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ON ~EASURABLE SUBALGEBRAS ASSOCIATED TO 
COMMUTING CONDITIONAL EXPECTATION OPERATORS, II, 

by A. Diego and R. Panzone 

SUMMARY. The objective we pursued was the same as in {M P2 },i.e., 
to give necessary and sufficient conditions to make sure that two 

8 C conditional expectation operators E and E commute. We restricted 
ourselves to seek for conditions on the a-algebras 8 and C. We 
found that E8ECf = ECE8f, V f£L2 , essentially when and only when 
in a partition of sets: BeC or 0=8, 8 is independent of C, or 8 
and C behave as the algebras of Borel measurable sets .of R3 inde
pendents of z and x respectively. It is noted also that when ~he 

commutation is asked not for one but several probabilities equiva
lent among them, inclusion is the only possible relation between 
8 and C. That is, it is not only the most natural relation assu
ring commutation but also the most stable under variation of the 
probability measure. This paper is a self-contained continuation 
of {MP2}. 

1. INTRODOCTION. Let (n, A,P) be a complete probability space and 
8,C, a-subalgebras of A containing all the sets of measure zero,or 
as we shall say A-complete. This type of completeness will be sUR 
posed of any a-algebra appearing in this paper even when not men
tioned explicitly. Call V = 8hC, the greatest a-algebra contained 
in 8 and C. Then, the trivial subalgebra T will contain all the 
sets of measure zero. Band C are conditionally independent wi th r~ 
spect to the a-algebra M if P(BC/M) = P(B/M)P(C/M) for B£8, C£C. 

This concept-presents two extreme cases: M=A and =T. In the first 
case conditionally independence does not establish any tie between 
the algebras. In the other one it is equivalent to independence. 
When ~M=A the conditionally independence is also an intermediate 
case between the independence and the absen~e of conditioning bet
ween the algebras. Call E = E(. /8), F = E(. /C), G = E(. IV) the 
conditional expectation operators associated to the mentioned alg~ 
bras and e(f) = expectation of f. 
Let us prove now a useful lemma. 

LEMMA 1 . ..i) E..i¢ a pll.oje.c.~oll. on L2(fI,A,P) w..i~h lI.ange. L2(fI,8,P) . 

..i..i) EF ..i¢ a pll.oje.c.~oll. ..i66 E and F c.ommu~e. . 

..i..i..i) E and F c.ommu~e ..i66 EF = G . 

..iv) E and F c.ommu~e ..i66 E:C-mea¢ulI.abte po¢..i~..ive bounded 6unc.~..ion¢+ 
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P~oo6: i) and ii) follow from the definitions and the theory of Hi! 
bert spaces. If the commutator of F and E, [E ,F] , is zero then EFf 
is V -measurable, and converse.ly, any V-measurable function. is inva
riant under EF, this proves iii). iv) follows from:a !l.\bspace with 
projector F reduces an operator E iff E and F commute, and the self 
adjointness of E. 
A theorem of Burkholder and Chow asserts that (EF)Df -+Gf a.e. and 
in L2if f&L2 (n,A,p), (cL {BC}) What conditions must be im
posed on the associated alg~bras as to have (EF)mf = Gf for every 
f? In particular, how are Band C related in these cases? 
There is a formal parallelism between this ~ituation and the prec-
eding one where conditional independence was considered. 
if B is independent of C, then the commutator of F and E, 

Moreover, 
[E ,F] 

equals O. Is there some relation between the concept of independexe 
and the property of commutation of the associated conditional expe£ 

tat ion operators? Since the commutation is present whenever one a! 
gebra contains the other the question must be properly posed as fo
llows: When inclusion (B~C or CcB) is not present and E and F com
mute, is B independent of C? In a sense the answer is yes and this 
paper is essentially devoted to prove it. Another clue is given 
next. 
It is well-known that if F, G are (closed) subspaces of the sub
space E consti tuted by functions of mean zero, square integrable and 
finite normal joint distributions and if B = g(F), C = g(G) are the 
a-algebras generated by the functions of the mentioned subspaces, 
then the restriction of E to the subspace of B-measurable L2_ func
tions of mean zero has range equal to F. Briefly, in this case pr~ 
jection and conditioning coincide. Let us prove now the following 
proposition. 
a) G is orthogonal to F iff b)G is independent of F iff c) EF=FE= 

=e=O on (F times G) n L 2, whenever is satisfied the hypothesis expli£ 

cited above. 
a) implies b). If g&G and f to F then the most general functions C 
and B-measurable are of the fOTm g+c , f+d, where c and d are con
stants. Since e(gf)=O"'e(g).e(f) it follows that e((g+c) (f+d))
=e(g+c).e(f+d). b) implies c), as it is easy to see since independ
ence of B from C implies EF=FE=e. It holds: EF(fg)=e(fg)=O whenev-
er c) holds. QED. 
The preceding proposition supports the suspicion that commutation 
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and independence are related, if there is not inclusion. This pa
per will be devotedto prove this. 
Expository reasons oblige us to include with a proof most of the re 
suIts of {M} and those of {M P2}. Whenever ihis happens it will be 
explicitely mentioned. 
To begin with, let us say that this introduction was already contain 
ed in {M P2}. 

2. AUX I L I ARY RESULTS. A Boolean a -algebra where can be defined a pr,2 
bability measure will be called a measure Boolean algebra (cf.{H31). 
It is complete in the sense that the supremum of any family of ele!!! 
ents exists, that is, there exists a least upper bound. Examples ~ 
re the quotients of the a-algebras of probability spaces by its i-
deal of sets of measure zero. (And they are the sole examples as it 
is seen using Stone's representation theorem, and Caratheodory's the 
orem of extension of measures). A a-basis of a a-algebra A is a set 
of generators of A (i.e. the least a-algebra containing the set is 
A) with minimal cardinality. Because of the well ordering of the 
cardinals every a-algebra contains a a-base. A principal ideal of 
A is genera ted by an element a ."1 0, and is defined as {x; xs a, xEA}. 
This ideal defines the a-algebra Afta. An algebra is called homoge
neous if for every aEA, dim (Aha) is constant (a "I 0); in other words, 
all the proper principal ideals have the same dimension. 
Example: The algebra of Borelian sets in (0,1) is homogeneous of di 
mens ion ~o. In relation with homogeneous algebras cf. {M} • 
Next we prove some results necessary for what follows. 

THEOREM 1: il I~ A and B a~e Boolean a-algeb~a~ and h i~ a ~u~

jee~ive a-homomo~phi~m ~hen i~ KcA and g(K) de~igna~e~ ~he lea~~ 

a -algeb~a eon~aining K, h(g(K)) .. g(h(K)). Al~o dim B~dim A. 
iiI ga(Kl\a) = g(K)",a , wheICe ga mun~ "gene~a~ed in ~he p~ineipal 1:. 
deal I " and a i~ an elemen~ o~ A. 

a 
ill I I ~ L f:A , dim Lsdim A. 

"~oo~: i) is easy and is left to the reader. ii) follows applying 
i) to h: A- I ,h(x)" xl\a 

. a 
iii) Let L' and A' be a-basis of L and A respectively. We can sup-
pose that they are ordered with the ordinals les5 than one which is 
the minimum among those of same cardinality. We can suppose more , 
as .it is easy to see: 
(*) if Ai -g (as ; asEA I , s<i) then i<j implies Ai C Aj "I Ai 
Same for Land L'. Then A = :~ Ai. Call Ki = gel ' ... Ai). Obviously 
L = UK .. Besides: 

i 1 
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dim L < .card U (L '",AI.") 
i 

(Observe that (*) assures that no element of L' can be generated by 

the preceding ones and consequently that card(LAAi) = dim g(L'"Ai )). 
To finish the proof it wduld be eneugh to have card (L'A Ai)oS. card i, 
since from (1) we had dim L oS. (dimA)2 = dim A. (The finite case is 
trivial). For this it suffices to have: any a-subalgebra of A with 
dimension less than dim A verifies iii). If this is verified the 
theorem is proved, if not, there exists a a-subalgebra B of A not ~ 
rifying iii) and with. minimal dimension with respect to this prope£ 
ty. The preceding argument applied to B shows that iii) is veri-
fied, contradiction. QED. 

THEOREM 2. G~ven a mea4u~e Boolean algeb~a A w~thout atom4 the~e ex 
~4t4 a pa~t~t~on 06 A ~n homogeneou4 ~deal4 w~th d~66e~ent homogene~ 
ty, (c.6.{M}). 

P~o06: Let f\l = {dim a ; ae:A, a ,; O} and af; = V {a; dim as.1;} , f;e:iil. 
{af;} is well ordered and isomorphic to iil. In fact it will suffice 
to show that dim af; = f;. Since in a measure Boolean algebra the sup 
of any family of elements coincides with the sup of a denumerable 
subfamily, we have af; = Vbn . Therefore, dim af;~ f;.N o = f;. By de

fini tion of af;' dim af;2 f; . Putting now xf; 0 = af; 0 ' f; 0 = inf jij, and 
xf; = af;+l - af; for f; ,; f;o we have the decomposition {xn ; ne:iil} 
we were looking for. QED. 

COROLLARY. A Boolean mea4u~e algeb~a w~thout atom4 06 d~men4~on ~o 
~4 homogeneou4. 

EXAMPLE. B((O,l)(n)). 

Call BAthe Boolean measure algebra quotient of the Borel sets of 
n(I n ; neA), A an ordinal number, In = (0,1), with the set of sets 
of measure zero with respect to Lebesgue infinite product measure. 
If cardA = card ~ then BA and B~ are isomorphic. It is well-known 
for card A= Hc and it is easy to see for other cardinals. What Ma
haram's theorem says is that those are the only homogeneous alge
bras. The isomorphism when the cardinals are equal follows then 
from her theorem, which will be proved later. 

THEOREM 3. Let A be a Boolean mea4u~e algeb~a w~th a p~obab~l~ty 
p and Band C two o-4ubalgeb~a4 4uc.h that ~6 be:B and ce:C then bhc';O 
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wh~n~v~~ b,c#O. A~~um~ A = g(B,C) and P(bAc) = PCb) P(c). Th~n, 

th~~~ ~xl~t tWo p~obablllty ~pac~~ (S,B,p), (T,C,q) ~uch that B/p 
l~ l~omo~phlc to B, C/q l~ l~omo~phlc to C, und~~ th~ appllcatlon~ 

(ILUp.) i ,j and thu~ appllcatlon~ can b~ ext~nd~d ~lmultan~ou~ly 
to k that d~6ln~~ an l~omolLphl~m 6~om BxC/pxq onto A. 

PlLoo6: Let Sand T be the Stone spaces associated to Band C res
pectively. R that associated to A. Let Band C be the a-algebras 
generated b.y the clopens of Sand T, and A that generated by those 
of R. Consider the ~amily of finite unions of intersections of 
clopens of the form .x T, S x., in the product SxT; it is exactly 
the algebra of all the clopens of SxT. From the hypothesis it 
follows that this algebra is isomorphic to that generated by Band 
C. Therefore, it exists a continuous application f from R onto 
SxT that induces the isomorphism. Moreover, f pulls back BxC onto 
a a-subalgebra of A. Call i(j) the isomorphism from the clopens of 

SeT) to B(C). Define p(q) on the clopens of SeT) as the value of P 
on the image under the isomorohism just descrihed. 
Calling again P, p, q, the extensions of P, p, q, from the clopens 
to A,B and C respectively we shall see that f- l induces the prom
ised isomorphism k. We shall only sketch the proof. 
Define PIon f-l(BxC) as pI (f-l(H)) = (p x q)(H). We must see that 

1) the probability pI coincides with P on the a-algebra where the 

first is defined~ 2) every element of A is equivalent [pJ to a cer
tain element of f-l(BxC). This would prove the theorem. 

