C$ respectively. It is noted also that when the commutation is asked not for one but several probabilities equivalent among them, inclusion is the only possible relation between $\mathcal B$ and $\mathcal C$. That is, it is not only the most natural relation assuring commutation but also the most stable under variation of the probability measure. This paper is a self-contained continuation of $\{M\ P_2\}$.

1. INTRODUCTION. Let (Ω, A, P) be a complete probability space and B,C, σ-subalgebras of A containing all the sets of measure zero, or as we shall say A-complete. This type of completeness will be sup posed of any o-algebra appearing in this paper even when not mentioned explicitly. Call $D = B \wedge C$, the greatest σ -algebra contained in B and C. Then, the trivial subalgebra T will contain all sets of measure zero. B and C are conditionally independent with re spect to the σ -algebra M if P(BC/M) = P(B/M)P(C/M) for BeB, CeC. This concept presents two extreme cases: M=A and =T. In the first case conditionally independence does not establish any tie between the algebras. In the other one it is equivalent to independence. When T = M = A the conditionally independence is also an intermediate case between the independence and the absence of conditioning between the algebras. Call E = E(./B), F = E(./C), G = E(./D) the conditional expectation operators associated to the mentioned alge bras and e(f) = expectation of f. Let us prove now a useful lemma.

LEMMA 1. i) E is a projector on $L^2(\Omega,A,P)$ with range $L^2(\Omega,B,P)$. ii) EF is a projector iff E and F commute. iii) E and F commute iff EF = G.

iv) E and F commute iff E:C-measurable positive bounded functions+

→ C-measurable functions.

Proof: i) and ii) follow from the definitions and the theory of $\operatorname{Hi\underline{1}}$ bert spaces. If the commutator of F and E, [E,F], is zero then EFf is $\mathcal D$ -measurable, and conversely, any $\mathcal D$ -measurable function is invariant under EF, this proves iii). iv) follows from:a subspace with projector F reduces an operator E iff E and F commute, and the self adjointness of E.

A theorem of Burkholder and Chow asserts that $(EF)^n f \rightarrow Gf$ a.e. and in L^2 if $f_{\epsilon}L^2(\Omega,A,P)$, $(cf._{BC})$. What conditions must be imposed on the associated algebras as to have $(EF)^m f = Gf$ for every f? In particular, how are B and C related in these cases? There is a formal parallelism between this situation and the preceding one where conditional independence was considered. Moreover, if B is independent of C, then the commutator of F and E, E, F, equals E. Is there some relation between the concept of independence and the property of commutation of the associated conditional expectation operators? Since the commutation is present whenever one all gebra contains the other the question must be properly posed as follows: When inclusion E or E is not present and E and E commute, is E independent of E. In a sense the answer is yes and this paper is essentially devoted to prove it. Another clue is given

It is well-known that if F, G are (closed) subspaces of the subspace E constituted by functions of mean zero, square integrable and finite normal joint distributions and if B = g(F), C = g(G) are the σ -algebras generated by the functions of the mentioned subspaces, then the restriction of E to the subspace of B-measurable L²- functions of mean zero has range equal to F. Briefly, in this case projection and conditioning coincide. Let us prove now the following proposition.

- a) G is orthogonal to F iff b)G is independent of F iff c) EF=FE= =e=0 on (F times G) n L 2 , whenever is satisfied the hypothesis explicited above.
- a) implies b). If $g \in G$ and f to F then the most general functions C and B-measurable are of the form g+c, f+d, where c and d are constants. Since e(gf)=0=e(g).e(f) it follows that e((g+c)(f+d))=e(g+c).e(f+d). b) implies c), as it is easy to see since independence of B from C implies EF=FE=e. It holds: EF(fg)=e(fg)=0 whenever c) holds. QED.

The preceding proposition supports the suspicion that commutation

and independence are related, if there is not inclusion. This paper will be devoted to prove this.

Expository reasons oblige us to include with a proof most of the results of $\{M\}$ and those of $\{M\ P_2\}$. Whenever this happens it will be explicitly mentioned.

To begin with, let us say that this introduction was already contained in {M P_2 }.

2. AUXILIARY RESULTS. A Boolean σ -algebra where can be defined a pro bability measure will be called a measure Boolean algebra (cf.{H2}). It is complete in the sense that the supremum of any family of elem ents exists, that is, there exists a least upper bound. Examples a re the quotients of the σ-algebras of probability spaces by its i-deal of sets of measure zero. (And they are the sole examples as it is seen using Stone's representation theorem, and Caratheodory's the orem of extension of measures). A σ-basis of a σ-algebra A is a set of generators of A (i.e. the least g-algebra containing the set A) with minimal cardinality. Because of the well ordering of the cardinals every g-algebra contains a g-base. A principal ideal A is generated by an element $a \neq 0$, and is defined as $\{x; x \leq a, x \in A\}$. This ideal defines the g-algebra Ana. An algebra is called homogeneous if for every $a \in A$, $dim(A \land a)$ is constant $(a \neq 0)$; in other words, all the proper principal ideals have the same dimension. Example: The algebra of Borelian sets in (0,1) is homogeneous of di mension \aleph_o . In relation with homogeneous algebras cf. $\{M\}$. Next we prove some results necessary for what follows.

THEOREM 1: i) If A and B are Boolean σ -algebras and h is a surjective σ -homomorphism then if K \subset A and g(K) designates the least σ -algebra containing K, h(g(K)) = g(h(K)). Also dim Bsdim A. ii) g_a(K \(A \) = g(K) \(A \) , where g_a means "generated in the principal ideal I_a" and a is an element of A. iii) If L \subset A, dim Lsdim A.

Proof: i) is easy and is left to the reader. ii) follows applying i) to h: $A \rightarrow I_a$, $h(x) = x_A a$

- iii) Let L' and A' be σ -basis of L and A respectively. We can suppose that they are ordered with the ordinals less than one which is the minimum among those of same cardinality. We can suppose more , as it is easy to see:
- (*) if $A_i = g(a_s; a_s \in A', s < i)$ then i < j implies $A_i \subset A_j \neq A_i$. Same for L and L'. Then $A = \bigcup_i A_i$. Call $K_i = g(L' \land A_i)$. Obviously $L = \bigcup_i K_i$. Besides:

(1) $\dim L \leq \operatorname{card} U \left(L' \wedge A_{i} \right)$

(Observe that (*) assures that no element of L' can be generated by the preceding ones and consequently that $\operatorname{card}(L'_A A_i) = \dim g(L'_A A_i)$. To finish the proof it would be enough to have $\operatorname{card}(L'_A A_i) \leq \operatorname{card} i$, since from (1) we had dim L \leq (dimA) = dim A. (The finite case is trivial). For this it suffices to have: any σ -subalgebra of A with dimension less than dim A verifies iii). If this is verified the theorem is proved, if not, there exists a σ -subalgebra B of A not verifying iii) and with minimal dimension with respect to this property. The preceding argument applied to B shows that iii) is verified, contradiction. QED.

THEOREM 2. Given a measure Boolean algebra A without atoms there exists a partition of A in homogeneous ideals with different homogeneity, $\{cf.\{M\}\}$.

Proof: Let $\mathbb{N}=\{\dim a \; ; \; a_{\epsilon}A, \; a\neq 0\}$ and $a_{\xi}=V$ $\{a_{\xi} \; \dim a\leq \xi\}$, $\xi \in \mathbb{N}$. $\{a_{\xi}\}$ is well ordered and isomorphic to \mathbb{N} . In fact it will suffice to show that $\dim a_{\xi}=\xi$. Since in a measure Boolean algebra the sup of any family of elements coincides with the sup of a denumerable subfamily, we have $a_{\xi}=Vb_{n}$. Therefore, $\dim a_{\xi}\leq \xi \cdot \aleph_{n}=\xi$. By definition of a_{ξ} , $\dim a_{\xi}\geq \xi$. Putting now $x_{\xi}=a_{\xi}$, $\xi=\inf \mathbb{N}$, and $x_{\xi}=a_{\xi+1}-a_{\xi}$ for $\xi\neq \xi$, we have the decomposition $\{x_{\eta}; \eta \in \mathbb{N}\}$ we were looking for. QED.

COROLLARY. A Boolean measure algebra without atoms of dimension \aleph_{\bullet} is homogeneous.

EXAMPLE. $B((0,1)^{(n)})$.

Call B_{Λ} the Boolean measure algebra quotient of the Borel sets of $\pi(I_{\alpha}$; $\alpha<\Lambda)$, Λ an ordinal number, $I_{\alpha}=(0,1)$, with the set of sets of measure zero with respect to Lebesgue infinite product measure. If card $\Lambda=$ card Φ then B_{Λ} and B_{Φ} are isomorphic. It is well-known for card $\Lambda=$ B_{α} 0 and it is easy to see for other cardinals. What Maharam's theorem says is that those are the only homogeneous algebras. The isomorphism when the cardinals are equal follows then from her theorem, which will be proved later.

THEOREM 3. Let A be a Boolean measure algebra with a probability P and B and C two σ -subalgebras such that if beB and ceC then bac \neq 0

Proof: Let S and T be the Stone spaces associated to B and C respectively. R that associated to A. Let B and C be the σ-algebras generated by the clopens of S and T, and A that generated by those of R. Consider the family of finite unions of intersections of clopens of the form .x T, S x., in the product SxT; it is exactly the algebra of all the clopens of SxT. From the hypothesis it follows that this algebra is isomorphic to that generated by B and Therefore, it exists a continuous application f from R onto SxT that induces the isomorphism. Moreover, f pulls back BxC onto a σ-subalgebra of A. Call i(j) the isomorphism from the clopens of S(T) to B(C). Define p(q) on the clopens of S(T) as the value of P on the image under the isomorphism just described. Calling again P, p, q, the extensions of P, p, q, from the clopens to A,B and C respectively we shall see that f^{-1} induces the promised isomorphism k. We shall only sketch the proof. Define P' on $f^{-1}(BxC)$ as $P'(f^{-1}(H)) = (p \times q)(H)$. We must see that 1) the probability P' coincides with P on the σ -algebra where the first is defined, 2) every element of A is equivalent [P] to a certain element of $f^{-1}(BxC)$. This would prove the theorem. 1) The clopens of S generate B and the restriction of P to the in-

1) The clopens of S generate B and the restriction of P to the inverse image of them by f coincides with p on them. Therefore P and P' coincide on $f^{-1}(B)$. Same for $f^{-1}(C)$.

Every element of B is equivalent [p] to a certain clopen as it is easy to see using nonotone classes (cf. $\{My\}$).

Let M be an element of B and N its clopen associated, let UeC and V the equivalent clopen [q]. Then MxU is equivalent to NxV[pxq]. Since $f^{-1}(NxV)$ has measure P equal to $P(f^{-1}(N)).P(f^{-1}(V))$ coinciding with (pxq)(NxV) and since $f^{-1}U \wedge f^{-1}M$ is P-equivalent to $f^{-1}V \wedge f^{-1}N$, it follows: $P(f^{-1}(MxU)) = (pxq)(MxU)$. Therefore, the same holds for any element of BxC, which proves 1).

2) Let us consider the set of elements of A such that the corresponding clopens are P-equivalent to a set of $f^{-1}(BxC)$. This set contains the algebra of finite unions of sets of the form bac and it is a monotone family. An application of the theorem of monotone families for Boolean σ -algebras proves that every clopen of A is equivalent [P] to a set of $f^{-1}(BxC)$. Since every element of A is equivalent to a clopen, the thesis is proved. QED.

