Revista de la Unión Matemática Argentina Volumen 24, Número 1, 1968.

PURITY AND ALGEBRAIC CLOSURE

by Enzo R. Gentile

Throughout this paper R denotes an associative ring with identity. We shall study the following properties associated to R. a) the purity of the inclusion $R \subset M$ of R in an injective R-module M

a) the purity of the inclusion KCM of K in an injective K-module m containing it.

b) the algebraic closure of M. Hall, of submodules of free R-modules.c) a weak injectivity property of R as an R-module.

Section 2 contains the main results. In Section 3 we characterize von Neumann rings in terms of purity.

1. PRELIMINAIRES.

i) Purity. Let M and N be right R-modules. An exact sequence $0 \rightarrow N \rightarrow M$ of R-modules will be said pure if for every left R-module A, the induced sequence $0 \rightarrow N \otimes A \rightarrow M \otimes A$ is exact $(\otimes = \bigotimes_R)$. If N is a submodule of M, we say that N is pure in M if the exact sequence $0 \rightarrow N \stackrel{i}{\rightarrow} M$, where i denotes the inclusion map, is pure. Let N be a right R-module. Then the following conditions are easily seen to be equivalent (and we shall therefore say simply that N is pure), 1) N is pure in any injective module containing it 2) N is pure in its injective hull 3) N is pure in any module containing it.

ii) Conditions (h°), (c°), (a°), (b°). Let A be a left (resp. right) R-module and n ϵ N. Aⁿ denotes the left (resp. right) R-module, direct sum of n copies of A. If a ϵ Aⁿ we write a = $[a_1, ..., a_n]$ in terms of its coordinates. With R'ⁿ (resp. R"ⁿ) we denote the previous situation for A = R. Let A be a left R-module. We define a left pairing R"ⁿ x Aⁿ \rightarrow A by r.a = $\sum_{i=1}^{n} r_i .a_i$.

For any non-empty set $S \subseteq R'^n$, S^r denotes the right annihilator of S in R''^n , that is

 $S^{\mathbf{r}} = \{\mathbf{r} / \mathbf{r} \in \mathbb{R}^{n} \text{ and } \mathbf{s}.\mathbf{r} = 0 \text{ if } \mathbf{s} \in S\}$ In analogous way we define the left annihilator $T^{\mathbf{l}} \subset \mathbb{R}^{n}$ of a nonempty set $T \subset \mathbb{R}^{n}$.

According to M. Hall {1}, a submodule S of ${R'}^n$ will be said to be closed if $S = (S^r)^1 = S^{r1} = \overline{S}$. We can now state

CONDITION (h°)₁ : Every finitely generated submodule of R'ⁿ is closed.

CONDITION $(c^{\circ})_1$: Every finitely generated left ideal of R is closed. CONDITION $(c^{\circ})_1$ is the special case of $(h^{\circ})_1$ when n = 1.

Next we define the weak injectivity referred above. This is CONDITION $(a^{\circ})_1$: Every R-homomorphism of a finitely generated left ideal of R, into R, is realized by a right multiplication by an element of R.

CONDITION $(b^{\circ})_1$: Let U and T be left ideals of R, then

$$(U \cap T)^r = U^r + T^r$$
 holds.

We also define analogous conditions for right objects, we write them $(h^{\circ})_{,}$, $(c^{\circ})_{,}$, etc. ...

On restricting the previous conditions to principal ideals or cy clic submodules we introduce conditions $(h^{\circ})_1$, $(h^{\circ})_r$, etc. ...

The following results will be used in the sequel.

PROPOSITION 1.1. (Ikeda-Nakayama {2}, Th. 1). The following implications hold in R:

 $\begin{array}{l} i & (a^{\circ \circ})_{1} < \longrightarrow & (c^{\circ \circ})_{r} \\ ii & (a^{\circ})_{1} < \longrightarrow & (b^{\circ})_{1}, & (c^{\circ \circ})_{r} \end{array}$

PROPOSITION 1.2. ({3}) 1, §2, Exer. 24). Let M be a right R-module and M' a submodule of M. Then M' is pure in M if and only if for any set of elements $m_i \in M'$, $x_j \in M$, $r_{ij} \in R$ (i=1,...,m;j=1,...,n) such that

 $m_{i}^{\prime} = \sum_{j=1}^{n} x_{j} \cdot r_{ij}$ there exist elements $x_{j}^{\prime} \in M^{\prime}$, j=1,...,n satisfying $m_{i}^{\prime} = \sum_{i=1}^{n} x_{i}^{\prime} \cdot r_{ii}$

As an immediate consequence of Prop. 1.2 we have the following

PROPOSITION 1.3. Let R_r be an injective hull of R, as right R-modules. Assume that R is pure in R_r . Then any homomorphism $\mu: U \rightarrow R$ of a finitely generated submodule U of R^{n} into R admits an extension to R^{n} .