: 1) The clopens of S generate B and the restriction of P to the in
verse image of them by f coincides with p on them. Therefore P 
and pI coincide on f-l(B). Same for f-l(C). 

Every element of B i~ e~uivalent [pJ to a certain clopen as it is 
easy to see using nonotone classes (cf. (My}). 
Let M be an element of Band Nits clopen associated, let UEC and 

V the equivalent clopen [q] . Then MxU is equivalent to NxV[pxq]. 
Since f-1(NxV)has measure P equal to P(f-l(N)).P(f-l(V)) coincid
ing with (pxq)(NxV) and since f-lU A f-lM is P-equivalent to 
f-IV A f-lN, it follows: P(f-l(MxU)) = (pxq)(MxU). Therefore, the 

same holds for any element of BxC , which proves 1). 
2) Let us consider the set of elements of A such that the correspon~ 
ing clopens are P-equivalent to a set of f-~(BxC). This set contains 

the algebra of finite unions of sets of the form bAC and it is a 
monotone family. An application of the theorem of monotone families 
for Boolean a-algebras proves that every clopen of A is equivalent 
[p] to a set of f- I (BxC). Since every element of A is equivalent to 

a clopen, the thesis is proved. QED. 
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We return now to the situation that will be the setting. of what fo! 
lows: a complete probability space (O,A,P); two A-complete a-alge
bras, Band C; V the intersection of them; and we shall suppose from 
now on A is" the least complete a-algebra containing BuC. This 
situation will be written a$ A = g(B~C). Let Q be a finite measure 
on A, absolutely continuous with respect to P and f = dQ/dP. From 
E'(. IB) = E'( . ) = EQ( • ), the conditional expectation operator 
associated to Q and B, and 

(1) 

we obtain: 

From this: 

(2) 

Putting f 

(3) 

thf dP 

E' (h) = E(hf)/E(f), [pJ 

IBE(hf) dP = I~E'(h)f dP 

IBE'(h)E(f) dP 

lA ' the indicator of A, we get on A at least that 

E' (h) Therefore, 

That is, (3) defines the conditional expectations of the restrictions 
to A, (cL {HN}). 
If Rand Q are equivalent probability measures with Radon-Nikodym 
derivatives rand q, from (2) it is easy to obtain: 

E(q) I E(r) 

independent of h. This formula will not be used in the paper. 

PROPOSITION. 16 Q i~ a p40ba~ilizy equivalenz zo P and f i~ B 04 C
mea~u4able zhen zhe commuzazio~ 06 E and F implie~ zhaz 06 EQ, FQ. 

1'4006: Assume f is C-measurable. From (2), EQ(h) is a C-measurable 
function, if hEC-measurable. It follows from iv), lemma 1 and the 

hypothesis that EQ and FQ commute. 
This proposition also follows immediatly from Proposition 2 of § 10. 
This alternative proof is left to the reader. 

3. EXAMPLES. We shall introduce here some examples to avoid later 
inter"ferences. The next three examples were contained in {MP 2} • 
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I. Let X = Y x Z and card Y = card Z = l\ . Call B (C) the o-a1ge
bra generated by the sets contained in a denumerable family of ver 
tical (horizontal) lines. Let A = P (X) . Since card X = K~ a 
theorem of U1am asserts that every measure on X is discrete and with 
respect to them Band C are equivalent. Same thing if the two a1-
gebrascontain the points as measurable sets and together generate A. 
Therefore,the associated conditional expectation operators commute. 
This example shows, for example, that what really matters is the Boo 
lean structure which can be unexpectedly "different" from the set 
theoretic setting. 
II. We have seen that commutation holds whenever Band C are inde
pendent. The following situation, which will be involved in what 
will be called g-independence, generalizes the case of independence. 
What we are going to show in this paper is that g-independence and 
inclusion (BeC or CeB) are (essentially) the fundamental stones on 
which commutation is based on, and when A is under the influence of 
several measures inclusion is the only stable situation under which 
commutation does appear. 
Let n = X x Y x Z, X = t Z = (0,1), B = the algebra of Borel meas~ 
rab1e sets independent of z and C that independent of x. Obviously 
E(f) = f f(x,y,z) dz, F(f) = f f(x,y,z) dx and EF = FE, as it fol
lows from Fubini's theorem. 
III. Let V = Borel measurable sets independent of y in n= (O,l)x(O,l). 
B = g(V,{(x,y); y ~ (1+x)/4}), C = g(V,{ x/4 ~ y ~ x/4 + l/(x+l)}). 
Then E and F commute. We shall not make the calculations since the 
details will be given in the next example. Let us observe only that 
in the set {y ~ (1+x)/4}&B-V, 8 and V induce the same a-algebras, 
that is, they intersect it in the same algebra. This means that in 
spite of B~V on that set both coincide. This situation essentially 
replaces the inclusion case or if one wants is a generalization of it. 
In {M P2}it is associated with the concept of "atomic relation". 
In {HN} it is said that sets of the mentioned kind are "conditional 
atoms". 
IV) Let n = (O,l)x(O,l); V the algebra of Borel measurable sets i~ 
dependent of y; B = {(x,y); 0 ! y ! f(x)} ; f a Borel measurable 
function such that 0 ! f(x) ! 1 for x&(O,l). p and q two non-nega
tive Borel measurable functions of x verifying 

o ! f-p ! f+q ~ 1 
C = {f-p ! Y ! f+q} B = g(V,B) C = g(V,C). 

PROPOSITION. EF FE ~66 f(p+q) = p. 
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Pltoo6: It will suffice to prove F (I B) = f(x) IB' for any set 
B = {O s y s f(x), xEB'} where B' is Borel measurable in (O,l).(This 
equality is equivalent to FE = EF since fIB' is V-meas~rable). It 
is easy to see that G(I B) = £ I B,. Besides:call Q. {(x,y); XEQ', 
(f-ro(x) s y s (f+q)(x)}. Then: 

(1) 

(Z) 

f fIB' dx dy 
Q 

f IB dx dy = 
Q 

f f(f+Q)(X) 
. f(x) ( dy )dx 
B'Q' (f-p)(x) 

f dx dy 
BQ 

f p(x) dx. 
B'Q' 

f f(p+q) dx. 
B'Q' 

Therefore, from (1) and (Z) it follows that F(I B) = fIB' iff 
f(p+q) = P a.e. QED. 

following situation, which is 
= (0,1)3 ; B = B = Borel 

V. Commutation is present also in the 
a mixture of examples II and III. n 
sets of (0,1); Bz = g«O,l/Z), Borel 

x y 
sets of [l/Z,l)); T = g(t,a); 

B = TxB xB ; C = B xB xT. 
y z 2 x y 

VI. Q = (0,1) , 1 = JJp(x,y) dx dy , p ~ 0 ; M(x) = Jp dy , 
N(y) = Jp dx (M and N are the marginals densities);B and Care 
respectively the Borel sets independent of y and x; E(h) = Jh(p/M(x))dy, 
F(h) = Jh(p/N(y)) dx. If, to fix ideas, we assume p > 0 and sym
metric, then 0 < M = N, and supposing f symmetric, we get: 

FE f = k(y)/N(y) , EF f = k(x)/N(~), k = /{/(fp/N)dy}pdx/N(y) 

The commutation of E and F requires k = constant x N, and therefore, 
in general, it is not verified. 

REMARKS. It will be shown that on the atoms of V, B is independent 
of C whenever E and F commute. In the examples II and IV, it is po~ 
sible to say that the independence still holds in the sets "infini
tely small" of V, as we show next. 
Case IV. Let us consider a cylinder Z independent of y whith basis 
(x,x+dx). Then, p(B.cIZ) = (f(x)- (f(x) - p(x))) dx I l.dx=p(x). 

Analogously, P(BIZ) P(CIZ) = f(p+q). Since p = f(p+q) is necessary 
and sufficient for the commutation we get the conditional independence 
of Band C given Z, that is, given an infinitely small set of V. 
Case II. If B = B' x (0,1), C = (0,1) x C', and Z = (O,l)x(y,y+dy)x(O,l), 
then again P(BCIZ) = p(BIZ) p(CIZ), as it is easy to see. 

4. MONADIC AND BIADIC ALGEBRAS. The results of this section will 
not be used in the sequel. They are the precursors of results that 
will follow. or if one wants, a generali~ation of them. They show 
in which extent product structures play a role in this problem when 
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there is no inclusion, (cf. Th. 1). Next theorem 2 gives a repre
sentation that recalls Maharam's representation theorem (cf.{M}). 
Let us remember some definitions and theorems. A Boolean algebra 
A is called IItOnadic with respect to the subalgebra B i£_B is con
ditionally complete: ¥ aEA,~ inf(xEB; x ~ alE B. This is equiv~ 
lent to give an operator V in A with: VO - 0, Vx ~ x, v(&Avb) -
• va~vb; here B • (aEA; va .. a). (Those properties immediately 
imply that V is a closure operator: v(avb) • vavvb, vva = va, 

vO - 0, va ~ a). 
Given a filter F, A/F = (a*; cEa* iff «a-c)v (c-a))'EF). F is 
said monadic in the monadic algebra (A,B) if FAB generates F. It 
can be proved that this is equivalent to the possibility of intro
ducing in a canonic way a v-operation in the quotient algebra: 
vh(a) - h(va) where h is the canonical homomorphism A- A/F. (A,B) 
is said to be simple if B = T = {O,l}. It can be proved that A/F 
is simple iff F is a maximal monadic filter. Also that (A,B) is a 
subalgebra of-the product n (A/F; F maximal monadic in A). 
An algebra is called biadic relative to the subalgebras Band C if 
it is monadic with respect to them and the corresponding closure o
perators, V1 ,V2 , commute. Then V • v1v2defines another closure op~ 
rator and obviously associated to the algebra D - BAC. Every mona
dic filter F with respect to D is monadic with respect to Band C 
and therefore in A/F the induced operators vi' i=l,2, commute. If 
F is also maximal monadic, in A/F, vx - 0 or 1, that is D/F .. {O,l}= T. 
tu this situation, when D = T, A is called simple biadic. 
Given the algebras M,N and P, we shall say that P is the direct sum 
of M and N, P .. M 8) N, if P:::> MuN is generated by them, MAN = {O,l} , 
and if when mEM, nEN are comparable, one of them'is 0 or 1. 

From now on we shall suppose that whenever we speak of a biadic al
~ebra (A,B,C), A is genera;ted by Band C. We shall denote by SeA) 
the Stone's space associated to the algebra A. 

THEOREM 1. A bL«dLe «tgeb~« [A,B,C) L~ ~Lmpte L66 A .. B8)C 

P~006: From the construction of the direct sum we see that the asso 
ciated v-operators commute since their product is the trivial v-op~ 
rator. If A is simple, since by a general hypothesis we already 
know that Band C generate A, it will suffice to show that of two 
comparable elements b,c, one is 0 or 1 to have A • B 8) C. Let b~c, 
then, d = V2 b v b < c. When 0 ~ c ~ 1, d • 0 and therefore b-O. 