We return now to the situation that will be the setting of what follows: a complete probability space (Ω,A,P) ; two A-complete σ -algebras, B and C; D the intersection of them; and we shall suppose from now on A is the least complete σ -algebra containing BuC. This situation will be written as A = g(B,C). Let Q be a finite measure on A, absolutely continuous with respect to P and f = dQ/dP. From $E'(./B) = E'(.) = E_Q(.)$, the conditional expectation operator associated to Q and B, and

(1)
$$\int_{B} E'(h) dQ = \int_{B} h dQ = \int_{B} hf dP = \int_{B} E(hf) dP = \int_{B} E'(h)f dP$$
we obtain:
$$\int_{B} E(hf) dP = \int_{B} E(E'(h)f) dP = \int_{B} E'(h)E(f) dP$$

From this:

(2)
$$E'(h) = E(hf)/E(f), [P]$$

Putting $f = 1_A$, the indicator of A, we get on A at least that

$$E'(h) = E(h 1_A) / E(1_A)$$
. Therefore,

(3)
$$E'(h) = E(h \ 1_A) \ 1_A / E(1_A) , [P]$$

That is, (3) defines the conditional expectations of the restrictions to A, $(cf. \{HN\})$.

If R and Q are equivalent probability measures with Radon-Nikodym derivatives r and q, from (2) it is easy to obtain:

$$E_R(h q/r) / E_O(h) = E(q) / E(r)$$

independent of h. This formula will not be used in the paper.

PROPOSITION. If Q is a probability equivalent to P and f is B or C-measurable then the commutation of E and F implies that of $\rm E_Q$, $\rm F_Q$.

Proof: Assume f is C-measurable. From (2), $E_Q(h)$ is a C-measurable function, if $h \in C$ -measurable. It follows from iv), lemma 1 and the hypothesis that E_Q and F_Q commute.

This proposition also follows immediatly from Proposition 2 of § 10. This alternative proof is left to the reader.

3. EXAMPLES. We shall introduce here some examples to avoid later interferences. The next three examples were contained in $\{MP_2\}$.

- I. Let $X = Y \times Z$ and card $Y = \text{card } Z = \frac{S_4}{4}$. Call B(C) the σ -algebra generated by the sets contained in a denumerable family of vertical (horizontal) lines. Let A = P(X). Since card $X = \frac{S_4}{4}$, a theorem of Ulam asserts that every measure on X is discrete and with respect to them B and C are equivalent. Same thing if the two algebras contain the points as measurable sets and together generate A. Therefore, the associated conditional expectation operators commute. This example shows, for example, that what really matters is the Boolean structure which can be unexpectedly "different" from the set theoretic setting.
- II. We have seen that commutation holds whenever B and C are independent. The following situation, which will be involved in what will be called g-independence, generalizes the case of independence. What we are going to show in this paper is that g-independence and inclusion (BcC or CcB) are (essentially) the fundamental stones on which commutation is based on, and when A is under the influence of several measures inclusion is the only stable situation under which commutation does appear.

Let Ω = X x Y x Z, X = Y = Z = (0,1), B = the algebra of Borel measurable sets independent of z and C that independent of x. Obviously $E(f) = \int f(x,y,z) dz$, $F(f) = \int f(x,y,z) dx$ and EF = FE, as it follows from Fubini's theorem.

III. Let $\mathcal{D}=$ Borel measurable sets independent of y in $\Omega=(0,1)x(0,1)$. $\mathcal{B}=g(\mathcal{D},\{(x,y);\ y\leq (1+x)/4\})$, $\mathcal{C}=g(\mathcal{D},\{\ x/4\leq y\leq x/4+1/(x+1)\})$. Then E and F commute. We shall not make the calculations since the details will be given in the next example. Let us observe only that in the set $\{y\leq (1+x)/4\}\varepsilon\mathcal{B}-\mathcal{D}$, \mathcal{B} and \mathcal{D} induce the same σ -algebras, that is, they intersect it in the same algebra. This means that in spite of \mathcal{B} - \mathcal{D} on that set both coincide. This situation essentially replaces the inclusion case or if one wants is a generalization of it. In $\{M\ P_2\}$ it is associated with the concept of "atomic relation". In $\{HN\}$ it is said that sets of the mentioned kind are "conditional atoms".

IV) Let $\Omega=(0,1)x(0,1)$; $\mathcal D$ the algebra of Borel measurable sets independent of y; $B=\{(x,y);\ 0\le y\le f(x)\}$; f a Borel measurable function such that $0\le f(x)\le 1$ for $x\varepsilon(0,1)$. p and q two non-negative Borel measurable functions of x verifying

$$0 \le f-p \le f+q \le 1 ;$$

$$C = \{f-p \le y \le f+q\} ; B = g(\mathcal{D},B) ; C = g(\mathcal{D},C).$$

PROPOSITION. EF = FE i66 f(p+q) = p.

Proof: It will suffice to prove $F(I_B) = f(x) I_B$, for any set $B = \{0 \le y \le f(x), x \in B'\}$ where B' is Borel measurable in (0,1). (This equalify is equivalent to FE = EF since fI_B , is \mathcal{D} -measurable). It is easy to see that $G(I_B) = fI_B$. Besides:call $Q = \{(x,y); x \in Q', (f-p)(x) \le y \le (f+q)(x)\}$. Then:

Therefore, from (1) and (2) it follows that $F(I_B) = fI_B$, iff f(p+q) = p a.e. QED.

V. Commutation is present also in the following situation, which is a mixture of examples II and III. $\Omega = (0,1)^3$; $B_x = B_y = Borel$ sets of (0,1); $B_z = g((0,1/2), Borel sets of <math>[1/2,1)$); $E_z = g(\Phi,\Omega)$; $E_z = g(\Phi,\Omega)$; $E_z = g(\Phi,\Omega)$; $E_z = g(\Phi,\Omega)$;

 $B = TxB_yxB_z$; $C = B_xxB_yxT$. VI. $\Omega = (0,1)^2$, 1 = f/p(x,y) dx dy, $p \ge 0$; M(x) = fp dy, N(y) = fp dx (M and N are the marginals densities); B and C are respectively the Borel sets independent of y and x; E(h) = fh(p/M(x))dy, F(h) = fh(p/N(y)) dx. If, to fix ideas, we assume p > 0 and symmetric, then 0 < M = N, and supposing f symmetric, we get:

FE f = k(y)/N(y), EF f = k(x)/N(x), k = $\int \{\int (fp/N)dy\}pdx/N(y)$

The commutation of E and F requires $k = constant \times N$, and therefore, in general, it is not verified.

REMARKS. It will be shown that on the atoms of \mathcal{D} , \mathcal{B} is independent of \mathcal{C} whenever \mathcal{E} and \mathcal{F} commute. In the examples II and IV, it is possible to say that the independence still holds in the sets "infinitely small" of \mathcal{D} , as we show next.

Case IV. Let us consider a cylinder Z independent of y whith basis (x,x+dx). Then, P(B.C|Z) = (f(x) - (f(x) - p(x))) dx / 1.dx=p(x). Analogously, P(B|Z) P(C|Z) = f(p+q). Since p = f(p+q) is necessary and sufficient for the commutation we get the conditional independence of B and C given Z, that is, given an infinitely small set of \mathcal{D} . Case II. If $B = B' \times (0,1)$, $C = (0,1) \times C'$, and $Z = (0,1) \times (y,y+dy) \times (0,1)$, then again P(BC|Z) = P(B|Z) P(C|Z), as it is easy to see.

4. MONADIC AND BIADIC ALGEBRAS. The results of this section will not be used in the sequel. They are the precursors of results that will follow. or if one wants, a generalization of them. They show in which extent product structures play a role in this problem when

there is no inclusion, (cf. Th. 1). Next theorem 2 gives a representation that recalls Maharam's representation theorem (cf.{M}). Let us remember some definitions and theorems. A Boolean algebra A is called monadic with respect to the subalgebra B if B is conditionally complete: \forall aeA, \exists inf(xeB; x \geq a)e B. This is equivalent to give an operator \forall in A with: \forall 0 = 0, \forall x \geq x, \forall (a \land Vb) = \forall Va \land Vb; here B = (aeA; \forall Va = a). (Those properties immediately imply that \forall is a closure operator: \forall (a \lor b) = \forall a \lor VVb, \forall Va = \forall a, \forall 0 = 0, \forall a > a).

Given a filter F, A/F = $(a^*; c \epsilon a^* iff ((a-c) \lor (c-a)) ' \epsilon F)$. F is said monadic in the monadic algebra (A,B) if FAB generates F. It can be proved that this is equivalent to the possibility of introducing in a canonic way a V-operation in the quotient algebra: $\nabla h(a) = h(\nabla a)$ where h is the canonical homomorphism $A \rightarrow A/F$. is said to be simple if $B = T = \{0,1\}$. It can be proved that A/F is simple iff F is a maximal monadic filter. Also that (A,B) is a subalgebra of the product π (A/F; F maximal monadic in A). An algebra is called biadic relative to the subalgebras B and C if it is monadic with respect to them and the corresponding closure operators, ∇_1 , ∇_2 , commute. Then $\nabla = \nabla_1 \nabla_2$ defines another closure ope rator and obviously associated to the algebra D = BAC. Every monadic filter F with respect to D is monadic with respect to B and C and therefore in A/F the induced operators v_i , i=1,2, commute. If F is also maximal monadic, in A/F, $\nabla x = 0$ or 1, that is D/F = $\{0,1\}$ = T. In this situation, when D = T, A is called simple biadic. Given the algebras M,N and P, we shall say that P is the direct sum of M and N, P = M Θ N, if P \supset MuN is generated by them, M \wedge N = {0,1}, and if when $m_{\varepsilon}M$, $n_{\varepsilon}N$ are comparable, one of them is 0 or 1. From now on we shall suppose that whenever we speak of a biadic algebra (A,B,C), A is generated by B and C. We shall denote by S(A) the Stone's space associated to the algebra A.

THEOREM 1. A biadic algebra (A,B,C) is simple iff $A = B\Theta C$.

Proof: From the construction of the direct sum we see that the associated ∇ -operators commute since their product is the trivial ∇ -operator. If A is simple, since by a general hypothesis we already know that B and C generate A, it will suffice to show that of two comparable elements b,c, one is 0 or 1 to have A = B \oplus C. Let b < c, then, d = ∇_2 b = ∇ b < c. When 0 \neq c \neq 1, d = 0 and therefore b=0.

THEOREM 2. If A is biadic, then it is isomorfic to a subalgebra of a product $\pi(B_M\Theta C_M)$ M is a maximal monadic filter).

Proof: In fact, it is known that it is isomorphic to a subalgebra of $\Pi(A/M; Memaximal monadic filters)$. Since $A/M = B_M \vee C_M$, where B_M and C_M are the algebras B/M and C/M, we can apply Th. 1. QED.

COROLLARY. Let BX be the Stone-Čech compactification of X, and $T=\beta(\xi(S(B_M) \mid x\mid S(C_M)))$, where M runs on the set of maximal monadic filters. Then, there exists a continuous application of T onto S(A) that induces the injective homomorphism of A into $\mathbb{I}(A/M)$.

Proof: It is a trivial consequence of the functoriality of Stone's representation and the fact that two complementary clopen sets on the topological direct sum of the spaces $S(B_M\Theta C_M)$ has disjoint complementary closures on T (cf. {GJ}, chp.6)

THEOREM 3. When A is generated by B and C, and (A,B,C) is biadic, it is possible to decompose S(A) in a union of disjoint closed sets defining an open and closed equivalence relation associated to $\nabla = \nabla_1 \nabla_2$ and such that the induced topology on each of those sets defines on them the algebras of clopen sets coinciding with the direct sum of those induced by the clopen sets of B and C. There are as many maximal monadic filters as there are equivalent classes and the quotient space is isomorphic to S(D).

Proof: Let us only sketch the proof. From Stone's representation we know that if F is a filter the canonic application i: $S(A/F) \rightarrow S(A)$ is a continuous injection which is open iff F is principal. (This follows immediately observing that Stone's space of A/F is isomorphic to the closed set associated to F with the induced topology of S(A)). Recall now that (A, ∇) is a monadic algebra if on S(A) it is possible to introduce an open and closed relation such that V as A, V a = sat a; (cf. $\{H_{1,2}\}$). Consider the family of equivalence classes of the points of S(A) under the closed relation induced by $V = \nabla_1 \nabla_2$. These classes are disjoint and closed as sets of S(A). With the induced topology they are Stone's spaces, and exactly, those corresponding to the algebras A/M, M a maximal monadic filter. (Given M, an equivalence class is defined by all the ultrafilters containing M).