Proof: Clearly μ admits an extension to $\mu': {R''}^n \to R_r$. Therefore if u_1, \ldots, u_m denote a set of generators of U and e_1, \ldots, e_n the canonical basis of ${R''}^n$, we have

 $\mu(u_i) = \sum_{j=1}^n \mu'(e_j) \cdot r_{ij} \qquad i=1,...,m$ By the purity of R in R₁ there exist elements x'_i , j=1,...,n in R satisfying

$$\mu(u_i) = \sum_{j=1}^{n} x_j' \cdot r_{ij}$$
 i=1,...,m

Consequently the mapping defined by

 $e_j \rightarrow x'_j$

gives an extension of μ .

PROPOSITION 1.4. Let A be a left R-module. Then A is injective if and only if every homomorphism $U \rightarrow A$ of a submodule U of R'ⁿ into A is realized by an element of A^n , that is, there exists $y \in A^n$ such that $\mu(u) = u.y$ for all $u \in U$.

2. MAIN RESULTS. Let R_{\perp} denote an injective right R-module containing R

THEOREM 1. The following implications hold in R: R is right pure in $R_r \iff$ $(h^\circ)_1 \implies$ $(h^{\circ\circ})_1 \iff$ $(a^\circ)_r$

Proof: R is right pure in $R_r \longrightarrow (h^{\circ})_1$ Let H be a finitely generated submodule of R'ⁿ and let

$$z'_{i} = [z_{1i}, ..., z_{ni}] \in R'^{n}$$
, $i=1, ..., m$

be a set of generators of it. Let $a = [a_1, \ldots, a_n] \in \mathbb{R}^{n}$ be an element of \mathbb{H}^r , that is, such that

(1) $u \in {\mathbb{R}'}^n$, $z_i \cdot u = 0$, $i=1,\ldots,m \implies a \cdot u = 0$