QED. 
THEOREM 2. 16 A L~ bL«dLe, zhen Lz ~~ £4omo~6Le zo « ~ub«tgeb~« 06 
« p~o~uet n[~e~; M L~ « m«xLm«t mon«dLe 6Ltze~). 
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isomorphic to a subalgebra 

Since AIM = BMvCM, where BM 
we can apply Th. 1. QED. 

P4006: In fact, it is known that it is 
of rr(A/M; M£maximal monadic filters). 
and ~ are the algebras B/M and CIM, 

COROLLARY. LeA: ex be the Stone-Cech compacti6icat.i.on 06 x, and 
T = e(~(S(BM) x S(CM))), whe4e M 4un~ on the ~et 06 rrtaltimaL mona
dic 6itte4~. Then, the4e exi~t~ a continuou~ appLication 06 T on
to S(A) that inducu the injective homomMphi~m 06 A into n(A/M). 

P4006: It is a trivial consequence of the functoriality of Stone's 
representation and the fact that two complementary clopen sets on 
the topological direct sum of the spaces S(BM~CM) has disjoint com
plementary closures on T (cf. {GJ}, chp.6) 

THEOREM 3. When A i~ gene4ated by Band C, and (A,B,C) i~ biadic, 
it i~ po~~ible to decompo~e S{A) in a union 06 di~joint clo~ed ~et~ 
de6ining an open and clo~ed equivalence 4elation a~~ociated to 
v = v1v2 and ~uch that the induced topology on each 06 tho~e ~et~ 
de6ine~ on them the algeb4a~ 06 clopen ~et~ coinciding with the di 

4ect ~um 06 tho~e induced bu the clopen ~et~ 06 Band C. The4e a4e 
a~ many maximal monadic 6ilte4~ a~ the4e a4e equivalent cLa~~e~ and 
the quotient ~pace i~ i~om04phic to S(D). 
P4006: Let us only sketch the proof. From Stone's representation we 
know that if F is a filter the canonic application i: S(A/F) + S(A) 
is a continuous injection which is open iff F is prinCipal. (This 
follows immediately observing that Stone's space of A/F is isomor
phic to the closed set associated to F with the induced topology of 
S(A)). Recall now that (A,V) is a monadic algebra if on S(A) it is 
possible to introduce an open and closed relation such that V a£A , 

va = sat a ; (cf. {H1,2})' Consider the family of equivalence cla~ 
ses of the points of S(A) under the closed relation induced by 
v = V1V2. These classes are disjoint and closed as sets of S(A). 
With the induced topology they are Stone's spaces, and exactly,those 

corresponding to the algebras AIM, M a maximal monadic filter.~iven 
M, an equivalence class is defined by all the ultrafilters contain-

ing M). QED. 

The difference with the corollary to theorem 2 is in the fact that 
each equivalence class defines a closed s~t and not a clopen set, as 

in this corollary. 

REMARK: Since we will not develop systematically the algebraic ap

proach, we shall not care about most general statements concerning 

monadic operators. 
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S. BOOLEAN MEASURE ALGEBRAS AND CLOSURE OPERATORS. A Boolean pr~ 
bability mea'sure algebra A and a a-SUbalgebra B provide one of the 
oustanding examples of monadic algebras as it is easy to see since 
if P denotes the measure, inf{P(b); b ~ a, bEB} defines a number h 
for which exists a boEB with bo ~ a, and P(bo) = h, i.e., Va = boo 
We shall call V a closure operator or a V -operator. If two sub
algebras Band C, are considered, we get a biadic algebra whenever 
the associated v-operators commute. In the setting in which we are 
interested described after theorem 3 of section 2: {A,B,C} with pr~ 
bability P, VIA, A&A, is the set defined by {P(AIB) > OJ. Naturally 
comes the first question: in which extent commutation of the condi 
tional expectation operators and that of the v-operators are rela
ted? We answer this next and also provide a result similar to le
mma 1 in the introduction, but for the closure operators. 

THEOREM 1. i) 16 v1v Z de6ine4 an ope~ato~ V with the 4ame C!04u~e 
p~ope~tie4 a4 the V.,s, then th.i4 i4 the ope~ato~ auociated toB AC. 

J 
ii) 16 vZv 1 = V i4 a ci04u~e ope~ato~ then the vj,s, j=I,Z, commute, 
and conue~4eiq, i6 theq commute thei~ p~oduct de6ine4 a cLo4u~e op~ 
~a.:to~. 

iii) 16 two conditionai expectation ope~ato~4 commute,then the a4-
40ciated cio4u~e ope~a.:to~4 ai40 commute. 
iu) 16 vlCcC then VzBcB and vI commute4 with v2 . 

P~oo6- i) The following properties define a closure operator: VO = 0, 

vx ~ x, v(aAvb) = vaAvb, and {x; vx = x} determines the associated 
subalgebra. Therefore if v1v Z defines a closure operator V then 
x = vx implies x = VzxEB, and therefore, toBAC. It proves i). 
ii) If the vi's commute their product verifies the properties defi~ 
ing a closure operator, as it is easy to see. Assume VZV 1 = V. By 
i) we know the algebra associated to v. If the thesis were false 
it would exist a c&C such that b = vf ¢BAC; in fact, if it always 
belonged to B~C it wouldbe possible to verify for v1vZ the conditions 
defining a closure operator. By i) it woul imply V1v Z = v, which 
by hypothesis and i) must coincide with vZv l . 
Let bO = Vz b. Then bOEBAC and bO- b ~ O. It holds: (Vz(bO- b))"c=O 
and also: (vz(bO- b))J\b ~ O. Therefore, bO-Vz(bO- b)EBAC, ~ b,and~ 

c, a contradiction. 
iii) For A&A, it always holds v1vZ A ~ VAEBAC. On the other hand 
we have E (P (A IB) Ic) = P (A I S"C). The second member is greater than 
zero exactly in the set vA. Finally, where the first member is grea! 
er than zero we also have: 

P(Vz AlB) > 0 
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But (e) is verified exactly on V1V2A In consequence V1V2 A ~ VA. 
tv) Let b£B. Then A1 (V 2 b) • (V 1 (V 2 b)')'£C. From b ~ A1 (V2 bY ~ 
! V2b, it follows A1V2 b • v2 b, i.e., v2 b£B. Let us se~ that the 
operators commute. v1CcC implies v2v1 x < V2 V1 (V 2 x) • v2 [v 1 (V 2 x)] • 
• V1 (V 2 x) - v1v2 x. The opposite inequality follows from V2Bc;B.QED. 

There exists formal analogy between Lemma 1; §1, and the preceding 
theorem, that is, between the v's and E's operators, partly justified 
because of iii) of theorem 1. The study of this analogy is pursued 
further in theorems that will follow, but results not concerning the 
subject of this paper will not be included. 

6. CONDITIONAL ATOMS AND MAXIMAL FREE FILTERS. Given (n,A,p) and a 
a - sub.algebra L, an element A£A is said a c.ond.{..tional a.tom or an L
a.tom if LAA = AhA, (cf. {HN}). We can introduce the concept in (A,L), 
a monadic algebra A with a subalgebra L: a is an L-atom if LAa=AAa. 
In what follows of this section we relate the concept of L~atom with 
that of free filter and it will not be used in the rest of this paper. 
The homomorphism i: L3b- bAa£Ia = principal ideal generated by a, 
has kernel FVa • principal filter generated by Va. If this map is 
onto a is an L-atom. When Va • 1 it is aaid that a is a 611.ee ele
men.t relative to L. The restriction is not serious since for bEL 
the intersection algebra (AAb,LAb) is again a monadic algebra. The 
relevant fact is that the homomorphism i is a bijection whenever a 
is simultaneously a free element and an L-atom, as it is easy tp see. 
A filter is called 611.ee if any of its elements is free. It is well
known that any free filter is contained in a maximal free one. 
Let us see now a characterization of condit1onal atoms. 

·THEOREM 1. Le.t V a = 1. a i.6 an L-a.tom i66 .the pll.inc.ipal ideal gen

ell.a.ted by a in A, Fa' i.6 a maximal 611.ee 6il.tell.. 

PlI.oo6: The condition is necessary: Fa is free, if not maximal there 
exists y ~ a, y '" a, which generates a free filt.er. But y • xl\a, 
x£L, and vy = 1. Therefore, V x = x = 1 ~ a, and y a, contradiction 
Sufficiency: if a were not L-atom, it would exist y < a such that 
y ~ L_a. Therefore z • yv(a - vy) '" a, Vz • Va = 1. Then Fz is free 
and contains properly to Fa • QED. 

We are tempted to mention now the following theorem due to Ha! 
mos: if F is a maximal free filter of a monadic algebra (A,L) and L 
is complete then any equivalence class of A/F contains exactly one 
element of' L. 
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7. CONDITIONAL ATOMS AND COMPLETELY DIMINISHABLE ELEMENTS.. Let 
(n,A,p) be a probability space and L a a-subalgebra. Equalities and 
inequalities are always a.e .. An element N£A will be called dlmln 
l~hable (relative to L) if there exists QcN, Q£A,Q # 0, such that 

V(N - Q) = VN, where the closure operation is taken with respect to L. 
M£A will be called completely dlmlnl~hable if it is nonvoid and eve 
ry nonvoid subset of M is diminishable. 

PROPOSITION 1. 16 M l~ completely dlmlnl~hable, then the~e exl~t~ QcM, 
Q ~ t,Q£A, ~uch that vQ = V(M - Q) = VM. 

P~oo6: Define Qo= ~ , and transfinitely, QkcM - EVQ. such that 
j<k J 

V (M - Q k -j~~Qj) = v (M -jHQj). Call Q = rQk' Then M has the same 
closure as M - Q. By construction the same as Q. QED. 
The converse is false: take n = M = (0,1), L = T, A = g(A) where A 
is the set (0,1/2), Q = (0,1/2). 

EXAMPLE: (D. Maharam, cf. {M}). Assume that A is a homogeneous 
a-algebra, and that L is also homogeneous and Boolean a-isomorphic 
to a BA (see section 2). If dim L < dimA,then n is completely dimin 
shable. 
In fact, it follows from the definition of homogeneity and the next 
theorem, proposition ii). 
Let us introduce another definition. We shall say that a set M£A 
is not ~ectlonable ~elative to L) or has not the ~ectlonlng p~ope~ty 
if V NcM, ~ # N£A, there exists QcN, ~ ~ Q£A such that vQ = 
= {P(QIL) > O} c {O < P(QIL) < p(NIL) . The reasons why we have chQ 
sen that adverb will be explained later. 
Finally a useful remark to be used in the following theorem. A set 
N is a conditional atom iff for any A£A, AcN, it holds: A = NI\vA. 
That is, the closure of any subset A of N could be greater than A 
but only in a subset contained in the complement of N. The proof is 
immediate. 

THEOREM 1. II A ~et l~ not dlmlnl~hable 166 it l~ an L-atom. 
ill A ~et l~ completely dlmlnl~hable 166 it doe~ not contain L-atom~. 
lill A ~et l~ dlmtnl~hable 166 it 16 not ~ectlonable. 