The difference with the corollary to theorem 2 is in the fact that each equivalence class defines a closed set and not a clopen set, as in this corollary.

REMARK: Since we will not develop systematically the algebraic approach, we shall not care about most general statements concerning monadic operators.

5. BOOLEAN MEASURE ALGEBRAS AND CLOSURE OPERATORS. A Boolean probability measure algebra A and a σ -subalgebra B provide one of the oustanding examples of monadic algebras as it is easy to see since if P denotes the measure, inf{P(b); b \geq a, beB} defines a number h for which exists a boeB with boe a, and P(bo) = h, i.e., $\nabla a = boe$. We shall call ∇a closure operator or a ∇ -operator. If two subalgebras B and C, are considered, we get a biadic algebra whenever the associated ∇ -operators commute. In the setting in which we are interested described after theorem 3 of section 2: {A,B,C} with probability P, $\nabla_1 A$, $A \in A$, is the set defined by {P(A|B) > 0}. Naturally comes the first question: in which extent commutation of the conditional expectation operators and that of the ∇ -operators are related? We answer this next and also provide a result similar to lemma 1 in the introduction, but for the closure operators.

THEOREM 1. i) If $\nabla_1\nabla_2$ defines an operator ∇ with the same closure properties as the ∇_j ,s, then this is the operator associated to B \wedge C. ii) If $\nabla_2\nabla_1=\nabla$ is a closure operator then the ∇_j ,s, j=1,2, commute, and conversely, if they commute their product defines a closure operator.

iii) If two conditional expectation operators commute, then the associated closure operators also commute.

iv) If $\nabla_1 C = C$ then $\nabla_2 B = B$ and ∇_1 commutes with ∇_2 .

Proof. i) The following properties define a closure operator: $\nabla 0 = 0$, $\nabla x \geq x$, $\nabla (a \wedge \nabla b) = \nabla a \wedge \nabla b$, and $\{x; \nabla x = x\}$ determines the associated subalgebra. Therefore if $\nabla_1 \nabla_2$ defines a closure operator ∇ then $x = \nabla x$ implies $x = \nabla_2 x_{\epsilon} B$, and therefore, to $B \wedge C$. It proves i).

ii) If the ∇_1 , s commute their product verifies the properties defining a closure operator, as it is easy to see. Assume $\nabla_2 \nabla_1 = \nabla$. By i) we know the algebra associated to ∇ . If the thesis were false it would exist a $c_{\epsilon}C$ such that $b = \nabla_1 c \not \in B \wedge C$; in fact, if it always belonged to $B \wedge C$ it would be possible to verify for $\nabla_1 \nabla_2$ the conditions defining a closure operator. By i) it would imply $\nabla_1 \nabla_2 = \nabla$, which by hypothesis and i) must coincide with $\nabla_2 \nabla_1$.

Let $\mathbf{b}^{\circ} = \nabla_2 \mathbf{b}$. Then $\mathbf{b}^{\circ} \in B \wedge C$ and $\mathbf{b}^{\circ} - \mathbf{b} \not \in D$. It holds: $(\nabla_2 (\mathbf{b}^{\circ} - \mathbf{b})) \wedge \mathbf{c} = 0$ and also: $(\nabla_2 (\mathbf{b}^{\circ} - \mathbf{b})) \wedge \mathbf{b} \not = 0$. Therefore, $\mathbf{b}^{\circ} - \nabla_2 (\mathbf{b}^{\circ} - \mathbf{b}) \in B \wedge C$, $\not = \mathbf{b}$, and $\not = \mathbf{c}$, a contradiction.

iii) For $\mathbf{A} \in A$, it always holds $\nabla_1 \nabla_2 \mathbf{A} \leq \nabla \mathbf{A} \in B \wedge C$. On the other hand

we have $E(P(A|B)|C) = P(A|B \wedge C)$. The second member is greater than zero exactly in the set ∇A . Finally, where the first member is greater than er than zero we also have:

$$(^{\circ}) \qquad P(\nabla_2 A | B) > 0$$

But (*) is verified exactly on $\nabla_1 \nabla_2 A$. In consequence $\nabla_1 \nabla_2 A \ge \nabla A$. iv) Let beg. Then $\Delta_1 (\nabla_2 b) = (\nabla_1 (\nabla_2 b)')' \in C$. From $b \le \Delta_1 (\nabla_2 b) \le \nabla_2 b$, it follows $\Delta_1 \nabla_2 b = \nabla_2 b$, i.e., $\nabla_2 b \in B$. Let us see that the operators commute. $\nabla_1 C = C$ implies $\nabla_2 \nabla_1 x < \nabla_2 \nabla_1 (\nabla_2 x) = \nabla_2 [\nabla_1 (\nabla_2 x)] = \nabla_1 (\nabla_2 x) = \nabla_1 \nabla_2 x$. The opposite inequality follows from $\nabla_2 B \in B$. QED.

There exists formal analogy between Lemma 1, §1, and the preceding theorem, that is, between the V's and E's operators, partly justified because of iii) of theorem 1. The study of this analogy is pursued further in theorems that will follow, but results not concerning the subject of this paper will not be included.

6. CONDITIONAL ATOMS AND MAXIMAL FREE FILTERS. Given (Ω, A, P) and a σ-subalgebra L, an element AεA is said a conditional atom or an Latom if $L \wedge A = A \wedge A$, (cf. {HN}). We can introduce the concept in (A, L), a monadic algebra A with a subalgebra L: a is an L-atom if LAa=AAa. In what follows of this section we relate the concept of L-atom with that of free filter and it will not be used in the rest of this paper. The homomorphism i: $L_3b \rightarrow b_A a \in I_a$ = principal ideal generated by a, has kernel $F_{\nabla a}$ = principal filter generated by ∇a . If this map is onto a is an L-atom. When Va = 1 it is said that a is a free element relative to L. The restriction is not serious since for beL the intersection algebra (Anb,Lnb) is again a monadic algebra. The relevant fact is that the homomorphism i is a bijection whenever a is simultaneously a free element and an L-atom, as it is easy to see. A filter is called free if any of its elements is free. It is wellknown that any free filter is contained in a maximal free one. Let us see now a characterization of conditional atoms.

THEOREM 1. Let ∇ a = 1. a is an L-atom iff the principal ideal generated by a in A, F_a , is a maximal free filter.

Proof: The condition is necessary: F_a is free, if not maximal there exists $y \le a$, $y \ne a$, which generates a free filter. But $y = x \wedge a$, $x \in L$, and $\nabla y = 1$. Therefore, $\nabla x = x = 1 \ge a$, and y = a, contradiction Sufficiency: if a were not L-atom, it would exist y < a such that $y \notin L \wedge a$. Therefore $z = y \vee (a - \nabla y) \ne a$, $\nabla z = \nabla a = 1$. Then F_z is free and contains properly to F_z . QED.

We are tempted to mention now the following theorem due to Halmos: if F is a maximal free filter of a monadic algebra (A,L) and L is complete then any equivalence class of A/F contains exactly one element of L.

7. CONDITIONAL ATOMS AND COMPLETELY DIMINISHABLE ELEMENTS. Let (Ω, A, P) be a probability space and L a σ -subalgebra. Equalities and inequalities are always a.e.. An element NeA will be called dimin ishable (relative to L) if there exists QcN, QeA,Q $\neq \emptyset$, such that $\nabla (N - Q) = \nabla N$, where the closure operation is taken with respect to L. MeA will be called completely diminishable if it is nonvoid and every nonvoid subset of M is diminishable.

PROPOSITION 1. If M is completely diminishable, then there exists Q_CM , $Q \neq \Phi$, Q_CA , such that $\nabla Q = \nabla (M - Q) = \nabla M$.

Proof: Define $Q_o = \Phi$, and transfinitely, $Q_k \subset M - \sum VQ_j$ such that $V(M - Q_k - \sum VQ_j) = V(M - \sum VQ_j)$. Call $Q = \sum Q_k$. Then M has the same closure as M - Q. By construction the same as Q. QED. The converse is false: take $\Omega = M = (0,1)$, L = T, A = g(A) where A is the set (0,1/2), Q = (0,1/2).

EXAMPLE: (D. Maharam, cf. {M}). Assume that A is a homogeneous σ -algebra, and that L is also homogeneous and Boolean σ -isomorphic to a B_A (see section 2). If dim L < dimA, then Ω is completely dimin shable.

In fact, it follows from the definition of homogeneity and the next theorem, proposition ii).

Let us introduce another definition. We shall say that a set MeA is not sectionable (relative to L) or has not the sectioning property if V NcM, $\phi \neq NeA$, there exists QcN, $\phi \neq QeA$ such that $\nabla Q = \{P(Q|L) > 0\} = \{0 < P(Q|L) < P(N|L) \}$. The reasons why we have chosen that adverb will be explained later.

Finally a useful remark to be used in the following theorem. A set N is a conditional atom iff for any A ϵ A, A ϵ N, it holds: A = N \wedge VA. That is, the closure of any subset A of N could be greater than A but only in a subset contained in the complement of N. The proof is immediate.

THEOREM 1. i) A set is not diminishable iff it is an L-atom.

ii) A set is completely diminishable iff it does not contain L-atoms.

iii) A set is diminishable iff it is not sectionable.

Proof: i) Let N be an L-atom. Assume it is diminishable: there exists Q $\neq \Phi$ contained in N with $\nabla (N - Q) = \nabla N$. Therefore $N = N \wedge \nabla (N - Q) = N - Q$.

Suppose now that N is not an L-atom. Therefore, there exists HcN with H \neq NnVH. Set Q = HnV(N - H), then Q \neq Φ . Now, ∇ (N - Q) =

- = $\nabla \{ (N H) \lor (N \nabla (N H)) \} = [\nabla (N H)] \lor [\nabla N \nabla (N H)] = \nabla N$. In other words, N is diminishable.
- ii) follows from i) and the definitions. iii) follows easily from the definitions and P(Qv(N Q)|L) = P(Q|L) + P(N Q|L). QED.

PROPOSITION 2. If N is an L-atom and A3A=N, then: (°) $P(A|L) = P(NA|L) = 1_{\nabla A}$. P(N|L). Conversely, if (°) holds, N is a conditional atom.

Proof: If N is an atom, $P(NA|L) = P(N.\nabla A|L)$. Conversely, if N. $\nabla A - A \neq \emptyset$ then $P(NA|L) \neq P(N.\nabla A|L)$. QED.

The proposition says that P(A|L) is obtained "sectioning" with ∇A to P(N|L). This cutting cannot be made in a diminishable set and explains the nomenclature used above. The proposition "N sectionable implies (°)" was proved in $\{MP_2\}$. The proposition also appears in $\{HN\}$ where other properties of atomicity are studied. This paper contains also a proof of next theorem. In $\{MP_2\}$ it was observed that non-sectionability, now shown to be equivalent to non-atomicity, implies the same thesis as next theorem. There, it was said that the result is in its essence, nothing but a lemma used in $\{M\}$ by Maharam, and in fact, it is an abstraction of that lemma whose proof can be used without changes. As a matter of fact, we repeat the proof for the sake of completeness. In $\{HN\}$ the demonstration follows a shorter way.

THEOREM 2. If the set M is completely diminishable and f is an L-measurable function such that $0 \le f \le P(M|L)$ then there exists NcM such that f = P(N|L).

(Hanen and Neveu prove the following proposition: for any set C and function $f \in L$ -measurable satisfying $0 \le f \le P(C|L)$ there exists two disjoint subsets of C, A and B, B, a conditional atom, such that $P(A|L) \le f \le P(B + A|L)$. If C does not contain conditional atoms then P(A|L) = f.