Let H'' be the submodule of ${R''}^n$ generated by the vectors

 $z_{i}^{!} = [z_{i1}^{!}, \dots, z_{im}^{!}]$, $i=1, \dots, n$

Then (1) says precisely that

$$\mu: z' \rightarrow a_i$$

defines a homomorphism

 $\mu: H'' \longrightarrow R$

There exists then by Prop. 1.4, $b = [b_1, \ldots, b_m] \in R_r$ satisfying

$$z = \mu(z_{i}^{*}) = b.z_{i}^{*}$$
 i=1,...,n

By the purity of R in R, we find u ϵ R'ⁿ with

$$i = u.z_{i}^{t}$$
 $i = 1, ..., r$

-40-

that is

 $a_i = \sum_{j=1}^{m} u_j \cdot z_{ij}$ or $a = \sum_{j=1}^{m} u_j \cdot z_j$ which amounts to saying that a ε H, as we wanted to prove. $(h^{\circ})_{1} \longrightarrow R$ is right pure in R_{r} . Let $a_i \in R$, $z_i \in {R'}^n$, $u \in R_r^n$, i=1,...,m satisfy (2) $a_i = u.z_i$ i=1,...,m If $b \in R^{m}$ satisfies $z_i^* \cdot b = 0$, then by (2) we have $a \cdot b = 0$ and by condition $(h^{\circ})_{1}$ we have that there exist r, ε R, i=1,...,m $a = \sum_{i=1}^{m} r_i \cdot z_i'$ with that is $a_{i} = r.z_{i}$ i=1,...,mwith $r = [r_1, \ldots, r_n]$. This proves our claim. $(h^{\circ})_{1} \longrightarrow (h^{\circ \circ})_{1}$ is trivial. Finally we prove the equivalence $(h^{\circ \circ})_1 \iff (a^{\circ})_r$ $(h^{\circ\circ})_1 \longrightarrow (a^{\circ})_r$ Let I = $\langle a_1, \ldots, a_n \rangle$ be a right ideal of R generated by a_1, \ldots, a_n . Let $\phi: I \longrightarrow R$ be a homomorphism of I into R, as right R-modules. Let $b_i = \phi(a_i)$, i=1,...,n. Since ϕ is a homomorphism, for any t_1, \dots, t_n in R $\sum_{i=1}^n a_i \cdot t_i = 0 \implies \sum_{i=1}^n b_i \cdot t_i = 0$ This means that $[b_1,\ldots,b_n] \in [a_1,\ldots,a_n]^{r_1} = \langle [a_1,\ldots,a_n] \rangle$. So there is $k \in R$ satisfying $\begin{bmatrix} b_1, \dots, b_n \end{bmatrix} = k \cdot \begin{bmatrix} a_1, \dots, a_n \end{bmatrix}$ that is $\phi(a_i) = b_i = k.a_i$ and this proves (a°). $(a^{\circ})_{r} \longrightarrow (h^{\circ \circ})_{1}$ This implication will be proved following the scheme of the proof of Th. 5.1 in {1}. We recall that by PROP. 1.1 (or its dual), $(a^{\circ})_{r} \longrightarrow (b^{\circ})_{r}, (c^{\circ \circ})_{1}$. Let S be a submodule of R^{, n} generated by a₁,...,a_n. The proof will proced by induction on n. For n = 1, S is a prin cipal left ideal of R and by $(c^{\circ \circ})_1$ we have that $S = \overline{S}$. Let $2 \le n$ and assume that every cyclic submodule of R', (n-1) is closed. Let $T_{1} = \{ [x_{1}', 0, \dots, 0] \in \mathbb{R}^{n} / a_{1} \cdot x_{1}' = 0 \}$ $T_{2} = \{ [0, x'_{2}, \dots, x'_{n}] \in R''^{n} / a_{2} \cdot x'_{2} + \dots + a_{n} \cdot x'_{n} = 0 \}$ Clearly $T_1, T_2 \subset S^r$

Then for every $\mathcal{U} = [u_1, \ldots, u_n] \in \overline{S}$ we have $\mathcal{U} \in T_1^1$, so $u_1 \cdot x_1' = 0$ and by the closeness of $\langle a_1 \rangle$ we get $u_1 = t \cdot a_1$, $t \in \mathbb{R}$. Now $U - t[a_1, \ldots, a_n] = [0, v_2, \ldots, v_n] = V \in \overline{S} \subset T_2^1$. By the closure of the principal left submodule generated by $[a_2, \ldots, a_n]$ we have

$$[0, v_2, \dots, v_n] = r[0, a_2, \dots, a_n]$$

Let $I_1 = \langle a_1 \rangle$, $I_2 = \langle a_2, \dots, a_n \rangle$. Then we $I_1 \cap I_2$ if and only if there exist $x_1, \dots, x_n \in R$ such that

$$w = a_1 \cdot x_1 = -(a_2 \cdot x_2 + \dots + a_n \cdot x_n)$$

But

$$V = [0, r.a_2, \dots, r.a_n] \in \overline{S}$$
 and $w \in I_1 \cap I_2$ as above

give

$$0 = r.a_2.x_2 + ... + r.a_n.x_n = -r.a_1.x_1$$

that is

$$r \in (I_1 \cap I_2)^1$$

and since we have condition $(b^{\circ})_{1}^{}$, r can be written as

$$m_1 + m_2$$
, $m_i \in I_i^1$, $i=1,2$

Hence

$$= [0, r.a_{2}, \dots, r.a_{n}] = [0, m_{1} \cdot a_{2}, \dots, m_{1} \cdot a_{n}]$$
$$= m_{1} \cdot [a_{1}, \dots, a_{n}]$$

and

$$U = V + t.[a_1, ..., a_n] = (m_1 + t).[a_1, ..., a_n] \varepsilon S$$

Theorem is now proved.

AN EXAMPLE.

Let R be a right Ore domain (that is, a ring without zero divisors # 0 and with the right common multiple property). Then if h(R) is the injective hull of R, h(R) carries a ring structure which makes it isomorphic to the left field of quotients of R. Clearly R is right pure in h(R) if and only if h(R) = R is a division ring. More generally, for any $n \in N$, $M_n(R)$ is right pure in $M_n(h(R))$ if and only if R = h(R), $(M_n()$ denotes the full ring of matrices). In fact, if $M_n(R)$ is right pure in $M_n(h(R))$, then by THEOREM 1, $M_n(R)$ satisfies condition $(a^\circ)_r$. But this readily implies that condition $(a^\circ)_r$ holds in R. We are done, since a ring without zero divisors # 0 and satisfying $(a^\circ)_r$ is necessarily a division ring.