P~oo6: i) Let N be an L-atom. Assume it is diminishable: there ex 
ists Q ~ ~ contained in N with v(N - Q) = vN. Therefore N = N~V(N-Q)= 
= N - Q. 
Suppose now that N is not an L-atom. Therefore, there exists HeN 
with H ~ N~vH. Set Q = H~v(N - H), then Q ~~. Now, V(N - Q) = 
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= V{(N - H)V (N - v (N - H))} .. [V(N - H)]"[VN - v(N - H)] = VN. 
In other words, N is diminishable. 
ii) follows from i) and the definitions. iii) fo110w~ easily from 
the definitions and P(Qv(N - Q)IL) = P(QIL) + peN - QIL). QED. 

PROPOSITION 2. 16 N .(..6 an L-a.tom and A3Ac:N, .then: 
,oJ P(AIL) = P(NAIL) = lVA • p(NI~) • 
ConveII.4el!l, ..i.6 ,oJ hold4, N..i.4 a c.ond..i..t..i.onal a.tom. 

Pltoo6: If N is an atom, P(NAIL) = P(N.VAIL). Conversely, if 
N.vA • A ~ • then P(NAIL) ~ P(N.VAIL). QED. 

The proposition says that p(AIL) is obtained "sectioning" with VA 
to P(NIL). This cutting cannot be made in a diminishable set and 
explains the nomenclature used above. The proposition "N sec
tionab1e implies (0)" was proved in {MP2}. The proposition also 
appears in {HN} where other properties of atomicity are studied. 
This paper contains also a proof of next theorem. In {MP2 }it was 
observed that non-sectionability, now shown to be equivalent to non
atomicity, implies the same thesis as next theorem. There, it was 
said that the result is in its essence, nothing but a lemma used in 
{M} by Maharam, and in fact, it is an abstraction of that lemma whose 
proof can be used without changes. As a matter of fact, we repeat 
the proof for the sake of completeness. In {HN} the demonstration 
follows a shorter way. 

THEOREM 2. 16 .the 4e.t M ..i.4 c.omple.tel!l d..i.m..i.n..i.4hable and f ..i.4 an L
mea4ultable 6unc..t..i.on.4uc.h .tha.t 0 ~ f ~ p(MIL) .then .thelte ex..i.4.t4 Nc:M 
4uc.h .tha.t f • P(NfL). 

(Hanen and Neveu prove the following proposition: for any set C 
and function fEL-measurab1e satisfy~ng 0 ~ f ~ P(CIL) there exists 
two disjoint subsets of C, A and B, B.a condition~l atom, such that 
P(AIL) ~ f ~ P(~ + AIL). If C does not contain conditional atoms 
then P(AIL) = f). 
As an application of theorem 2 we have lemma 2 of {M} : 

PROPOSITION 3. 16 A ..i.4 a homcgeneou4 a-algeblta, and L a a-4ubalg~ 
blta Boolean a-..i.4amoltph..i.c. .to a BA, .then d..i.m A > d..i.m L ..i.mpl..i.e4 .tha.t 
..i.6 0 ~ f ~ P(MIL) .thelte ex..i.4.t4 NcM w..i..th p(NIL) = f. 

(It follows from theorem 2 and the example described above). 
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Theorem Z has a converse: 

THEOREM 3. 16 Y HeM ~t hoid~ that Y £; 0 ~ f ~ p(NIL) the4e ex~~t~ 
M'eN ~uch that f = p(M'IL), then M ~~ compieteiy dim~n~~habie. 

P4006: Take f P(NIL)/Z. Then P(M'IL) = l/Z.P(NIL) = peN - M'IL) 
and vM' = V(N - M') = vN. QED. 

If we did not require M'eN, the implication would be false. Take 
N = (0, 1 I Z), n = (0, 1) = M, L = {n, t }, A = g (N , B (l/Z , 1 ) ) • N is an 
atom and every constant function Dot greater than 1/2 is the con
dit~onal expectation with respect to L of a subset of M. 

P4006 06 the04~m 2. It is sufficient to prove that there exists 
N'cM such that P(N'IL) ~ f. In fact, defining recursively N. as a 

J 
set contained in M - E N. verifying P(N.IL) < P(M - E N.IL), we 

i<j 1 ' J - i<j 1 

get finally a set N' = E Nk with the desired property. This invo! 
ves an exhaustion proce~ure which will be often used. One way of 
substituting this method by another orie is to use axiom of choice 
in its maximal-element form. Let us prove the existence of such an 
N'. The crucial point is to exhibit a BcM with 

(*) {O < p(BIL) < P(MIL)} = {O < p(MIL)}. 

But (*) says that vM coincides with the inte.rsection of vB and 
{P(M - BIL) > 0 }= v(M - B). Such a B exists because of proposition 1. 
Call C = {O < P(BIL) < l/Z.P(MIL)}, D = {1/2,P(MIL) ~ p(BIL)}. 
Bl = (CftB)v(DA(M - B)). Then, VB l = vM and P(BIIL) ~ 1/2.P(MIL). 
Repeating the process, we can prove that exists a sequence {Bn }: 

(U) VBn = vM, P(BnIL) ~ p(MIL)1 211. , n = 1,2, .•• , BncM. 
For a certain n, P(f > p(MIL)1 2n) > Oif f ~ O. Define 

N' ~ t because VN' 
P (N' I L) ~ f. 

N' = Bn " {P(BnlL) :: f} = Bn 1\ H 

HAVBn = Hl\vM = H. Besides N'c::M and from fU) 

QED. 

From now to the end of this section we shall generalize th~ prece~ 
ing notions and theorems. The proofs are trivial or similar to 
those given before. 
We shall not go into troubles adapting them since in this moment 
what only matters for us is to have a prospective view of the subject. 
Let A, Land S be a-algebras of subsets of nand LcAjS. (n,A,p) a 
probability space. A set N will be called S-diminishable if NEA 
and there exists Q ESJlN, t ~ Qc::N such that vN = v (N - Q) and where v 
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is taken with respect to L. A set M&A will be ~alled eomple~ely S
d.lm.lnL6hable if every subset A-measurable is S-diminishab~e. Given 
Land S we shall say that M&A is an (L,s)-a~om if SAM = L~M. 
Therefore, L-atom coincides with (L, A)-atom. 

THEOREM 4 . .i.) M .l~ eomple~elyS-d.lm.ln.l~hable .l66 V.N~M,t rN&A, 3 
Qc.N, t r QeSI\M ; VQc{O < P(QIL) < p(NIL)L 
.i..i.) Auumj!. L <=S. Then: a 4e~ 06A .i~ S-d.lm.in.i4hable .iH a .l~ no~ 

an I L, S )-·a~om • 
.l.l.l1 Unde~ ~he ~ame eond.l~.lon a ~e~ 06 A .l~ eomple~ely S-dlm.ln.lAhable 
.iH .l~ dou no~ eon~a.ln a.n IL.S)-a~om_ 

.l1I) Auume M .li:. eomple~ely S-d.lm.ln.l~hl1ble. 16 f .l~ L-mea~u~able and 
o ~ f ~ p(MIL) ~hen ~he~e ex.l~~~ M'&g(L,S)AM ~ueh ~ha~ f .. PIM'I L). 
II) Le~ LcS. 16 M dou no~ eon~a.ln an IL,S)-a~o," ~he.n 60~ elle~y 

f&L-mea~u~able, 0 ~ f ~ p(MIL) , ~he~e ex.l~~~ M'&SAM ~ueh ~ha~ 
f .. p(M'IL). 

(iv) was mentioned in {MPa}, but in its equivalent form shown in i).) 

8. ATOMS OF THE INTERSECTION ALGEBRA. The setting is the one de-
scribed after theorem 3, section 2.We are interested 
'what happens in the atoms of V when E and F commute. 

in discovering 
.We shall show 

that there Band C are independent (*) and since this .answer is 
pleasant enough we shall go into the complement of the atomic part 
to see how the algebras are related in that part. This "local" 
study can be done because of the following proposition. 

PROPOSITION 1. 16 {D , n=1,2, ••• } de6.ine~ a pa~~i~.ion 06 D by ~e~~ 
n 

06 V ~hen E and F eommu~e on eaeh Di .l66 ~hey eommu~e on n. 

P~006: Given the set A&A, we shall denote by A., B., C.,V., the 
restrictions to A of the algebras A, B, C, V. Observe that 
Ao = g(B.,C.) but only V.cB.AC •• 
To say that E and F commute on A means: Eo and Fo commute on 
(A,A. ,P/P(A)) where Eo(Fo)is the conditional operator associated 
to B.(C.) and, if AEV, then Eo - E(Fo= F). The corresponding .closure 
operator will be designated by vOl (V 02). 

We have: EF f .. EF l: 1Dn .f .. l: EF(l Dn .f) .. l: EnFn(lDn.f) and this 
implies that the commutation of Eo and Fo is equivalent to that of 

(*) Independence of Band C on D means BAD independent of CAD with 
respect to the probability P(.)/P(D). 
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E and F. This proves the proposition. 

Elimination of the atoms of V implies the eradication of the atoms 
of A ,8 and C, as the following propos i tion shows (the proof is 
left to the reader). 

PROPOSITION 2. Any azomH 06 A, B o~ C i~ conzained in an azom 06 
V, p~eci~ety, VH. 

When A = g(B,C), we defined in section 4 direct sum of Band C 
which is equivalent to say that any BEB intersects any CEC:BAC;t 
(then B~C = T), if B ; t, C ; t. 

THEOREM 1.i)16 P i~ a p~obabitizy on A which i~ equat zo B ~ C and 
EF=FE • zhen Band C a~e independenL 
ii) 16 v1v2 • v2v1 on A.zhen A = B ~ C wheneve~ BAC = T 

iii) 16 EF • FE,zhen Band C a~e independenz, wheneve~ BAC = T . 

P~oo': i) Let CEe, BEB. G lc = a.l 0 because of the triviality of 
the intersection algebra and lemma 1, section 1. Then P(C) = a. 

Analogously PCB) = b. From E F l BC = G l BC = E lB F 1c = ab 10 ' 

we obtain P{BC) = P(B)P(C). 
ii) If B.C = t then 0 - C~ VB = V2B and the intersection algebra 
would not be trivial. 
iii) follows from Th. 1, iii), section 5 and i) and ii) of this 
theorem. QED. 
iii) was proved in {MP2 }. 

COROLLARY 1. OJ! .the aZom4 06 V, Band C a~e independenz i6.6 EF=FE. i 

In zhe comptemenz106 zhe V-azomic pa~z 06 0 neizhe~ A no~ B no~ C 
have azom~. 

In fact, it follows from the preceding theorem and propositions 1 

and 2. 

COROLLARY 2. 16 A i~ pu~ety azomic and EF • FE, zhen 0 can be ~e£ 
~e~enzed on NxN IN={O,1,2, ••• }) in ~uch a way zhaz zhe a-atgeb~a~ 
B andC co~~e4pond wizh zhe a-atgeb~a~ 06 ~ez~ pa~attet zo zhe ax~, 
NxN i~ decompo~ed inzo ~eczangte~ wizh di~joinz p~ojeczion~ whe~e 
zhe ma~~~ a~e concenz~azed, and on each ~eczangte P i~ zhe p~oducz 
06 iz~ ma~ginat d~z~ibuzion4 buz 60~ a con~zanz. 

In fact, if A is atomic so it is any a-subalgebra. The rectangles 
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correspond to the atoms of 0 and the corollary is a direct applic!. 
tion of the preceding theorem. The mentioned constant is the meas 
ure pf the rectangle. 