As an application of theorem 2 we have lemma 2 of $\{M\}$:

PROPOSITION 3. If A is a homogeneous $\sigma\text{-algebra},$ and L a $\sigma\text{-subalge}$ bra Boolean $\sigma\text{-isomorphic}$ to a $B_\Lambda,$ then dim A > dim L implies that if 0 < f < P(M|L) there exists NGM with P(N|L) = f.

(It follows from theorem 2 and the example described above).

Theorem 2 has a converse:

THEOREM 3. If \forall NcM it holds that \forall f; $0 \le f \le P(N|L)$ there exists M'cN such that f = P(M'|L), then M is completely diminishable.

Proof: Take f = P(N|L)/2. Then $P(M'|L) = 1/2 \cdot P(N|L) = P(N - M'|L)$ and $\nabla M' = \nabla (N - M') = \nabla N$. QED.

If we did not require M' \subset N, the implication would be false. Take N = (0,1/2), Ω = (0,1) = M, L = { Ω, ϕ }, A = g(N,B(1/2,1)). N is an atom and every constant function not greater than 1/2 is the conditional expectation with respect to L of a subset of M.

Proof of theorem 2. It is sufficient to prove that there exists N'cM such that $P(N'|L) \le f$. In fact, defining recursively N_j as a set contained in $M - \sum_{i < j} N_i$ verifying $P(N_j|L) \le P(M - \sum_{i < j} N_i|L)$, we get finally a set $N' = \sum_{k} N_k$ with the desired property. This involves an exhaustion procedure which will be often used. One way of substituting this method by another one is to use axiom of choice in its maximal-element form. Let us prove the existence of such an N'. The crucial point is to exhibit a BcM with

(*)
$$\{0 < P(B|L) < P(M|L)\} = \{0 < P(M|L)\}.$$

But (*) says that ∇M coincides with the intersection of ∇B and $\{P(M-B|L)>0\}=\nabla(M-B)$. Such a B exists because of proposition 1. Call $C=\{0< P(B|L)< 1/2\cdot P(M|L)\}$, $D=\{1/2\cdot P(M|L)\leq P(B|L)\}$. $B_1=(C\wedge B)\vee(D\wedge(M-B))$. Then, $\nabla B_1=\nabla M$ and $P(B_1|L)\leq 1/2\cdot P(M|L)$. Repeating the process, we can prove that exists a sequence $\{B_n\}$:

(**) $\nabla B_n = \nabla M$, $P(B_n|L) \le P(M|L)/2^n$, n = 1,2,..., $B_n \le M$. For a certain n, $P(f > P(M|L)/2^n) > 0$ if $f \ne 0$. Define

$$N' = B_n \wedge \{P(B_n | L) \le f\} = B_n \wedge H$$

 $N' \neq \phi$ because $\nabla N' = H \wedge \nabla B_n = H \wedge \nabla M = H$. Besides $N' \subset M$ and from (**) $P(N' \mid L) < f$. OED.

From now to the end of this section we shall generalize the preceding notions and theorems. The proofs are trivial or similar to those given before.

We shall not go into troubles adapting them since in this moment what only matters for us is to have a prospective view of the subject. Let A, L and S be σ -algebras of subsets of Ω and LcA>S. (Ω,A,P) a probability space. A set N will be called S-diminishable if Ne A and there exists $Q \in S \cap N$, $\phi \neq Q \cap N$ such that $\nabla N = \nabla (N - Q)$ and where ∇

is taken with respect to L. A set M_EA will be called completely S-diminishable if every subset A-measurable is S-diminishable. Given L and S we shall say that M_EA is an (L,S)-atom if $S \wedge M = L \wedge M$. Therefore, L-atom coincides with (L,A)-atom.

THEOREM 4. i) M is completely S-diminishable iff \forall NeM, \Rightarrow \neq NeA, \exists QeN, ϕ \neq QeSAM; \forall Q \in {0 < P(Q|L) < P(N|L)}.

- ii) Assume L=S. Then: a set of A is S-diminishable iff it is not an (L,S)-atom.
- iii) Under the same condition a set of A is completely S-diminishable if f it does not contain an $\{L,S\}$ -atom.
- iv) Assume M is completely S-diminishable. If f is L-measurable and $0 \le f \le P(M|L)$ then there exists $M' \in g(L,S) \land M$ such that f = P(M'|L). v) Let LcS. If M does not contain an (L,S)-atom then for every $f \in L$ -measurable, $0 \le f \le P(M|L)$, there exists $M' \in S \land M$ such that f = P(M'|L).
- (iv) was mentioned in {MP,}, but in its equivalent form shown in i).)
- 8. ATOMS OF THE INTERSECTION ALGEBRA. The setting is the one described after theorem 3, section 2. We are interested in discovering what happens in the atoms of $\mathcal D$ when E and F commute. We shall show that there B and C are independent (*) and since this answer is pleasant enough we shall go into the complement of the atomic part to see how the algebras are related in that part. This "local" study can be done because of the following proposition.

PROPOSITION 1. If $\{D_n, n=1,2,\ldots\}$ defines a partition of Ω by sets of D then E and F commute on each D_i iff they commute on Ω .

Proof: Given the set $A_{\epsilon}A$, we shall denote by A_{\circ} , B_{\circ} , C_{\circ} , D_{\circ} , the restrictions to A of the algebras A, B, C, D. Observe that $A_{\circ} = g(B_{\circ}, C_{\circ})$ but only $D_{\circ} \subset B_{\circ} \wedge C_{\circ}$.

To say that E and F commute on A means: E_o and F_o commute on $(A,A_o,P/P(A))$ where $E_o(F_o)$ is the conditional operator associated to $B_o(C_o)$ and, if $A_E D$, then $E_o = E(F_o = F)$. The corresponding closure operator will be designated by ∇_{01} (∇_{02}).

We have: EF f = EF Σ 1_{Dn}.f = Σ EF(1_{Dn}.f) = Σ E_nF_n(1_{Dn}.f) and this implies that the commutation of E_o and F_o is equivalent to that of

(*) Independence of B and C on D means $B \wedge D$ independent of $C \wedge D$ with respect to the probability P(.)/P(D).

E and F. This proves the proposition.

Elimination of the atoms of \mathcal{D} implies the eradication of the atoms of A, B and C, as the following proposition shows (the proof is left to the reader).

PROPOSITION 2. Any atom H of A, B or C is contained in an atom of D, precisely, ∇H .

When A = g(B,C), we defined in section 4 direct sum of B and C which is equivalent to say that any BeB intersects any CeC:B \land C \neq \bullet C (then B \land C = T), if B \neq \bullet , C \neq \bullet .

THEOREM 1.i) If P is a probability on A which is equal to B Θ C and EF=FE, then B and C are independent.

ii) If $\nabla_1 \nabla_2 = \nabla_2 \nabla_1$ on A, then A = B \oplus C whenever B \(C = T \) iii) If EF = FE, then B and C are independent, whenever B \(C = T \).

Proof: i) Let C_EC , B_EB . $G \ 1_C = a.1_\Omega$ because of the triviality of the intersection algebra and lemma 1, section 1. Then P(C) = a. Analogously P(B) = b. From $E \ F \ 1_{BC} = G \ 1_{BC} = E \ 1_B \ F \ 1_C = ab \ 1_\Omega$, we obtain P(BC) = P(B)P(C).

- ii) If B.C = ϕ then Ω C \Rightarrow ∇B = $\nabla_2 B$ and the intersection algebra would not be trivial.
- iii) follows from Th. 1, iii), section 5 and i) and ii) of this theorem. QED.
- iii) was proved in {MP₂}.

COROLLARY 1. On the atoms of D, B and C are independent iff EF=FE. In the complement of the D-atomic part of Ω neither A nor B nor C have atoms.

In fact, it follows from the preceding theorem and propositions 1 and 2.

COROLLARY 2. If A is purely atomic and EF = FE, then Ω can be represented on NxN (N={0,1,2,...}) in such a way that the σ -algebras B and C correspond with the σ -algebras of sets parallel to the axes, NxN is decomposed into rectangles with disjoint projections where the masses are concentrated, and on each rectangle P is the product of its marginal distributions but for a constant.

In fact, if A is atomic so it is any o-subalgebra. The rectangles

correspond to the atoms of $\mathcal D$ and the corollary is a direct application of the preceding theorem. The mentioned constant is the measure of the rectangle.

COROLLARY 3. If P is a probability measure on NxN positive on each point and B and C are respectively the "vertical and horizontal lines" then $P = P_1 x P_2$, whenever EF = FE.

It follows from the preceding corollary.

- REMARKS. 1) In the proof of the preceding theorem we showed that in an atom of $\mathcal D$ two sets, B, C, intersect if they are not void. This can be generalized: if $\nabla_2 B \supset A$ and $C.\nabla_1 A \neq \Phi$ then B.C $\neq \Phi$. In fact, $\nabla_2 (B.C) = (\nabla_2 B).C = C.\nabla_2 \nabla_1 B \supset C.\nabla_1 A \neq \Phi$ implies B.C $\neq \Phi$. $\nabla_2 B \supset A$ whenever A is an atom of A and $B.\nabla_2 A \neq \Phi$. In fact, in this case, if there is not inclusion $A.\nabla_2 B = \Phi$ and then $\nabla_2 (B.\nabla_2 A) = \Phi$, contradiction.
- 2) If D is an atom of $\mathcal D$ the filter F_D is maximal monadic with respect to ∇ and therefore $A/F_D = A_o = B_o \oplus C_o$ where the direct sum is understood in the sense of Boolean algebras. Since $A_o = g(B_o, C_o)$ it can be interpreted in the sense of Boolean σ -algebras, (cf. §5,6).
- 3) If $\Omega_{\circ}\subset\Omega$, $\Omega_{\circ}\in A$, and $L\subset A$, then if $L_{\circ}=L\wedge\Omega_{\circ}$ is trivial, $\nabla^L\Omega_{\circ}$ is an atom of L, as it is easy to see. This implies that if ∇_1 and ∇_2 commute and $A_{\circ}=B_{\circ}\oplus C_{\circ}$ on Ω_{\circ} , it is contained in an atom of $\mathcal D$ because $\mathcal D_{\circ}\subset B_{\circ}\wedge C_{\circ}=\{\Phi,\Omega_{\circ}\}$. This means that if on a set of A, B and C are independent then this set is contained in an atom of $\mathcal D$. Therefore, after discarding the atoms of $\mathcal D$ no trace of independence will be found. Spurious forms of independence can appear anyhow. The typical example of this bastard type of independence is shown in example II of section 3.
- 4) We already said and can be easily verified that the concept of conditional atom generalizes that of atom. Next lemma characterizes some of them when $L=\mathcal{D}$.
- LEMMA 1. If ∇_1 and ∇_2 commute and BeB then B is a D-atom relative to B iff Boc Co.
- Proof: Assume B is a \mathcal{D} -atom relative to B, i.e. $\mathcal{D}_o=B_o$, then if B' is B-measurable and contained in B, we have: B' = B. ∇B ' = B. $\nabla_2 B \in C_o$. Assume $B_o \in C_o$, B' $\in B_o$. Then, B' = B.C for certain $C \in C$. Applying ∇_1 , we get: B' = $\nabla_1 B$ ' = $\nabla_1 (B.C)$ = B. $\nabla_1 C$ = B. ∇C , and this means that B is a \mathcal{D} -atom with respect to B.
- 5) We have shown in remark 3) that if independence of B and C ap-

pears in a set A of A, it is included in a set of D where still those algebras are independent. An analogous fact occurs for inclusion as is shown in next lemma. Lemma 1 says that if $A_o \in B$, and $B_o = C_o$, then A_o is a (D,B)-atom. But if $A_o \in C$, and $B_o = C_o$ then $A_o = A_1 = \nabla_1 A_o \in D$ which is a (D,B)-atom (lemma 2), and then because of lemma 1, $B_1 = C_1$.

LEMMA 2. Assume $\nabla_1 \nabla_2 = \nabla_2 \nabla_1$. If $A_{o} \in C$ and $B_{o} \in C_o$ then A_1 is a D-atom relative to B.