COROLLARY 3. 16 P i4 4 p~ob4bitity m~4~U~~ on NxN p04itiu~ on eaeh 
point 4nd B 4nd C 4~~ ~up~etiu~ty th "uut-ie4t 4nd hMizont4t 
tinU" th~n P = P1xPZ' fA1hen~"~~ EF .. FE. 

It follows from the pre"ceding corollary. 

REMARKS. 1) In the proof o~ the preceding theorem we showed that 
in an atom of V two sets, B, C, intersect if they are not void. 

'This can be generalized: ifVzB~A and c.v1A ~ t then B.C ~ t. In 
fact, Vz (B.Cj = (ViB).C = C.VZV 1 B;:)C.V1 A ~ • implies B.C ~ t. 9z B:>A 
whenever A is an atom of A and B.VZA ~ t. In fact, in this case, 
if there is not inclusi6n A.VZB = t and then V2 (B.V zA) = t, con
tradiction. 
2) If D is an atom of V the filter FD is maximal aonadic with re
spect to V and therefore A/FD = Ao .. Bo e Co where the direct sum 
is understood in the sense of Boolean algebras. Since Ao • g(Bo,C o) 
it can be interpreted in the sense of Boolean a-algebras, (cf. §5,6). 
3) If ll.ell, ll.EA, and LcA,then if L. = LAll. is trivial, vL 1'10 

is an atom of L, as it is easy to see. This implies that if VI and 
v2 commute and A. = B. e C. on 1'1., it is contained in an atom of V 
because O.c~.~C. = {t,ll.}. This means that if on a set of A, Band 
C are independent then this set- is contained in an atom of 0. There 
fore, after discarding the atoms of 0 no trace of independence will 
be found. Spurious forms of independence can appear anyhow. The 
typical example of this bastard type of independence is shown in e~ 
ample II of section 3. 
4) We already said and can be easily verified that the concept of 
conditional atom generalizes that of atom. Next lemma characterizes 
some of them when L 0. 

LEMMA 1. 16 VI 4nd Vz commute 4nd BEB then B i4 4 V-4tom ~et4tiue 
to B i66 B.eC •• 

P~oo6: Assume B is a V-atom relative to B, i.e. Vo = Bo, ehen if 
B' is B-measurable and contained in B, we have: B' = B.VB' = B.VZB. EC •• 
Assume B ocC 0' B' E B 0 • Then, B' = B. C for certain CEC. Applying VI' 
we get: B' = VIB' = VI(B.C) = B.V1C = B.vC, and this means that B 
is a V-atom with respect to B. 
5) We have shown in r.emark 3) that if independence of Band C ap-
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pears in a set A of A, it is included in a set of V where still those 
algebras are independent. An analogous fact occurs for inclusion 
as is shown in next lemma. Lemma~. says that if AoEB, and BocC o • 
then Ao is a (V,B)-atom. But if AoEC, and BocC o then AoC:Al = VIAoEV 
which is a (V,B)-atom (lemma 2), and then because of lemma 1, BleCl . 

LEMMA 2. A~~ume v IV 2 

1I.eiat:ive t:o B. 

P1I.006: Let BEB, Bl 
Therefore BIEV. 

6) In relation with this remark, cf. {HN} Assume our probability 
space is (0, M,P) and LcM, a a-subalgebra. By a conditional atom we 
shall understand one L-atom relative to M. This will be applied in 
the case M = Band L = V. 

LEMMA 3. il 16 {Aa} i~ a chain 06 condit:ionai at:om~, t:hen A = sup Aa 
i~ a condit:ionai at:om. Eve1l.Y ~ub~et: 06 a condit:ionai at:om i~ an L
at:om. 
ii) Given a condit:ionai atom t:he1l.e exi~t:~ a maximai condit:ionai at:om 
containing it:. 
iii) 16 {An}' n=1,2, ••• , .i~ a ~equence 06 condit:.ionai atom~ ~uch 
t:hat: t:he VA a1l.e pai1l.wi~e di~joint:, t:hen r A i~ a condit:ionai at:om. 

n n 
iv) 16 A i~ a maximai condit:ionai at:om and Z = ~up{B; B i~ a condf 
t:ionai at:om} t:hen vA = vZ. 
v) 16 A and A' a1l.e di~joint: condit:ionai at:om~ the1l.e exi~t:~ a condi 
t:ionai at:om cont:aining A maximai with 1I.e~pect: t:o t:he p1l.0pe1l.t:y 06 
beeing di~joint t:o A'. 
vi) Z = E A , whe1l.e A i~ a condit:ionai at:om maximai with 1I.e~pect: 

n-l n n 
t:o t:he p1l.0pe1l.t:y 06 beeing di~joint: t:o Al + ••• + An_I' 

P1I.006: Sup Aa is essentially denumerable, i.e. A = sup An a.e. 
where A is increasing. From vsup A = sup VAn we get i), and ii). n . n 
iii) follows easily. Since vZ~vA, if Z - vA ~ ~, it would contain 
an L-atom and from iii) it would follow a contradiction. v) is 
proved like i). 

7) Denote with To the union of the family of atoms of V and with 
Tl (T 2) the maximal set of V where BeC (CeB). 

LEMMA 4. 16 A.i~ an at:om 06 V, t:hen AcTo"TI when and oniy when A 
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i4 an atom 06 B. 

P1l006: It is left to the reader. 

LEMMA 5. 16 A i4 an .atom 06 V, AcToIITIJ\T2 i4 e.quivalent to A i4 an 
atom 06 A. 

P1l006: Trivial, after lemma 4. 

9. CO~~UTATIVITY. In this section we study some situations -in the 
general context we already admitted- which preserve the commutation 
of E and F. For example generalizing proposition 1 of section 8we 
have: 

LEMMA 1..i1 16 Acn i4 B-me.uullable. the.n EoFo .. FoEo oft A. 1de.m 
i6 AEC. 
iiI 16 C' .. g(C,BI ,B2 •••• ) whe.lle. BiEB and {Bi } ~4 a palltition 06 n 
the.n EF' = F'E ; F' = E(~/C'). 

P1l006: i) From (3), section 2. we have: Fo(.) = F(.) l A/F(l A). Ap" 
plied to sets of So, because of the commutati9n of E and F and that 
AES,the right member isB. measurable. Lemma 1 of section 1 implies 
then that Fo and Eo commute. 
ii) Every element C' of C' is of the form t CjBj ; then 

E(l c ,) = E( t l B. C.) = t lB. E(1c.) 
J J .J J 

and this function is clearly B-measurable. QED. 

If instead of the conditional expectation operators we consider the 
closure operators, i) of the preceding lemma is generalized by i) 
of next lemma. 

LEMMA 2. il 16 AoeS the.n VOl c.ommute. with V02 ' whe.ne.ve.1l vl v2= v2vI 
i~1 16 AntAo and the. c.ommutation 06 the. C.l04UIle. ope.llatoll4 hold4 on 
e.ac.h A , it i4 al40 valid on Ao, (n=1,2, •.• ). 

n 
iii I 16 AntAo and on e.ac.h An' EnFn .. FnEn ' the.n EoFo .. FoEo. 

P1l006: i) It follows immediately that: 

'(1) VOl" = (VI").Ao whenever "cA •• whatever it be A •• 

Then: V02 (V OI ") = AoV2VI " since AoES. Besides: VOI V02" = VI (AoV2") = 
= Ao VI V2"· 
ii) VnIVn2(x.An) s An'VI{An'V2(x.An)J f AO'VI{Ao'V2(X.Ao)}. 
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Then, VnIVn2(x.An)tVOI v02 (X.Ao). This implies the commutation of 
the closure operators on Ao. 
iii) follows easily applying formula (3) of section 2. 

(0) F n En (f 1 A ) = F { 1 A E (f 1 A ) / E (1 A ) } 1 A / F (1 A ). 
n n n n n n 

Taking 0 ~ f ~ 1 , we see that (0) converges to FoEo(f l A.). 
iii) is a ready consequence of this. QED. 

LEMMA 30. Let (Bn) and (Cn ) be -incllea-6-ing -6equence-6 o~ cr-alge'blla-6 
(completed -in A). 16 B = g(B I ,B2, .•• ) , C • g(Cl,C2"'~) and 601l 
each n,n = 1,2, .•• , EnFn = FnEn' then.EF = FE. 

Pllo06: Call B. = U Bn' From martingale theory, we have for BEB. 
1 

F lB = lim Fn lB a.e. 
n 

If BEB , n > no , because of the commutation the function Fn1B is n. -
Bn-measurable and therefore F lB is B-measurable. 
The set { BEB ; F lB is B-measurable} contains B. and is a monotone 
class, therefore, since B = g(B.) it coincides with B. 

LEMMA 4. Let A and A' be A-mea-6Ullable -6et-6 and D a -6et 06 V -6ueh 
th4t AcD, A~n-D. 16 Band C commute on A and A' then they commute 
on AuA I. 

P1l006: Denote Eo, Fo , (E I , FI , E , F)J the conditional expectation 
operators associated to the restriction of the algebras to A (A'. 

A + A'). From: 

-[ ) E l C (A+A') 
E l C (A+A') = 

E IA+A' 
1A+A, f + g. 

taking into account that f is Co-measurable and g is CI-measurable J 

we see that E 1C(A+A') is C-measurable. thanks to the fact that D 
separates A from A'. QED. 

(The same result holds if instead of commutation of the conditional 
eKpectation operators we ask for commutation of the closure operators.) 
Combining lemma 2 and a passage to the limit we obtain: 

LEMMA $. 16 Band C commute on each -6et Ai' i=l .2 •.•. ~ -6uch that 
the vA.'s 60llm 4 pallt-it-ion 06 n. then they commute on E Ai' 

1 i=l 

10. COMMUTATION UNDER SEVERAL MEASURES. We have said that commu-
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tation of the closure operators is possible under several circum
stances: independence, inclusion, g-independence, etc .. We prove 

here that if Ep ' Fp are the conditional expectation operators ass2. 
dated to Band C in the space (o,A,P), all the algebras completed 
in A, then EQFQ = FQEQ for every Q~P, iff only inclusion occurs. 
This solves partially also the following question. 

Problem: How must Band C be related as to have EpFp = FpEp for 
every measure P? 
Conjecture: 0 is decomposable into two sets 01 , O2 belonging to V, 
such that BeC in the first, CeB in the second one. 
The problem, the conjectur~ and next proposition appeared in {MP2}. 

PROPOSITION 1. A~~ume given a ~et 0, and the a-atgeb~a 06 ~et~ A 
with two a-~ubatgeb~a~, Band C ~ueh that A = g(B,C). 16 60~ eve~q 

P; Ep and Fp eommute, then i6 GtV = BAC i~ not void then o~ G i~ 
deeompo~abte in V, o~ it i~ indeeompo~abte in B o~ in C. 

P~006: Indecomposability of A in A means that every A'EA includes 
A or is disjoint to it. Commutation of the conditional expectation 

operators for every P, means Y P, Ep 1c is C-measurable [pJ , ~CEC. 
Assume peG) > 0, and also that G is indecomposable in V. Therefore 
Band C are independent on G. If G were decomposable with respect 
to Band C then it would exist BEB, CEC, such that B-C ~ ~~ C-B. 
Take xEB-C, YEC-B and let 6 , 6 , the probabilities concentrated on 

:II: y 
x and y respectively. Consider Q = (P+6 +6 )/3. G is an atom with x y 
respect to P and Q. Since by hypothesis E and F commute, Band C 
are independent with respect to Q on G. Then: 

Q(B)Q(C) = Q(BC)Q(G) which implies (P(B)+l)(P(C)+l)= P(BC)(P(G)+2) 
From this we obtain: P(B6C)+1 = 0. QED. 