Proof: Let BeB, B₁ = B.A₁ = B. ∇_1 A_o = ∇_1 (B.A_o) = ∇_1 (C.A_o) with CeC. Therefore B₁ $\in \mathcal{D}$.

- 6) In relation with this remark, cf. {HN}. Assume our probability space is (Ω, M, P) and $L \subset M$, a σ -subalgebra. By a conditional atom we shall understand one L-atom relative to M. This will be applied in the case M = B and L = D.
- LEMMA 3. i) If $\{A_{\alpha}\}$ is a chain of conditional atoms, then $A=\sup A_{\alpha}$ is a conditional atom. Every subset of a conditional atom is an L-atom.
- ii) Given a conditional atom there exists a maximal conditional atom containing it.
- iii) If $\{A_n\}$, $n=1,2,\ldots$, is a sequence of conditional atoms such that the ∇A_n are pairwise disjoint, then Σ A_n is a conditional atom. iv) If A is a maximal conditional atom and Z = sup $\{B\}$ B is a conditional atom $\{A_n\}$ then $\{A_n\}$ $\{A_n\}$ $\{A_n\}$ then $\{A_n\}$ $\{A_n\}$ $\{A_n\}$ then $\{A_n\}$ $\{A_n$
- v) If A and A' are disjoint conditional atoms there exists a conditional atom containing A maximal with respect to the property of beeing disjoint to A'.
- vi) $Z = \sum_{n=1}^{\infty} A_n$, where A_n is a conditional atom maximal with respect to the property of beeing disjoint to $A_1 + \ldots + A_{n-1}$.
- Proof: Sup A_{α} is essentially denumerable, i.e. $A = \sup A_n$ a.e. where A_n is increasing. From $\nabla \sup A_n = \sup \nabla A_n$ we get i), and ii). iii) follows easily. Since $\nabla Z \supset \nabla A$, if $Z \nabla A \neq \emptyset$, it would contain an L-atom and from iii) it would follow a contradiction. v) is proved like i).
- 7) Denote with T₀ the union of the family of atoms of $\mathcal D$ and with T₁(T₂) the maximal set of $\mathcal D$ where BcC (CcB).
- LEMMA 4. If A is an atom of D, then $A \subset T_0 \wedge T_1$ when and only when A

is an atom of B.

Proof: It is left to the reader.

LEMMA 5. If A is an atom of D, $A \subset T_0 \wedge T_1 \wedge T_2$ is equivalent to A is an atom of A.

Proof: Trivial, after lemma 4.

9. COMMUTATIVITY. In this section we study some situations -in the general context we already admitted- which preserve the commutation of E and F. For example generalizing proposition 1 of section 8 we have:

LEMMA 1. i) If $A \subset \Omega$ is B-measurable then E.F. = F.E. on A. Idem if $A \in C$.

ii) If $C' = g(C, B_1, B_2, ...)$ where $B_i \in B$ and $\{B_i\}$ is a partition of Ω then EF' = F'E; F' = E(./C').

Proof: i) From (3), section 2, we have: $F_o(.) = F(.) \ 1_A/F(1_A)$. Applied to sets of B_o , because of the commutation of E and F and that $A \in B$, the right member is B_o measurable. Lemma 1 of section 1 implies then that F_o and F_o commute.

ii) Every element C' of C' is of the form Σ C_iB_i ; then

$$E(1_{C_{i}}) = E(\Sigma 1_{B_{i}C_{j}}) = \Sigma 1_{B_{i}} E(1_{C_{i}})$$

and this function is clearly 8-measurable. QED.

If instead of the conditional expectation operators we consider the closure operators, i) of the preceding lemma is generalized by i) of next lemma.

LEMMA 2. i) If $A_0 \in B$ then ∇_{01} commute with ∇_{02} , whenever $\nabla_1 \nabla_2 = \nabla_2 \nabla_1$ ii) If $A_n + A_n$ and the commutation of the closure operators holds on each A_n , it is also valid on A_n , $(n=1,2,\ldots)$.

iii) $I_{6}A_{n}+A_{o}$ and on each A_{n} , $E_{n}F_{n}=F_{n}E_{n}$, then $E_{o}F_{o}=F_{o}E_{o}$.

Proof: i) It follows immediately that:

(1) $\nabla_{01}H = (\nabla_1 H) \cdot A_0$ whenever $H \subset A_0$, whatever it be A_0 .

Then: $\nabla_{02}(\nabla_{01}H) = A_{\circ}\nabla_{2}\nabla_{1}H$ since $A_{\circ}\varepsilon B$. Besides: $\nabla_{01}\nabla_{02}H = \nabla_{1}(A_{\circ}\nabla_{2}H) = A_{\circ}\nabla_{1}\nabla_{2}H$.

 $\text{ii)} \quad \bar{\nabla}_{n1} \bar{\nabla}_{n2} (X.A_n) = A_n . \bar{\nabla}_1 \{A_n . \bar{\nabla}_2 (X.A_n)\} \uparrow A_o . \bar{\nabla}_1 \{A_o . \bar{\nabla}_2 (X.A_o)\}.$

Then, $\nabla_{n1}\nabla_{n2}(X.A_n)+\nabla_{01}\nabla_{02}(X.A_o)$. This implies the commutation of the closure operators on A_o .

iii) follows easily applying formula (3) of section 2.

(°) $F_n E_n (f 1_{A_n}) = F \{ 1_{A_n} E(f 1_{A_n}) / E(1_{A_n}) \} 1_{A_n} / F(1_{A_n}).$ Taking $0 \le f \le 1$, we see that (°) converges to $F_o E_o (f 1_{A_o}).$ iii) is a ready consequence of this. QED.

LEMMA 3. Let (B_n) and (C_n) be increasing sequences of σ -algebras (completed in A). If $B=g(B_1,B_2,\ldots)$, $C=g(C_1,C_2,\ldots)$ and for each $n,n=1,2,\ldots$, $E_nF_n=F_nE_n$, then EF=FE.

Proof: Call B. = $\bigcup_{n=0}^{\infty} B_n$. From martingale theory, we have for BeB. F 1 B = $\lim_{n \to \infty} F_n$ 1 B a.e.

If $B \in B_{n_o}$, $n \ge n_o$, because of the commutation the function $F_n 1_B$ is B_n -measurable and therefore $F 1_B$ is B-measurable. The set $\{B \in B : F 1_B \text{ is } B\text{-measurable}\}$ contains B_o and is a monotone

class, therefore, since $B = g(B_0)$ it coincides with B.

LEMMA 4. Let A and A' be A-measurable sets and D a set of D such that A=D, A'= Ω -D. If B and C commute on A and A' then they commute on A \cup A'.

Proof: Denote E_o, F_o, (E₁, F₁, \bar{E} , \bar{F}), the conditional expectation operators associated to the restriction of the algebras to A (A', A + A'). From:

$$\bar{E}\left(1_{C(A+A')}\right) = \frac{E \ 1_{C(A+A')}}{E \ 1_{A+A'}} \quad 1_{A+A'} = \frac{E \ 1_{CA}}{E \ 1_{A}} \quad 1_{A} + \frac{E \ 1_{CA'}}{E \ 1_{A'}} \quad 1_{A'} = f + g,$$

taking into account that f is C_o -measurable and g is C_1 -measurable, we see that \bar{E} 1 $C_{(A+A')}$ is \bar{C} -measurable, thanks to the fact that D separates A from A'. QED.

(The same result holds if instead of commutation of the conditional expectation operators we ask for commutation of the closure operators.) Combining lemma 2 and a passage to the limit we obtain:

LEMMA 5. If B and C commute on each set A_i , $i=1,2,\ldots$, such that the ∇A_i 's form a partition of Ω , then they commute on $\sum_{i=1}^{\infty} A_i$.

10. COMMUTATION UNDER SEVERAL MEASURES. We have said that commu-

tation of the closure operators is possible under several circumstances: independence, inclusion, g-independence, etc.. We prove here that if E_p , F_p are the conditional expectation operators associated to B and C in the space (Ω,A,P) , all the algebras completed in A, then $E_QF_Q=F_QE_Q$ for every Q_PP , iff only inclusion occurs. This solves partially also the following question.

Problem: How must B and C be related as to have $E_p F_p = F_p E_p$ for every measure P?

Conjecture: Ω is decomposable into two sets Ω_1 , Ω_2 belonging to \mathcal{D} , such that B=C in the first, C=B in the second one. The problem, the conjecture and next proposition appeared in {MP₂}.

PROPOSITION 1. Assume given a set Ω , and the σ -algebra of sets A with two σ -subalgebras, B and C such that A = g(B,C). If for every P; E_p and F_p commute, then if GeD = BrC is not void then or G is decomposable in D, or it is indecomposable in B or in C.

Proof: Indecomposability of A in A means that every A'&A includes A or is disjoint to it. Commutation of the conditional expectation operators for every P, means \forall P, E_p 1 is C-measurable [P], \forall C&C. Assume P(G) > 0, and also that G is indecomposable in \mathcal{D} . Therefore B and C are independent on G. If G were decomposable with respect to B and C then it would exist B&B, C&C, such that B-C \neq \neq C-B. Take x&B-C, y&C-B and let $\delta_{\mathbf{x}}$, $\delta_{\mathbf{y}}$, the probabilities concentrated on x and y respectively. Consider $Q = (P + \delta_{\mathbf{x}} + \delta_{\mathbf{y}})/3$. G is an atom with respect to P and Q. Since by hypothesis E and F commute, B and C are independent with respect to Q on G. Then:

Q(B)Q(C) = Q(BC)Q(G) which implies (P(B)+1)(P(C)+1) = P(BC)(P(G)+2)From this we obtain: $P(B\Delta C)+1 = 0$. QED.

THEOREM 1. If E_Q and F_Q commute for every Q equivalent to P then Ω can be decomposed into two sets of D,To, T_1 , where, respectively, BocCo, $C_1{\subset}B_1$.

Proof: Let T_1 be the greatest set of $\mathcal D$ where $C_1 \subset B_1$. If in $T_0 = \Omega - T_1$ were not true that $B_0 \subset C_0$, it would exist a set $B \in B$, included in T_0 such that $\nabla_2 B \neq B$ and $B \neq \Delta B = \Omega - \nabla_2 (\Omega - B)$. $D = \nabla_2 B - \Delta B \in \mathcal D$. Let $C \in C$, and $f = a \ 1_{BC} + b \ 1_{CB} + c \ 1_{BC} + d \ 1_{B'C'} \geq 0$, $B' = \Omega - B$, $f \ dP = 1$. Eventually passing to complements we can reduce the situation to one of the following cases: 1) B and C intersect in a positive set but no of them is included in the other; 2) B is contained in C. From (2) of section 2, we get for $dQ = f \ dP : F_Q \ 1_B = F(f \ 1_B)/F(f)$ and

from this:

(*) (a $1_C + c \ 1_{C^{\dagger}}$) $F \ 1_B \ F_0 \ 1_{B^{\dagger}} = (b \ 1_C + d \ 1_{C^{\dagger}}) F \ 1_{B^{\dagger}} F_Q \ 1_B$. Therefore, the function $h = 1_D (a \ 1_C + c \ 1_{C^{\dagger}}) / (b \ 1_C + d \ 1_{C^{\dagger}})$ is 8-measurable.

Take b = d = 1, which is possible in the mentioned cases, and choose a and c in such a way that \int f dP = 1. In case 1) a and c exist satisfying this equation and c \neq a. In case 2) choose c = 0. In both cases: ${}^1\!\!\!\!1_C$ (a ${}^1\!\!\!\!1_C$ +c ${}^1\!\!\!\!1_C$) is B-measurable, and then C.D is B-measurable. Then on D, C \subset B, contradicting the maximality of ${}^1\!\!\!\!\!1_C$. QED.