THEOREM 1. 16 EQ and FQ eommute 6o~ eve~q Q eQuivatent to P then 0 
ean be deeompo~ed into two ~et~ 06 V,T o , Tl , whe~e, ~e~peetivety, 

B.cC., ClcB l . 

P~006: Let Tl be the greatest set of V where ClcB l • If in To=O-T l 
were not true that BoC:Co , it would exist a set BfB, included in To 
such that V2B ~ Band B ~ 6B = 0-V 2 (0-B). D = V2B-6BEV. 

Let CEC, and f = a 1BC +b 1CB '+c 1BC ,+d 1B'C'~ 0, B' = o-B,f f dP = 1. 
Eventually passing to complements we can reduce the situation to one 
of the following cases: 1) Band C intersect in a positive set but 
no of them is included in the other; 2) B is contained in C. From 
(2) of section 2, we get for dQ = f dP : FQ 1B = F(f 1B)/F(f) and 
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from this: 

(*) (a le+c le ,)F lB Fo lB' = (b le+d le ,)F lB,·FQ lB· 

Therefore, the function h = lD (a le +c le ,) I (b le +d le ,) is B -meas
urable. 
Take b = d = 1, which is possible in the mentioned cases, and choose 
a and c in such a way that f f dP = 1. In case 1) a and c exist 
satisfying this equation and c ~ a. In case 2) choose c = O. In 
both cases: 1n (a le +c le ,) is B-measurable, and then C.D is B-mea~ 

surable. This means that for every CtC, CD is B-measurable. Then 
on D, C c:: B, contradicting the maximali ty of Tl • QED. 

This theorem does not solve the problem proposed above since the 
question was on the set structure and the preceding result is on 
the Boolean structure. But it may be this last one is the right 
structure where the problem should be posed. Next we describe the 
equivalent measures to P for which we ca~ afford to ask commutation 
whenever this is present for P. 

THEOREM 2. Auume EF s FE, f f dP " 1, 0 ~ f, dQ = f dP, Q '" P. Then, 

EQFQ • FQEQ ~66 f " gh whe~e g ~~ B-mea~u~abte and h EC-mea~u~abte , 
bozh non negaz~ve. 

COROLLARY. 16 EF • FE zhen eve~y f E L1(n) ~~ 06 zhe 60~m f =gh , 
g E 8-me44u~abte, h t C-mea~u~abte ~6 6 n ~~ dec.ompo~abte ~nzo zwo 
4...t~jo~nz ~ez~ T., Tl w~zh zhe p~ope~z~u dUM~bed bl Th. I. 

The corollary follows from theorems 1 and 2. To prove the preceding 
theorem we shall make use of the following auxiliary proposition. 

PROPOSITION 2. EQ = E ~66 f ~~ B-mea~u~abte, whe~e f = dQ/dP. 

P~006: Let us see the necessity. 
E (g) = E(fg)/E(f) = E(g) V g implies E(fg) = E(gE(f)) Y g and ther~ 
fore f a E(f). The sufficiency is easier: EQ(g) = E(fg)/E(f) = 

= f E(g)/f = E(g). 

P~006 06 zheo~em 2. First we observe that formula (2) of s~ction 2 
holds for every non negative function f, a.e. finite, and every non 
negative function h, say, not greater than one. Second observation: 
the functions g and h that appear in the hypothesis can always be 
supposed finite everywhere. Third observation: Proposition 2 can 
be extended with the same proof to the following: If Q is (1 - fini te 
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and equivalent to P and f= dQ/dP is 5-measurab1e,then EQ = E, and 
conversely, if 0 < f < ~ a.e. [p] and dQ = f dP, the equality implies 
the 5-measurabi1ity of f. 
Fourth: g and h can always be supposed to be greater than 0 every
where, since this can be admitted for f. 
Let us consider the a - fini te measure: .dK = h dP ; from the observa 
tions we see that: EQ s = EK S = E hs/Eh E C-measurab1e if s is C
measurable, nonnegative and not greater than one. This is the proof 
of the sufficiency. Let us see the necessity. G(f) = G(gh) = EF(gh) • 
= E(h)F(g) and Ef.Ff = f.Eh.Fg imply: 

(2) f = 
Ef Ff 

Gf 
= g'h'. 

This provides a canonic decomposition of fsince g' = Ef I IGf is 
5-measurab1e. 
If EQ and FQ commute, using formula 2, section (2): 

(3) EQFQw = E(f F(fw)/Ff)/Ef. 

If w =~ Ef/f , ~ E C-measurab1e, (3) equals to 

(4) E(HGf/Ff) IEf 

Changing in (3), E with F,. for that w we get (3) equal to: 

Since E~ is V-measurab1e,from (4) = (5) we obtain: 

(6) 

If • 

(7) P(BC) 

Gf 
Ef 

E(H/Ff) , 

integrating (6): 

J f Gf dP = ---
Be UFf 

for. E C-measurab1e. 

Y B E 5 , Y C E C . 

Therefore (7) holds replacing BC by any set A E A. Then the 

grand is equ!ll to 1 which implies f = g 'h' , g' = Ef/lGf , h' 
inte-
= Ff/IGr. 

11. GENERATOR INDEPENDENCE. 5 will be said g-independent of C iff 
Y B E 5 (or equivalently, B E 5 - 5 A C) there exists Ee5 a a-al
gebra independent of C and such that V and E generate a a-algebra 
V ~ E that contains B. 
Then U E(B), B E 5 - V, is a family independent of 5 which together 
wi th V generate 5. But that union is a family of g.enerators of a 
a-algebra 5' such that 5 = g(V,5'). g-independence is implied by 
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independence. This section will be devoted to the proof of the fol 
lowing theorem and previous results. We shall pause on same of them 
since they are highly interesting in themselves. 