This theorem does not solve the problem proposed above since the question was on the set structure and the preceding result is on the Boolean structure. But it may be this last one is the right structure where the problem should be posed. Next we describe the equivalent measures to P for which we can afford to ask commutation whenever this is present for P.

THEOREM 2. Assume EF = FE, \int f dP = 1,0 < f, dQ = f dP, Q \sim P. Then, $E_QF_Q=F_QE_Q$ iff f = gh where g is B-measurable and h \in C-measurable, both non negative.

COROLLARY. If EF = FE then every $f \in L^1(\Omega)$ is of the form f = gh, $g \in B$ -measurable, $h \in C$ -measurable iff Ω is decomposable into two disjoint sets T_0 , T_1 with the properties described in Th. 1.

The corollary follows from theorems 1 and 2. To prove the preceding theorem we shall make use of the following auxiliary proposition.

PROPOSITION 2. $E_Q = E$ iff f is B-measurable, where f = dQ/dP.

Proof: Let us see the necessity.

E (g) = E(fg)/E(f) = E(g) \forall g implies E(fg) = E(gE(f)) \forall g and there fore f = E(f). The sufficiency is easier: $E_Q(g) = E(fg)/E(f) = f(g)/f = E(g)$.

Proof of theorem 2. First we observe that formula (2) of section 2 holds for every non negative function f, a.e. finite, and every non negative function h, say, not greater than one. Second observation: the functions g and h that appear in the hypothesis can always be supposed finite everywhere. Third observation: Proposition 2 can be extended with the same proof to the following: If Q is σ -finite

and equivalent to P and f = dQ/dP is B-measurable, then E_Q = E, and conversely, if 0 < f < ∞ a.e. [P] and dQ = f dP, the equality implies the B-measurability of f.

Fourth: g and h can always be supposed to be greater than 0 everywhere, since this can be admitted for f.

Let us consider the σ -finite measure: $dK = h \ dP$; from the observations we see that: E_Q s = E_K s = E hs/Eh ε C-measurable if s is C-measurable, nonnegative and not greater than one. This is the proof of the sufficiency. Let us see the necessity. G(f) = G(gh) = EF(gh) = E(h)F(g) and Ef.Ff = f.Eh.Fg imply:

$$f = \frac{Ef \ Ff}{Gf} = g'h'.$$

This provides a canonic decomposition of f since $g' = Ef / \sqrt{Gf}$ is B-measurable.

If E_0 and F_0 commute, using formula 2, section (2):

(3)
$$E_0 F_0 \psi = E(f F(f \psi)/F f)/E f.$$

If $\psi = \phi$ Ef/f , $\phi \in C$ -measurable, (3) equals to

(4)
$$E(f\phi Gf/Ff)/Ef$$
.

Changing in (3), E with F, for that ψ we get (3) equal to:

(5)
$$F(fE\phi)/Ff$$
.

Since E ϕ is \mathcal{D} -measurable, from (4) = (5) we obtain:

(6)
$$E\phi = \frac{Gf}{Ff} E(f\phi/Ff) , \text{ for } \phi \in C\text{-measurable}.$$

If $\phi = 1_C$, integrating (6):

(7)
$$P(BC) = \int_{BC} \frac{Gf}{Efff} dP$$
, $\forall B \in B$, $\forall C \in C$.

Therefore (7) holds replacing BC by any set A ϵ A. Then the integrand is equal to 1 which implies f = g'h', $g' = Ef/\sqrt{Gf}$, $h' = Ff/\sqrt{Gf}$.

11. GENERATOR INDEPENDENCE. B will be said g-independent of C iff V B ϵ B (or equivalently, B ϵ B - B \sim C) there exists E ϵ B a σ -algebra independent of C and such that D and E generate a σ -algebra D Θ E that contains B.

Then U E(B), B \in B - D, is a family independent of B which together with D generate B. But that union is a family of generators of a σ -algebra B' such that B = g(D,B'). g-independence is implied by

independence. This section will be devoted to the proof of the following theorem and previous results. We shall pause on same of them since they are highly interesting in themselves.

THEOREM 1. i) If B is g-independent of C then EF = FE.

ii) If Ω does not possess D-atoms with respect to B and EF = FE then B is g-independent of C.

iii) If Ω does not possess D-atoms with respect to B neither to C and EF = FEthen B is g-independent of C and C of B.

Proof: i) Given B ϵ B let us see that F 1_B is \mathcal{D} -measurable. Take $E \subset B$ such that $\mathcal{D} \oplus E \ni B$. Consider the product $(XxY, \bar{C} \times \bar{E}, \bar{P} = dxdy)$, (where dxdy stands for the product of two measures represented by dx and dy) isomorphic to $(\Omega, C \oplus E, P)$. Call \bar{B} a set in XxY corresponding to B. $E(./\bar{C})$ is obtained by integration in the second variable:

(")
$$E(1_{\bar{B}}/\bar{c}) = \int 1_{\bar{B}}(x,y) dy.$$

 $1_{\overline{B}}$ is \overline{p} x \overline{E} -measurable and therefore (") is a \overline{p} -measurable function. This proves i). Before proving ii) we shall go into auxiliary results Theorem 1 was part of $\{MP_2\}$. Next theorem is due to Maharam (cf. $\{M\}$, lemma 1) but the statement is slightly different because it uses the idea of conditional atom.

THEOREM 2. i) Let (Ω,M,P) be a probability space, $L\subset M$, a σ -subalgebra such that M does not contain L-atoms. Assume M ε M - L. There exists a σ -subalgebra B of M, σ -isomorphic to B(0,1), such that M ε g(L,B) and B is independent of L. Therefore, g(L,B) = L Θ B 3 M. ii) Every homogeneous probability space is σ -isomorphic (in Boolean sense with preservation of measure) to a (B_{Λ},\bar{P}) , \bar{P} = Lebesgue measure. iii) A non atomic (i.e. without atoms) probability space is represented in one and only one way as a direct sum Σ $(\Omega_{\Lambda},B_{\Lambda},c_{\Lambda}P_{\Lambda})$ where $0< c_{\Lambda} \leq 1$, Σ c_{Λ} = 1, and the Λ 's are infinite ordinals of different cardinality.

Proof: i) Given a partition $0 < 2^{-n} < ... < k2^{-n} < ... 1$, define the

functions
$$\chi_k^{(n)} = \{ (P^L(M) \land k.2^{-n}) \lor (k-1).2^{-n} \} - (k-1).2^{-n}, 1 \le k \le 2^n.$$

Then
$$\sum_{k} \chi_{k}^{(n)} = P^{L}(M)$$
 and $\chi_{2k-1}^{(n+1)} + \chi_{2k}^{(n+1)} = \chi_{k}^{(n)}$.

Define
$$M_k^{(n)} \subset M - \sum_{j=1}^{k-1} M_j^{(n)}$$
 verifying $P^L(M_k^{(n)}) = \chi_k^{(n)}$,

$$M_{2k-1}^{(n+1)} + M_{2k}^{(n+1)} = M_k^{(n)}$$
.

This is possible because of theorem 2, section 7. Define now the functions $\eta_k^{(n)}$ in the same way but in relation to the set Ω - M. So $\eta_k^{(n)} + \chi_k^{(n)} = 2^{-n}$, and call $N_k^{(n)}$ the sets associated. Then the sets $M_k^{(n)} + N_k^{(n)}$ are independent of the algebra L and the same is true for the σ -algebra B generated by those sets, which is isomorphic to B(0,1) as it is easy to see from the construction. Let us see that $M \in L \oplus B = g(L,B)$.

Calling $C_k^{(n)} = \{\omega; P^L(M) \ge k 2^{-n}\}$, the set $T^{(n)} = \sum_k C_k^{(n)} (M_k^{(n)} + N_k^{(n)})$

belongs to g(L,B) and verifies $P(M \triangle T^{(n)}) \leq 2^{-n}$. We leave this easy verification to the reader. From $P(M \triangle T^{(n)}) \xrightarrow{n} 0$, we get i).

ii) Assume A is the Boolean σ -algebra quotient of A with the sets of measure zero. Assume also that the generators of A are ordered in the same way as that described in th. 1, iii), section 2, and let A be the ordinal (the least one with a given cardinality) involved in the ordering.

Call B the Boolean σ -algebra associated to B(π (0,1)_(i)) and suppose 0 < i < j
it is σ -isomorphic to a subalgebra L of A, such that L contains at least the generators g_i , $i < j < \Lambda$. Since card $j < \dim A = \operatorname{card} \Lambda$ from proposition 3, \$7, and i), L can be extended to a σ -subalgebra σ -isomorphic to B_{j+1} containing the generator with least index not contained in L.

This implies that A is isomorphic to a B_{Γ} card Γ < card Λ is impossible because dim B_{Γ} = card Γ . On the other hand, from the construction $\Gamma \leq \Lambda$, and therefore $\Gamma = \Lambda$.

iii) Follows from ii) and theorem 2, §2. QED.

COROLLARY 1. If m is the dimension of the $\sigma\text{-algebra}$ M associated to (Ω,M,P) and it has no atom, then card M = m^{K_0} .

The proof is left to the reader. We observe only that ii) and the orem 3, §4, are of similar nature.

COROLLARY 2. If $L = \{\emptyset, \Omega\}$ and M is non-atomic then M contains a σ -subalgebra isomorphic to B(0,1).

In fact, in this context atom and L-atom are equivalent concepts. The corollary follows immediately from i).

COROLLARY 3. Let (Ω, A, P) be a probability space without atoms, B

and C, σ -subalgebras of A, all of them homogeneous, completed in A such that A = g(B,C). If EF = FE and dim B > dim D < dim C then B, C,D and A are Boolean σ -isomorphic to product σ -algebras B₂, B₃, B₄ and B₁, respectively, in such a way that

$$B_{1} = B(\pi(0,1)(i)) \times B(\pi(0,1)(i)) \times B(\pi(0,1)(i)), \\ 0 \le i < \beta$$

$$B_2 = B(\Pi) \times B(\Pi)$$
, $B_4 = B(\Pi)$, $0 \le i < \delta$

$$B_3 = B(\Pi) \times B(\Pi)$$
.
 $\beta \le i < \delta$ $\delta \le i < \gamma$

Proof: With a slight modification the proof of ii) of the preceding theorem works to prove the isomorphism of B, C, $\mathcal D$ with B_2 , B_3 , B_4 respectively. For the isomorphism of A with B_1 it is only necessary to demonstrate that the first factor (the last one in B_3 is treated in the same way) in B_2 is independent of B_3 . Of this takes care the following proposition, which holds in the general setting we proposed ourselves along this paper.

PROPOSITION 1. If EF = FE and $B \supset g(\mathcal{D}, B_{\bullet})$ with B_{\bullet} independent of \mathcal{D} , then B_{\bullet} is independent of C.

Proof: Let B_o ϵ B_o. We know that G 1_{B_o} = P(B_o) 1_Ω . If C ϵ C,

$$P(CB_{\bullet}) = \int_{C} F \, \mathbf{1}_{B_{\bullet}} \, dP = \int_{C} G \, \mathbf{1}_{B_{\bullet}} \, dP = \int_{C} P(B_{\bullet}) \, dP = P(B_{\bullet})P(C). \quad QED$$

Proof of ii) of theorem 1. Using i) of theorem 2 after replacing M by B and L by D we see that for any M ϵ B - D there exists B isomorphic to B(0,1) such that B ϵ B and is independent of D. Because of proposition 1 it is independent of C, and this proves ii). As a matter of intellectual curiosity we could add the following corollary to theorem 2, (cf. theorem 4, §7).

PROPOSITION 2. If (Ω,M,P) does not contain any (L,S)-atom then i) of theorem 2 holds with $B \subset g(S,M)$.

It can be proved in the same way as shown before, but we shall not prove it since this result will not be used in the sequel.

DEFINITION: When four σ -algebras B_i , i=1,2,3,4 are related as in corollary 3 with B_4 non-trivial we shall say that B_2 and B_3 satisfy a relation of spurious independence in strict sense. If it is not

known that B_4 is not trivial we shall say that between B_2 and B_3 there is spurious independence. (If $B_4 = \{\emptyset, \Omega\}$ spurious independence coincides with independence).

12. DECOMPOSITION OF A PROBABILITY SPACE. In the usual setting with commutation of the associated conditional expectation operators it is possible to decompose the space in pieces where there is inclusion, or independence or g-independence, beeing only necessary, sometimes, to increase $\mathcal D$ with a partition of Ω by sets of $\mathcal B$ v $\mathcal C$ = the algebra generated by $\mathcal B$ and $\mathcal C$.

<u>First step</u>: Isolate the atoms of \mathcal{D} . On them \mathcal{B} and \mathcal{C} are independent. <u>Second Step</u>: In the complement we still have commutation of the corresponding conditional expectation operators. Isolate the set of \mathcal{D} where $\mathcal{B} \subset \mathcal{C}$, maximal with respect to this property.

<u>Third step</u>: In the remaining part we still have commutation. There, isolate the maximal set of $\mathcal D$ where $\mathcal C \subset \mathcal B$.

The three steps are possible because of the results of section 9. The remarks of section 8, in particular 3) and 5), are specially illuminating at this moment.

From the results of lemma 3, §8, we see that the \mathcal{D} -atomic part with respect to \mathcal{B} in the set Ω_3 of \mathcal{D} that remained after the third step, can be put as a union of a denumerable family $\{B_n\}$ of $\mathcal{B} \wedge \mathcal{C}$ -atoms of \mathcal{B} . Adjoin $\{B_n\}$ to \mathcal{C} , the σ -algebra $\mathcal{C}'=g(\mathcal{C},\{B_n\})$ commute with \mathcal{B} as can be seen from lemma 1 of section 9. Therefore they also commute on Ω_3 . In $\Omega_4=\Omega_3-\Sigma$ B_n there not exist \mathcal{D} -atoms with respect to \mathcal{B} . After adjoining the B_n 's to \mathcal{C} we have increased "the set of \mathcal{D} where $\mathcal{B} \subset \mathcal{C}$ ". In fact, \mathcal{C}' is obtained from \mathcal{C} adjoining sets of \mathcal{B} : $\{B_n\}$, in consequence they belong to $\mathcal{D}'=\mathcal{B} \wedge \mathcal{C}'$ and in each of them, $\mathcal{B} \subset \mathcal{C}'$. That is, the \mathcal{D} -atoms of \mathcal{B} are a hidden form of inclusion.

Fourth step: Adjoin to C a denumerable partition by sets of B which are conditional atoms of the $\mathcal D$ -atomic part of B contained in Ω_3 . The new σ -algebra C' generated by those sets together with C commute with B. In those sets $\mathcal B\subset \mathcal C'$. Observe now that in Ω_4 , B is g-independent of C (cf. Th. 1, section 11).

THEOREM 1. After adjoining to C a denumerable family of disjoint sets of B it is obtained a σ -algebra C' commuting with B such that, in a partition of Ω by sets of $D' = B \wedge C'$, or $B \subset C'$ or $C \subset B$ or B is independent of C or B is g-independent of C'. The second and third situation occur at sets of D. The first, second and fourth situation occur at exactly one set of the partition.

This theorem was in essence correctly understood in $\{MP_2\}$. A technical mistake brought to the authors to the belief that the $\mathcal D$ -atomic part with respect to $\mathcal B\colon \Sigma \ B_n$, was $\mathcal D$ -measurable when EF = FE. This is not so as can be easily seen from example V, section 3, were the conditional atomic part is reduced to only one atom. The situation was still clarified in $\{HN\}$, proposition of §2, where the $\mathcal D$ -atoms of $\mathcal B$, with $\mathcal B$ generated by $\mathcal D$ and a partition of $\mathcal B$ -sets, are characterized.

Fifth step: Repeat the procedure of the fourth step in the set Ω_4 but changing B with C' and C with B. That is, eliminate in Ω_4 the \mathcal{D}' -atoms of C' adjoining to B a denumerable partition-of the \mathcal{D}' -atomic part relative to C'-by sets of C' which are conditional atoms. Therefore, the new σ -algebra B' commutes with C', B' = g(B,{C'_1}), and on $\Omega_5 = \Omega_4 - \Sigma$ C'₁, C' is g-independent of B' because of theorem 1 of section 11. Besides all the sets adjoined to B or C belong to B \vee C as well as Ω_3 , Ω_4 and Ω_5 .

mth step: m > 3 is a denumerable ordinal. Call B_n , C_n the σ-algebras in the nth step, 3 < n < m; assume they commute and that they are obtained from B, C, adjoining a partition P_n of sets of B \vee C, P_{n+1} refining P_n . Call Ω_n a set in P_n specially chosen of the form B.C, B ε B, C ε C, $\Omega_n \supset \Omega_{n+1}$.

If m is a limit ordinal define B_m and C_m as the limit σ -algebras generated, respectively, by B_n , n < m and C_n , n < m. Call $\Omega_m = \bigcap (\Omega_n \colon n < m)$.

If m is not a limit ordinal, and even, adjoin to C_{m-1} a denumerable partition by sets of B_{m-1} of the \mathcal{D}_{m-1} -atomic part of B_{m-1} contained in Ω_{m-1} taking care that the sets of the partition be conditional atoms. If Ω_{m-1} is void the procedure stops.

If m is an ordinal and not a limit one, and odd, the construction is the same changing $\mathbf{B_{m-1}}$ with $\mathbf{C_{m-1}}$. In both cases $\mathbf{\Omega_m}$ is defined as $\mathbf{\Omega_{m-1}}$ minus the conditional atomic part. Obviously $\mathbf{\Omega_m}$ is of the form B.C, and from §9 we see that $\mathbf{B_m}$ commutes with $\mathbf{C_m}$.

Since this is an exhaustion procedure it stops after a denumerable family of steps. Then, two possibilites force the stopping: a) a certain $\Omega_{\rm m}=\emptyset$, b) in a certain $\Omega_{\rm m}$ the corresponding $\mathcal{D}_{\rm m}$ -atomic part is void. In this last case, in that set, there not exist $\mathcal{D}_{\rm m}$ -atoms with respect to $\mathcal{B}_{\rm m}$ neither to $\mathcal{C}_{\rm m}$. That is, the restrictions of \mathcal{B} , \mathcal{C} to $\Omega_{\rm m}$ have no conditional atom with $(\mathcal{B} \wedge \Omega_{\rm m}) \wedge (\mathcal{C} \wedge \Omega_{\rm m}) = \mathcal{D}_{\rm m}$, the conditional algebra. Then we have:

THEOREM 2. After adjoining to C and B a denumerable partition by sets of B \vee C they are obtained σ -algebras C' and B' still commuting such that in each set of the partition: i) one of the last two alge

bras is subordinated to the other, or ii) B is independent of C, or iii) B' is g-independent of C' and C' is g-independent of B'. The independence occurs at sets of the partition belonging to D. iii) occurs at exactly one set.

13. Grindependence and homogeneity. In this paragraph we shall work on the space (Ω,A,P) with g(B,C)=A and B commuting with C is such that on Ω , B is g-independent of C and C of B. This is the situation at which we arrived in one set of the partition in th. 2 of the preceding section. We shall try to go deeper on the structure of the algebras when g-independence in both senses is present. A first auxiliary proposition whose easy proof we leave to the reader follows next.

PROPOSITION. Let $A \in A$, $B \in B$. If B.A is an atom of $B \wedge A$ then ∇_1 (B.A) is an atom of B, and conversely.

This proposition is quite general as is the following result.

LEMMA 1. Assume (Ω, A, P) has no atom in $D = B \wedge C$, and as always A = g(B, C), EF = FE.

There exists a finite partition $A_0, \ldots A_N$ of Ω by sets of K (the least family containing B and C and closed by differences) such that on one of them, say A_0 , B_0 , C_0 , D_0 are simultaneously homogeneous. Besides the σ -algebras: $B' = g(B,A_0,\ldots,A_N)$, $C' = g(C,A_0,\ldots,A_N)$ commute, i.e., F'E' = E'F'.

Proof: Call D_1 the set of D of Maharam's representation with least dimension. This set can be identified as the maximal set with least dimension. It exists, i.e., is not void, since D is non atomic. Let B_1 be the maximal set with least dimension of $B \wedge D_1$; since D has no atom neither B nor C nor A have atoms and the mentioned the orem can be applied again to D_1 because of the proposition proved above. Call C_1 the maximal set with least dimension of $C \wedge B_1$. Next do the same with D and D_1 obtaining D_2 , and repeat the process. It is obtained so a sequence $D_1 \supset B_1 \supset C_1 \supset D_2 \supset B_2 \supset C_2 \supset D_3 \supset \ldots$. Let $B_1 = \dim B_1$, $B_1 = \dim B_1$. From theorem 1, $B_1 = \dim B_1$. Let $B_1 = \dim B_1$ and $B_1 = \dim B_1$ because of the well-ordering of the ordinals there exists $D_1 = D_2 \cap D_3 \cap D_4$ because of the well-ordering of the ordinals there exists $D_1 = D_2 \cap D_3 \cap D_4$ because of the well-ordering of the ordinals there exists $D_2 \cap D_3 \cap D_4$ because of the well-ordering of the ordinals there exists $D_1 = D_2 \cap D_3 \cap D_4$ because of the well-ordering of the ordinals there exists $D_1 = D_2 \cap D_3 \cap D_4$ because of the well-ordering of the ordinals there exists $D_2 \cap D_3 \cap D_4$ because of the well-ordering of the ordinals there exists $D_3 \cap D_4$ because of the well-ordering of the ordinals there exists $D_3 \cap D_4$ because of the well-ordering of the ordinals there exists $D_3 \cap D_4$ because of the well-ordering of the ordinals there exists $D_3 \cap D_4$ because of the well-ordering of the ordinals there exists $D_3 \cap D_4$ because of the maximal $D_4 \cap D_4$ because of the maximal $D_4 \cap D_4$ because of the maximal $D_4 \cap D_4$ because of the maximal set with least dimension of $D_4 \cap D_4$ because of the maximal set with least dimension of $D_4 \cap D_4$ because of the maximal set with least dimension of $D_4 \cap D_4$ because of the maximal set with least dimension of $D_4 \cap D_4$ because of the maximal set with least dimension of $D_4 \cap D_4$ because of the maximal set with least dimension of

with dimension β_{p+1} we must have $B_{p+1} = D_{p+1}$ if we know that this last set is B-homogeneous. But this follows from the fact that in no-subset of D_{p+1} the B-dimension can be less than β_p and cannot be greater because of what we have already seen. From $C_{p+1} \subset B_{p+1} \subset C_p$ it follows in the same way that B_{p+1} is C-homogeneous and C_p it follows in the same way that C_p is maximal with dimension C_p we have C_p and since C_p is maximal with dimension C_p we know that C_p belongs to this last algebra C_p and C_p commute. Since C_p belongs to this last algebra C_p and C_p commutes with C_p belongs to this last algebra C_p commutes with C_p with C_p belongs to both C_p commutes it can be added to them. Now observe that all the sets C_p belong to K and same thing occurs with the sets of the partition that they determine QED.

LEMMA 2. i) A $_{\epsilon}$ A: B' = g(B,A), C' = g(C,A). With all generality it holds:

 $(B \wedge A) \wedge (C \wedge A) = (B' \wedge C') \wedge A.$

ii) If A ϵ B \vee C and B commutes with C it holds the following equality, which is false in general:

 $(B \wedge A) \wedge (C \wedge A) = (B \wedge C) \wedge A.$

iii) If A belongs to the union of B and C and they commute: $(B \land C) \land A = (B' \land C') \land A$.

Proof: i) follows from the definitions and iii) from this proposition and ii). Let us prove ii). The right member is always included in the left member. Put $H = B_1 \cdot A = C_1 \cdot A$, $B_1 \in B$, $C_1 \in C$, and assume $A \in C$. Then $H \in C$ and applying ∇_2 we obtain: $H = A \cdot \nabla_2 B_1 = A \cdot \nabla B_1 \in (B \land C) \land A$.