THEOREM 1. ~) 16 B ~~ g-~ndependent 06 C then EF = FE. 
~~) 16 n doe~ not po~~eMV-atom~ w~th ~e~pect to Band EF = FE then 
B ~~ g-~ndependent 06 c. 
~~~) 16 n doe~ not po~~e~4V-atom~ w~th ~e~pect to B ne~the~ to C and 
EF = FEthen B ~~ g-~ndependent 06 C and C 06 B. 

P~006: i) Given B E B let us see that F lB is V-measur~ble~ Take 
E cB such that V ~ E 3 B. Consider the product (XxY, C x E, P=dxdy), 
(where dxdy stands for the product of two measures represented by dx 
and dy) isomorphic to (n, C ~ E,P). Call B a set in XxV correspond
ing to B. E(. IC) is obtained by integration in. the second variable: 

(") E(lS IC) = f ls(x,y) dy. 

18 is V x E -measurable and therefore (") is a V-measurable function. 
This proves i). Before proving ii) we shall go into auxiliary results 
Theorem 1 was part of {MP2J. Next theorem is due to Maharam (cf.{MJ, 
lemma 1) but the statement is slightly different because it uses the 
idea of conditional atom. 

THEOREM 2. ~) Let (n,M,p) be a p~obab~l~ty ~pace, LcM, a 5-~ubal
geb~a ~uch that M doe~ not conta~n L-atom~. A~~uMe M E M - L. The~e 

ex~~t~ a a-~ubalgeb~a B 06 M, a-~~omo~ph~c to B(O,l),~uch that 
M E g(L,B) and B ~~ ~ndependent 06 L. The~e60~e, g(L,B) = L ~ B 3 M. 
~i) Eve~y homogeneou~ p~obability ~pace i~ a-~~omo~phic (in Boolean 
~~n~e with p~e~e~vat~on 06 mea~u~e) to a (BA,P), P = Lebe~gue mea~u~e. 
iii) A non atomic (i.e. without atom~) p~obability ~pace i~ ~ep~e

~ented in one and only one way a~ a d~~ect ~um L (nA,BA,cAPA) whe~e 
o < cA ~ 1, L cA = 1, and the A's a~e in6in~te ~~d~nal~ 06 di66e~ent 
ca~dinal~ty. 

P~006: i) Given a partition 0 < 2-n < ••• < ki-n < ••• 1, define the 

Then L (n) 
xk pL(M) and (n+l) 

x2k-l + (n+l) 
x2k 

(n) 
xk 

k k-l 
Define M(n)c M - L M~n) verifying pL(M(n» (n) 

k j-l J k xk 

M(n+l) 
2k-l 

+ M(n+l) 
2k 

M(n) 
k 
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This is possible be.cause of theorem 2, section 7. 
Define now the functions n~n)in the same way but in relation to the 

set n - M. So n~n) + x~n) = 2-n , and call .N~n) the sets associated. 

Then the sets ~n) + N~n) are i!1dependent of the algebra L and the 

same is true for the a-algebra B generated by those sets, which is 
isomorphic to B(O,l) as it is easy to see from the construction. 
Let us see that M £ L e B = g(L,B). 

'Calling c~n) = {III; pL (M) ~ k 2-n} , the set T(n) _ r c~n) (M~n) + N~n» 
k 

belongs to g(L,B) and verifies P(M6 T(n» ~ 2-n • 
verification to the reader. From P(M 6 T(n»--+O, 

n 

We leave this easy 
we get i). 

ii) Assume A is the Boolean a-algebra quotient of A with the sets of 
measure zero. Assume also that the generators of A are ordered in 
the same way as that described in tho 1, iii), section 2, and let A 
be the ordinal (the least one with a given cardinality) involved in 
the ordering. 
Call B the Boolean a -algebra associated to B ( n (0,1) (.» and suppos:e 

O~i<j 1 

it is a-isomorphic to a subalgebra L of A, such that L contains at 
least the generators gi ' i < j < A. Since card j < dim A = card A 
from proposition 3, §7, and i), L can be extended to a a-subalgebra 
a-isomorphic to Bj + 1 containing the generator with least index not 
contained in L. 
This implies that A is isomorphic to a 
sible because dim Br= card r. 
tion r ~ A, and therefore r = A. 

On the 
Br.card r < card A is impo~ 
other hand, from the constru£ 

iii) Follows from ii) and theorem 2, §2. QED. 

COROLLARY 1. 16 m i~ zhe dimen~ion 06 the a-atgeb~a M a~~o~iazed 
~. zo (n,M,PI and it ha~ no azom, zhen card M = m 

The proof is left to the reader. We observe only that ii) and th~ 
orem 3, §4, are of similar nature. 

COROLLARY 2. 16 L s {0,n} and M i~ non-atomi~ zhen M ~onzain~ a 
a-~ubatgeb~a i~omo~phi~ zo B(O,l). 

In fact, in this context atom and L-atom are equivalent concepts. 
The corollary follows immediately from i). 

COROLLARY 3. Lez (n,A,PI be a p~ob.abiUzy ~pa~e w.Uhout atom~, B 
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4nd C, a-4ub4tgeb~44 06 A, 4tt 06 zhem komogeneou4, comptezed ~n A 
4uch zhd A .. gIB,CI. 16 EF .. FE 4nd dim B > dim V < dim C zhen B, 
C,V 4nd A 4~e Boote4n a-~40mo~ph~e ZO p~oducz a-4tgeb~44 B2 ' B3 ' 
B4 4nd B1 ' ~e4pecz~vety, ~n 4uch 4 W4y Zh4Z 

81 .. BI n (0,1)(.), x BI n (0,1)(")' x BI n (0,1)(").1 
O!i<~ 1 ~!i<6 1 6!i<y 1 

B2 • BI n x BI n B4 .. BI n 
O!i<~ ~!i<6 ~!i<C\ 

B3 ~ BI n I x BI n I. 
~!i<6 6!i<y 

P~006: With a slight modification the proof of ii) of the preceding 
theorem works to prove the isomorphism of B, C, V with B2, B3, B4 
respectively. For the isomorphism o£ A with B1 it is only necessary 
to demonstrate that the first factor (the last one in B3 is treated 
in the same way) in B2 is independent of B3 • Of this takes care the 
following proposition, which holds in the general settiI\g we proposed 
ourselves along this paper. 

PROPOS)TION 1. 16 EF· FE 4nd B;:,gIV,B.1 w~zh B. ~nde.pendenz 06 V, 
zhen B. ~4 ~ndependenz 06 C. 

P~006: Let Bo £ Bo. We know that G 1 - P(Bo) 1n • 
Bo .. 

If C £ C, 

P~006 06 ~~I 06 zheMem J. Using i) of theorem 2 after replacing M 
by Band l by V we see that for any M £ 8 - V there exists Bo isomo~ 

phic to 8 (0,1) such that 8 0 c::; B and is independent of V. Because of 
proposition 1 it· is independent of C, and this proves ii). 
As a matter of intellectual curiosity we could add the following co 
rollary to theorem 2, (cf. theorem 4, 17). 

PROPOSITION 2. 16 lo,M,PI doe4 noz conz~n 4ny Il,SI-4zom zhen ~I 
06 zheoum 2 hotd4 wah Beg IS,MI. 

It can be proved in the same way as shown before, but we shall not 
prove it since this result will not be used in the sequel. 

DEFINITION: When 60u~ a-4tgeb~44 Bi ' 1-1,2,3,4 4~e ~et4zed 44 ~n 
eo~ott~y 3 w~zh 84 non-~~v~4l we 4h4ll 44y th4Z 82 4nd 83 44Z~46Y 
« ~el4Zlon 06 4p~~0U4 ~ndependenee ~n 4~iez 4en4e. 16 i~ i4 noz 
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knolA'n t:hat: B4 .£4 not: t:1t.£v.£ai.. we. 4hai..i.. 4aIJ t:hat: be.t:tl1e.en B2 and B3 
t:he.Jt~ .£4 4PUIt'£OU4 .£nde.pe.nde.nee.. 
(If B4 = {f/J,o} spurious independence coincides with independence). 

12. DECOMPOSITION OF A. PROBABILITY SPACE. In the usual setting with 
commutation of the associated conditional expectation operators it is 
possible to decompose the space in pieces where there is inclusion, 
or independence or g-independence, beeing only necessary, sometimes, 
to increase V with a partition of ° by sets of B v C • the algebra 
generated by Band C. 
First step: Isolate the atoms of V. On them Band C are independent. 
Second Step: In the complement we still have commutation of the co!. 
responding conditional expectation operators. Isolate the set of V 

where B Co C, maximal with respect to this property. 
Third step: In the remaining part we still have commutation. There, 
isola te the maximal set of V where C c B. 
The three steps are possible because of the results of section 9. 
The remarks of section 8, in particular 3) and 5), are specially 
illuminating at this moment. 
From the results of lemma 3, S8, we see that the V-atomic part with 
respect to B in the set 03 of V that remained after the third step, 
can be put as a union of a denumerable family {Bn} of B A C-atoms 
of B. AdJoin {B} to C, the a-algebra C' = g(C,{B }) commute with 

n n 
B as can be seen from lemma 1 of section 9. Therefore they a~so co~ 
mute on 03. In 04 • 03 - E Bn there not exist V-atoms with re-
spect to B. After adjoining the Bn's to C we have increased "the 
set of 1) where Be C". In fact, C' is obtained from C adj oining sets 
of B: {B n}, in consequence they beiong to V' • B ~ C' and in each 
of them, Be C' .' That is. the V-atoms of B are a hidden form of in
clusion. 
Fourth step: Adjoin to C a denumerable partition by sets of B which 
are conditional atoms of the V-atomic part of B contained in 03. 
The new a-algebra C' generated by those sets together with C commute 
with B. In those sets Be C'. Observe now that in 04 ' B is g-inde
pendent of C (cf. Th. 1, section 11). 

THEOREM 1. A6t:1!.It adjo.£n.£ng t:o C a denume.ltabi..e. 6amaIJ 06 d.£4jo.£nt: 

4e.t:4 0·6 B .£t: .£4 obt:a.£ne.d a a-ai..ge.blta C' eommut:.£ng w.£t:h B 4ueh t:hat: • 

.£n a paltt:.£t:.£on 06 ° blJ 4e.U 06 V' .. B A C',OIt BeC' Olt CeB Olt B 

.£4 .£nde.pendent: 06 C Olt B .£4 g-.£nde.pendent: 06 C'. The. 4e.eond and 

t:h'£ltd 4.£t:uat;.£on·oeeult at: 4e.t:4 06 V • . The. 6.i.1t4t:, 4e.eond and 60Ultt:h 

4.£t:uaUon oeeult at:e.xaet:i..lJ one. 4.e.t: 06 t:he. paltt:.£t:.£on. 
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This theorem was in essence correctly understood in {MP2}. A tech. 
nical mistake brought to the authors to the belief that the V-ato
mic part with respect to B: E Bn ' was V-measurable when EF • FE. 
This is not so as can be easily seen from example V, section 3, were 
the conditional atomic part is reduced to only Qne atom. The sit
uation was still clarified in {HNI , propOSition of §2, where the 
V-atoms of8,with 8 genera1:ed by V and a partition of 8-sets , are 
characterized. 
Fifth step: Repeat the proce~ure of the fourth step in the set 04 
but changing 8 with C' and C with 8. That is, eliminate in 04 the 
V'-atoms of C' adjoinipg to 8 a denumerable partition-of the V'-at~ 
mic part relative to C'-by sets of C' which are conditional atoms. 
Therefore, the new a -algebra 8" commutes with C', 8' • g (8, (C' }), . ,n 
and on 05 • 04 - E C~ ,C' is g-independent of 8' because of the~ 
rem 1 of section 11. Besides all the sets adjoined to 8 or C be~ 

long to 8 v C as well as °3 , 04 and 05. 
mth step: m > 3 is a denumerabie ordinal. Call 8n , Cn the a-alg!, 
bras in the nth step, 3 < n < m; assume they commute and that they 
are obtained from 8, C, adj oining a patti tion P n of sets of 8 V C, 
Pn+1 refining Pn. CalIOn a set in Pn speciallr chosen of'the form 
B.C, BE: 8, C E: C, 0n::l0n+l. 
If m is a limit ordinal define 8 m 
nerated, respectively, by 8n , n < 

Call ° • n (0 : n < m). m n 

and Cm as the limit a-algebras g!, 

m and Cn ' n < Ia. 

If m is not a lim'i t ordinal, and even, adj oin to C._ 1 a denumerable 
partition by sets of 8m~1 of the Vm_1-atomic part of 8._1 contained 
in 0m_l taking care that the sets of the partition be conditional 
atoms. If 0m_1 is void the procedure stops. 
If m is an ordinal and not a limit one, and odd, the construction 
i~ the same changing 8 1 with C 1. In both cases ° is defined m- m- II 

as ° lminus the conditional atomic part. .8bvious.J.y g is of the m- II 

form B.C, and from §9 we see that 8m commutes with Cm. 
Since this is an exhaustion procedure it stops after a denumerable 
family of steps. Then, twopossibilites force the stopping: a) a 

certain om = 0, b) in a certain om the corresponding Vm-atomic part 
is void. In this last case, in that set, there not exist Vm-atems 
with respect to 8 neither to C. That is, the restrictions of 8, m II 

C to ° have no conditional atom with (8 " n ) " (C" n ) • 1) , the 
mil. II 

conditional algebra. Then we have: 

THEOREM 2. A6te.Jr. adj o.in.ing' to C and 8 0. duu.me.Jr.abLe po.Jr.t.it.ion by 
4 et4 06 8 v C they o.Jr.e obta.ined a-aLgebJr.0.4 C' and 8' 4t.iLL c.ommu.t.ing 