QED.

LEMMA 3. Let A_0,\ldots,A_n be a partition of Ω , $B_i=g(B_{i-1},A_{i-1})$, $B_0=B$, $i=1,2,\ldots,n+1$, $C_i=g(C_{i-1},A_{i-1})$, $C_0=C$. Assume that B commutes with C and that $A_j\in B_j\cup C_j$. Then B_{n+1} and C_{n+1} commute and (1) $(B_{n+1}\wedge C_{n+1})\wedge A_n=(B\wedge C)\wedge A_n$.

Proof: B, and C, commute (cf. \$9). Consider the equalities:

(2) $(B_k \wedge C_k) \wedge A_{k-1} = (B \wedge C) \wedge A_{k-1}$, $(B_k \wedge C_k) \wedge T_k = (B \wedge C) \wedge T_k$, where $k=0,1,\ldots,n$, $T_k = \sum_{h=k}^{n} A_h$. They hold for n=1 because they coincide in this case with iii) of the preceding lemma 2. Intersecting the second equality with A_k we get: $(B_k \wedge C_k) \wedge A_k = (B \wedge C) \wedge A_k$. Since $A_k \in B_k \cup C_k$, from the preceding lemma we obtain:

 $(B_{k+1} \wedge C_{k+1}) \wedge A_k = (B_k \wedge C_k) \wedge A_k$. This and the preceding equality prove the first part of (2) for k+1. Intersecting with $T_{k+1} \in B_k \cup C_k$, we obtain in an analogous way the second part of (2) for k+1. Therefore (1) is proved. QED.

LEMMA 4. Under the hypothesis of the preceding lemma, it holds:

$$(B \land C) \land A_{j} = (B_{1} \land C_{1}) \land A_{j} = \dots = (B_{k+1} \land C_{k+1}) \land A_{j}$$

Proof: i) is proved in the same way as the preceding lemma. ii) follows by induction. Assume for j < h, h < k, that

(3)
$$(B_h \wedge C_h) \wedge A_i = (B \wedge C) \wedge A_i$$

It is immediate that for j < k-1, $h \le k$ we have: $(B_k \land C_k) \land A_j = (B_{k-1} \land C_{k-1}) \land A_j$, and therefore for these indices we proved ii). For j = k-1, it coincides with i). QED.

THEOREM 1. Assume that B and C commute, together generate A, all of them are completed in A. If Ω has no atom on D there exists a partition $\Sigma \subset A$ such that $\bar{B} = g(B, \Sigma)$, $\bar{C} = g(C, \Sigma)$ commute and the sets of Σ are homogeneous for \bar{B} , \bar{C} and $\bar{D} = \bar{B} \wedge \bar{C}$. Moreover, on each $A \in \Sigma : (\bar{B} \wedge \bar{C}) \wedge A = (B \wedge C) \wedge A$, $\bar{B} \wedge A = B \wedge A$, $\bar{C} \wedge A = C \wedge A$, wich implies that each such A is B, C and D-homogeneous.

DEFINITION. Suppose that in Ω is present the usual setting with commutation. If A, B, C, D are homogeneous and dim D = dim B or = dim C then we shall say that B and C are quasi-independent.

Theorem 1 asserts that if there is no atom of \mathcal{D} in each set of Σ we have spurious independence or quasi-independence (cf. section 11). Applying this to the decomposition in th. 2 of preceding section, we obtain:

THEOREM 2. After adjoining to B and C a denumerable partition of Ω by sets of A, they are obtained σ -algebras B" and C" still commuting such that in each set of the partition: i) one of the two algebras is subordinated (included into) to the other; ii) B is independent of C; iii) B and C are strictly spurious independent; iv) they are quasi-independent and not independent. The independ

ence occurs at sets of the partition belonging to ${\tt D.}$ i) occurs at sets of ${\tt B} \vee {\tt C}$ belonging to the partition.

Th. 2 is obtained, as we already said, from theorem 2 of section 12 and corollary 3 of section 11, and the preceding theorem applied to the g-independent part of the decomposition of §12 . iv) is a consequence of remark 3, §8. It can be questioned if iv) is a reasonably description of the situation that it tries to isolate. We think it is not and, first of all, it does not keep up with i)-iii). Observe that subordination could be present and still be described as quasi-independence. The matter requires further investigation.

Proof of theorem 1. Applying lemma 1 we find a partition Σ_0 , finite, such that for a certain V_o ϵ Σ_o , B, C, D, are homogeneous and B_o = = $g(B, \Sigma_0)$, $C_0 = g(C, \Sigma_0)$, commute. On V_0 , $B = B_0$, $C = C_0$, $D = D_0 =$ = B. A C.. In fact, in the proof of lemma 1 we had to add to B and C the partition determined by $B_1 \supset C_1 \supset \dots \supset D_{p+1} = V_o$ which is constituted by sets of K, but moreover, this partition satisfies the hypothesis of lemma 3 and 4 if we define: $A_o = \begin{pmatrix} B_1 & A_1 & B_1 & C_1 \end{pmatrix}$ $A_2 = C_1 - B_2$,..., $A_n = V_0$. If all the elements of Σ_0 are homogeneous simultaneously the procedure stops and if not we choose J ϵ Σ_{o} , one of the sets not simultaneously homogeneous, and repeat the preceding process on it. This provides a new finite partition refining Σ_0 , Σ_1 , obtained from Σ_0 by partitioning of J and such that $g(B,\Sigma_1)$ commutes with $g(\mathcal{C}, \mathfrak{L}_1)$. On one set of \mathfrak{L}_1 , V_1 , contained in J there is simultaneous homogeneity. Using ii) of lemma 4 we see that $(g(B,\Sigma_1) \land g(C,\Sigma_1)) \land V_1 = (g(B,\Sigma_0) \land g(C,\Sigma_0)) \land V_1 =$ = $[(g(B,\Sigma_0) \land g(C,\Sigma_0)) \land J] \land V_1 = (B \land C) \land V_1$, Besides since $V_{\bullet} \wedge J = \emptyset$ and $V_{\bullet} \in g(B, \Sigma_{\bullet}) \wedge g(C, \Sigma_{\bullet}) \subset g(B, \Sigma_{1}) \wedge g(C, \Sigma_{1})$, this last algebra intersects V_o in an algebra coinciding with $(B \land C) \land V_o$. Following so we obtain a sequence of partitions $\Sigma_0 < \Sigma_1 < \Sigma_2 < \dots$. Call $\Sigma^{\circ} = \bigcup_{n} \Sigma_{n}$, $B^{\circ} = g(B, \Sigma^{\circ})$, $C^{\circ} = g(C, \Sigma^{\circ})$. From §9, we know that the last two algebras commute and trivially it follows that $(B^{\circ} \wedge C^{\circ}) \wedge X_{k} = (B \wedge C) \wedge X_{k}$ for each $X_{k} \in \Sigma^{\circ}$. On an infinite family of X_k there is simultaneous homogeneity. Let them be H_1 , H_2 ,... If $\stackrel{\circ}{\mathbf{r}} P(\mathbf{H}_{i}) = 1$ then the theorem is proved. If not, we can repeat the process subdividing the remaining sets of the partition, getting so a new partition Σ^1 > Σ° with the same properties as Σ° , and more sets H_1' , H_2' , H_3' ,... . On a certain (denumerable) step the process ends by exhaustion, which proves the theorem.

^{14.} FINAL REMARK. In the theorem of Burkholder and Chow that we

mentioned in the introduction, EF = G or only in the limit, lim (EF)^n = G. In fact, (EF)^n = G implies EF = G. This follows from: in a Hilbert space H, let S_i be a subspace with projector P_i , i=1,2; if $P_1P_2f \in S = S_1 \cap S_2$, and $f \in S_1$ then $P_1P_2f = P_2f$. In fact, if $n_1 \perp S_1$, $s_1 \in S_1$ and $P_2f = s_1 + n_1$, it follows $P_1P_2f = s_1 \in S$. Therefore, if $g' = f - s_1$, $\|g' - n_1\|^2 = \|g'\|^2 + \|n_1\|^2$ since $f \cap n_1 \in S_1$. On the other hand, $P_2g' = n_1$ which implies $\|g'\|^2 = \|n_1\|^2 + \|g' - n_1\|^2$. Then $n_1 = 0$, and $P_2f = s_1 = P_1P_2f$. Analogously, $F(EF)^n = G$ implies EF = G. Prof. R. Maronna observed that EF = FE iff B and C are conditionally independent given D. In fact, if EF = FE, $0 \le x \in L^2(B)$, $0 \le y \in L^2(C)$, $D \in D$, we have: $\int_D G(xy) dP = \int EF(1_D xy) dP = \int E(1_D y) F(1_D x) dP = \int G(1_D x) G(1_D y) dP = \int \int_D G(x) G(y) dP$, and therefore, G(xy) = G(x) G(y). Conversely, if this equality holds, from $\int xy dP = \int G(xy) dP = \int G(x) G(y) dP = \int g(x) G(y) dP$, we obtain $x - Gx \perp L^2(C)$. Then Fx = Gx, which implies FE = G.

If all the algebras are completed in A, and B and C are conditionally independent given E, then E=0, as it is easy to see from $E(1^2_D|E)=E(1_D|E)^2$. Therefore, EF = FE iff B and C are conditionally independent with respect to the minimal $\sigma\text{-algebra}$ for which this is possible.

Since $x - Gx \perp L^2(C)$, then $x - Gx \perp y - Gy$, then $L^2(C) \Theta L^2(D) \perp L^2(B) \Theta L^2(D)$.

ACKNOWLEDGEMENT (by R. Panzone). Expository reasons impel us to include here most of the paper by D. Maharam mentioned in the references. Also we include the manuscript by Merlo and Panzone $\{MP_2\}$ since it have not appeared yet and this paper was originally planned as a continuation of it. The aforementioned manuscript was sent on April 1965 to an european journal. The journal ackowledged reception on 1966 but till this moment the authors have not received further notices. (August 1968).

REFERENCES

- {D} Doob, J.L., Stochastic processes, New York, (1953).
- (BC) Burkholder, D.L. and Chow, Y.S., Iterates of conditional expectation operators, Proc. A.M.S., (1961), 490-494.
- {L} Loeve, M., Probability theory, New York, (1963).
- (U) Ulam, S., Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math., (1935), 550-558.
- {H₁} Halmos, P., Algebraic logic I, Monadic Boolean algebras. Comp. Math. 12, (1955), 217-249.
- {H₂} Halmos, P., Algebraic logic II, Fund. Math., XLIII (3), 255-325.
- {H₂} Halmos, P., Lectures on Boolean Algebras, New York, (1963).
- (HN) Hanen, A. and Neveu, J., Atomes conditionnels d'un espace de probabilité, Acta Math. Acad. Sc. Hung., (1966), 443-449.
- (M) Maharam, D., On homogeneous measure algebras, Proc. of the Nat. Ac. of Sci., USA, (1942), 108-111.
- {My} Meyer, P.A., Probability and Potentials, New York, (1967).
- [MP] Merlo, J.C. and Panzone, R., Communication to the annual meeting of UMA, (1964).
- {MP₂} Merlo, J.C. and Panzone, R., On measurable subalgebras associated to commuting conditional expectation operators, (See Acknowledgement), to appear.
- {DP} Diego, A. and Panzone, R., Communication to the annual meeting of UMA, Bahía Blanca, (1968).
- [DP₂] Diego, A. and Panzone, R., Remarks on a certain Markoff chain associated to partitions of a probability space, Rev. Univ. Nac. de Tucumán, Vol. 19, (to appear).
- (GJ) Gillman, L. and Jerison, M., Rings of continuous functions, New York, (1960).

UNIVERSIDAD NACIONAL DEL SUR BAHIA BLANCA ARGENTINA