4u.c.h that .in eac.h 4et 06 the pD.II,t.it.ion:.i1 one ~6 the La4t two aLg!. 
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b~4~ i~ ~ubo~din4ted to the othe~, o~ ii) B i~ independent 06 C,o~ 

iii) B'i~ g-independent 06 C' 4nd C'i~ g-independent 06 B'. The 
independenee oeeu~~ 4t ~et~ 06 the p4~tition belonging to V. iii) 
oeeu~~ 4t eX4etly one ~et. 

13. G-INDEPENDENCE AND HOMOGENEITY. In this paragraph we shall 
work on the space (O,A,P) withg(B,C) = A andB commuting with C 
is such that on 0, B is g-independent of C and C of B. This is the 
situation at which we arrived in one set of the partition_~ tho 2 

of the preceding s.ection. We sha11 try to go deeper on the struc
ture of the algebras when g-independence in both senses is present. 
A first auxiliary proposi-tion whose easy proof we leave to the l"ead 
er follows next. 

PROPOSITION. Let A I: A,B I: B. 16 B~Ai~ 4n 4tom 06 B " A then 
V1(B.A) i~ 4n 4tom 06 B, a.nd eonve~~ely. 

This proposition is quitegenerai. as is the fo11owing result. 

LEMMA 1. Auume (o,A,P) hu no 4tom in V • B A C, 4nd 4~ 4lw4Y~ 
A • gIB,C), EF • FE. 

The~e exi~t~ 4 6inite p4~tition Ao, ••• Aw 06 0 by ~et~ 06 K (the 
le4~t 64mily eont4ining B 4nd C 4nd elo~ed by di66e~eneu) ~ueh 
th4t on one 06 them, ~4y Ao,B., Co, V. 4~e ~imult4neouAty hOllto
geneou~. 8uidu the a-4lgeb~u: B' • g(B,Ao, ••• ,Aw), 
C' • g(C,Ao, ••• ~) eommute, i.e., F'E' • E'F' • 

. '~006: Call DI the set of V of Maharam's representation with least 
dimension. This set can be identified as the maximal set with least 
dimension. It exists, i.e., is not void, since V is non atomic. 
tet BI be the maximal set with least dimension of 8 A .D1 ; since V 

has no atom neitherB nor C nor A have atoms and the mentioned the 
orem can be applied again to DI because of the proposition proved 
above. Ca11 C1 the maximal set with least dimension of C 1\ BI • 
Next do the same with V andC 1 obtaining D2, and repeat the process. 
It is obtained so a sequence D1::> B1 ::> C1 ::> D2 => B2 => C2 ::> D3 ::> • • •• • 

Let 8i • dim Bi ' Yi = dim Ci • 
From theerem 1, §Z we know that 8n ~ 8n+1 and Yn ~ Yn+1• Because 
of the well-ordering of the ordinals there exists p such that if 

n ~ p, 8n = 8n+I , Yn • Yn+l. Let us see that Dp+l Bp+l = Cp+1 
which wi11 prove the triple homogeneity of that set. From 8p+1 ~ 

~ d~m Dp+1 ~ 8p we have d~m Dp+1 • 8p+1 and since Bp+1is maximal 
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with dimension ap+l we must have Bp+l .. Dp+1' if we know t.hat this 
last set is B-homogenl"ous. But this follows from· the fact that· in 
no· subset of Dp+l the B-dilolension can be less than ap and cannot 
be greater because of what we have already seen. From Cp+lcBp+1C 
cC it. follows in the same way that B +1 is C-homogeneous and . p p 
d~m Bp+l .. Yp - Yp+l and since Cp+l is maximal with dimension Yp+l ' 

we have Cp+l .. Bp+l • Dp+l ' 
Consider now the sets Bl ::;, Cl ::;, B2 ':) ••• ~ Cp ~ Dp+l ' From section 9 
we know that Band g(C,Bl ) cOlDIRute. Since Cl belongs to this last 
algebra g(B,C l ) and g(C,B l ) commute. From Cl £ g(C,B l ) it follows 

.that g(C,Bl,C l ) commutes with g(B,Bl'Cll. Following so we get the 
commutation of g(B,Bl, ••• ,Bp'Cp) with g(C,Bl, ••.• ,Bp,Cp). Since 
Dp+l belongs to both a-algebras it can be added to them. 
Now observe that all the sets Bl' ••• ,Cp,Dp+l ' belOng to K and same 
thing occurs with the sets of the partition that they determine.QED. 

LEMMA 2. i' A £ A: B'. gIB,A', C' • gIC,A'. With aLL gene~aLity 
it hoLd4: 

IB 1\ A' " IC" A' • IB'" C" /\ A. 
ii' Z6 A £ B v C and B eommate4 with C it hotd4 ~he 60LLowing eqaa~ 
ity, whieh i4 6aL4e in gene~aL: 

IB A A' " IC" A' • IB " C, " A. 
iii' Z6 A beLong4 to the anion 06 Band C and they eo~mate: 

I B " C,,, A • I B' " C" '" A. 

P~006: i) follows from the definitions and iii) from this proposition 
and ii). Let us prove ii). The right member is always included in 
the le·ft member. Put H .. Bl.A - Cl.A, Bl £ B, Cl £ C, and assume 
A £ C. Then H £ C and app~ying V2 we obtain: H .. A.V 2Bl • A •. VB l £ 

£ (B /\ C) " A. QED. 

LEMMA 3. Let Ao, ••• ,An be a palttiLi.on06 11, Bi • gIB i _l ,Ai _1,. 
B. • B. i-l,2, ••• ,n+l, C. • gICi·.l,A. 1', C •• C. Auame tJ&at B 

1 - 1-

eommatu with C and that Aj £ Bj U Cj • Thu Bn+l . and Cn+l eommate 

and 111 IBn+l" Cn+1' "An· IB" C, /\ An' 

P1t006: Bjand Cj commute (cf. 19). Consider the equalities: 

(2) (Bk " Ck) A Ak_l .. (B " C) " Ak_1, (Bk " Ck) " Tk • (B " C) A Tk, 
n 

where k"O,l, ••• ,n , Tk .. t~. They hold for n-l because theycoincide 
~k '. 

in this case with iii) of the preceding lemma 2. Intersecting the 
second 'equality with Ak we get: (Bk A Ck) " Ak = (B AC) " Ale' 
Since Ak & Bk IJ Ck, from the preceding lemma we obtain: 
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(Bk+l A Ck+l ) " Ak .. (Bk " Ck) 1\ Ak . 
This and the preceding equality prove the first part of (2) for k+l. 
Intersecting wHh Tk+ l E Bk u ex' we obtain in an analogous way the 
second part of (2) for k+l. Therefore (1) is proved. QED. 

LEMMA 4. Unde~ the hypothe4i4 0' the p~eceding lemma. it hold4: 

i) (Bj " Cj I " Ak - (Bk+i" Clt+l I 1\ Ak 

(Bj A Cjl A Tk+l - (Bk+l A Ck+i' A Tlt+l ' j·O.t ..... k • k·O~ .... n. 

al FM 0 < k ~ n • 0 ~ j ~ k: 

p~oo': i) is proved in the same w_y as the preceding lemma. ii) f01 
lows by induction. Assume for j < h • h < k • that 

(3) (Bb " Cb) f\ Aj = (B " C) 1\ Aj • 

It is immediate that for j < k-t • h ~ k we have: (Bk 1\ Clt ) ~ Aj • 
= (Bk_l 1\ Ck_l ) 1\ Aj • and therefore for these indices we proved ii). 

For j = k - t • it coincides w.ith i). QED. 

THEOREM 1. A44ume that Band C commute, togethe~ gene~ate A. all 
0' them a~e completed in A. 1, n ha4 no atom nn V ~he~e exi4t4 a 
pa~tiao n 1: c A 4u.ch that B - g ( B. 1: I • C .. g (C , 1: I cOllllllute and the 
4et4 06 1: a~e homogel'leou4 'M B. C and ii .. B A C. MMeovU. on 
eae.h A E 1:: (B " C I A A .. (B 1\ C I A A. 8" A .. B f\ A • e A A • C A A. 
wich implie4 that each 4uch A i4 B, C and V-homogeneou4. 

DEFiNITION. Supp04e that in n i4 p~e4ent the u4ual 4etting with 
commutation. 16 A, B. C, V a~e homogeneou4 and dim V .. dim B o~ 
.. dim C then we 4ha.U. 4ay that Band C a.ll:e qU44i-independent. 

Theorem 1 asserts that if there is no atom of V in each set of I 
we have spurious independence or quasi-independence (cf. section 11). 

Applying this to the decomposition in tho 2 of preceding section, 
we obtain: 

THEOREM 2. A6te~ adjoining to Band C a denKme~able pa~tition 0' 
n by 4et4 0' A, they a~e obtained o-algeb~a4 B" and C" 4till com
muting 4uch t:hat in each 4et 0' the pa~tition: il one 0' the two 
algeb~a4 i4 4ubo~dinated (included intol t~ the othe~; iiI B i4 
independent: 06 C; iii I Band C a~e 4t~ictly 4pu~ioU4 independent; 
ivl they a~e qua4i-independent and not independent. The independ-
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uee 0 eeulL.\ a:t .\ e:t.\ 06 :the palL:t.it.i.o n b elo ng.ing :to D. .i' 0 eeulL.\ a:t 
.\e:t.\ 06 B v C belong.ing :to :the palL:t.it:.ion. 

Th. 2 is obtained, as we already said, from. theorem 2 of section 12 
and corollary 3 of section 11, and the preceding theorem applied to 
the g-independentpart of the decomposition of §12 • iv) is a con
sequence of remark 3, §8. It can be questioned if iv) ia a reaso~ 
ably description of the. situation that it tries to isolate. We 
think it is not and,first of all, it does not keep up with i)-iii). 
Observe that subordination could be present and still be descrihed 
as quasi-independence. The matter requires further investigation. 

PIL006 06 :theolLem 1. Applying lemma 1 we find a partition to, finite, 
such that for a certain Vo £ to,B, C, D, are homogeneous and Bo 
= g(B, to) , ~o = geC, to) , commute. On Vo, B = Bo, C= Co, D = D.= 

.. B. 1\ C.. In fact, in the proof of lemma 1 we had to add to Band 
C the partition determined by Bl :> C1 :> ••• ::> Dp+l = Vo which is con
stituted by sets of K, but moreover, this partition satisfies the 
hypothesis of lemma 3 and 4 if we define: Ao = C Bl ' Al = Bl - C1 ' 
A2 = C1 - B2 , ••• , An = Vo• If all the elements of to are homogeneous 
simultaneously the procedure stops and if not we choose J £ to, one 
of the sets not simultaneously homogeneous, and repeat the preceding 
process on it. This provides a new finite partition refining to, 
t l , obtained from to by partitioning of J and such that g(B,t 1) com
mutes with g(C,t 1). On one set of t 1 , VI ' contained in J there is 
simultaneous homogeneity. Using ii) of lemma 4 we see that 

(g (B • t 1) " g (C , t 1)) " VI" (g (B ,t 0) " g (C , to)) 1\ VI = 
• [(g(B,to) " g(C, to)) " J] " VI .. (B A C) /\ VI' Besides since 
Vo " J= _ and Vo £ g(B,t o)" g(C,to)c g(B,t 1) A g(C,t 1), this last 
algebr~intersects Vo in an algebra coinciding with (B A C) AVo. 
Following so we obtain a sequence of partitions to < tl < t2 < •••• 

Call r O .. U t B· = g(B to) C· = g(C, to). From §9, we know that 
n n' " 

the last two algebras commute and trivially it follows that 
(B·" C·)" Xk = (B A C) " Xk for each Xk £ to. On an infinite fam
ily.of Xk there is simultaneous homogeneity. Let them be Hl , H2 , .•.• 
If I P(H.) .. 1 then the theorem is proved. If not,we can repeat the 

1 J 
process subdividing the re~aining sets of the partition, getting so 
a new partition t 1 > to with the same properties as to, and more sets 
Hi ,H2 ' Hj , •••• On a certain (denumerable) step the process 
ends by exhaustion, which proves the theorem. 

14. FINAL REMARK. In the theorem of Burkholder and Chow t'hat we 
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mentioned in the introduction, EF - G or only in the limit, 
lim (EF) n .. G. In fact, (EF) n = G implies EF = G • This follows 
from: in a Hilbert space H, let 5i be a subspace with projector Pi' 
i=1,2; if P1P2f £ 5 - 51 n 52' and f £ 51 then P1P2f • P2f. In fact, 
if n1..l... 51' sl £ 51 and P2f = 51 + n1 ' it fOl~ows. P1P2f .. sl £ 5. 
Ther~fore, if g' .. f - sl ' 1\ g' nlU 2= 1\ g' \I + II n l 11 2 since 
f; ~ n1 £ 51' On the other hand, P2g' .. n1 which. implies 1\ g'U2 .. 

= II n1 1\ 2 + \\g' - nll12. Then n1 = 0, and P2f .. sl .. P1P2f. 
Analogously, F(EF)n .. G implies EF .. G. Prof. R. Maronna observed 
that EF .. FE iff 8 and C are conditionally independent given V. 

22, 
In fact, if EF .. FE, 0 ~ x £ L (8), 0 ~ Y £ L (C), D £ .V, we have: 
fDG(xy) dP .. f EF(l Dxy)dP = jE(l Dy(F(l Dx))dP = f G(l Dx)G(1Dy)dP .. 
.. fDG(x)G(y) dP, and therefore, .G(xy) • G(x)G(y) • Conversely, if 
this equality holds, from f xy dP .. f G(xy) dP .. f G(x)G(y) dP • 
.. f y G(x) dP, we obtain x - Gx ~ L2(C). Then Fx .. Gx, which implies 
FE .. G. 
If all the algebras are completed in A, and Band C are condition
ally independent given E.then E::>V, as it is easy to see ,from 
E(l~/E) .. E(l D/E)2. Therefore, EF .. FE iff Band C are condition
ally ind~pendent with respect to the minimal a-algebra for which 
this is possible. 
Since x - Gx ~ L2(C), then x - Gx~ Y - Gy, then L2(C) 9 L2(V) ~ 
.L~ (B) 9L 2 (V) • . . 
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