THEOREM 2. Let R be a left semihereditary ring. Then

 $(a^{\circ})_{1}, (c^{\circ})_{1} \longrightarrow (h^{\circ})_{1}$

Proof: Let S be submodule of R'n generated by the vectors

$$A_{i} = [a_{i1}, \dots, a_{in}]$$
 i=1,...,s

Let S° be the submodule of S consisting of all vectors with 0 in the first component. Then

LEMMA 1. S° is finitely generated

Proof: Let

 $A = [a_{11}, a_{21}, \dots, a_{s1}] \in R''^{s}$

and assume, for the time being, that the left annihilator of A in R'^s be generated by

$$B^{i} = [b_{1}^{i}, \dots, b_{s}^{i}] \qquad i=1, \dots, m$$

Then if $x \in S^{\circ}$ we have ying

$$\mathbf{x} = \sum_{i=1}^{s} \mathbf{r}_{i} \cdot \mathbf{A}_{i} = [0, \sum_{i=1}^{s} \mathbf{r}_{i} \cdot \mathbf{a}_{i2}, \dots, \sum_{i=1}^{s} \mathbf{r}_{i} \cdot \mathbf{a}_{in}]$$

therefore

$$[r_1, \dots, r_s] = \sum_{j=1}^m t_j . B^j \qquad t_j \in R$$

that is

$$\mathbf{r}_{\mathbf{k}} = \sum_{j=1}^{m} \mathbf{t}_{j} \cdot \mathbf{b}_{\mathbf{k}}^{j}$$
 k=1,...,s

But then

$$\mathbf{x} = \sum_{k=1}^{s} \mathbf{r}_{k} \cdot \mathbf{A}_{k} = \sum_{k=1}^{s} (\sum_{j=1}^{m} \mathbf{t}_{j} \cdot \mathbf{b}_{k}^{j}) \cdot \mathbf{A}_{k}$$
$$= \sum_{j=1}^{m} \mathbf{t}_{j} \cdot (\sum_{k=1}^{s} \mathbf{b}_{k}^{j} \cdot \mathbf{A}_{k})$$

We now claim that

 $A_{i} = \sum_{k=1}^{s} b_{k}^{j} A_{k} \qquad j=1,...,m$

generate S[°]. In fact, notice that x was an arbitrary element of S[°] and that the first component of A'_i is $\sum_{k=1}^{s} b^j_k a_{k1} = 0$ Our claim follows.

Now, in order to complete the proof of Lemma 1 we need to prove that we can assume that the left annihilator of A in R^{, n} is finitely generated. For this we shall use the hypothesis that R is a left semihereditary ring. Let F be a free left R-module generated by f_1, \ldots, f_s and $0 \rightarrow K \rightarrow F \xrightarrow{\phi} L \rightarrow 0$ be an exact sequence where L is the left ideal of R generated by a_{11}, \ldots, a_{s1} and ϕ be the homomorphism defined by ϕ : $f_j \rightarrow a_{j1}$. Notice that K is isomorphic to the left annihilator of A in R's. Since L is projective, that sequence splits and K is then a direct summand of a finitely generated R-module, there fore is finitely generated. This ends the proof of Lemma 1.

$$k = 1, \ldots$$

$$r_{i}.A_{i} = [0,\sum_{i=1}^{s}]$$

$$r_1, \dots, r_s \in R$$
 satisf
 $A_i = [0, \sum_{i=1}^s r_i \cdot A_{i2}]$

We proceed the proof of THEOREM 2 by induction in the length of the vectors in S. If n = 1, then S is a finitely generated left ideal of R, and so by condition $(c^{\circ})_1$ is closed. Let 2 \leq n and assume that every finitely generated submodule of R'⁽ⁿ⁻¹⁾ is closed. In particular, the submodule $B \subset R'^{(n-1)}$ associated to S°, dropping the first coordinate of the elements in S°, is closed. Next we need to prove another partial result

LEMMA 2. If
$$[x'_2, \ldots, x'_n] \in B^r$$
, then there exists $x_1 \in R$ such that $[x_1, x'_2, \ldots, x'_n] \in S^r$

Proof: Let $r_1, \ldots, r_s \in R$ satisfy $\sum_{i=1}^{s} r_i \cdot a_{i1} = 0$. Then

$$\sum_{i=1}^{s} \mathbf{r}_{i} \cdot \mathbf{A}_{i} = \left[0, \sum_{i=1}^{s} \mathbf{r}_{i} \mathbf{a}_{i2}, \dots, \sum_{i=1}^{s} \mathbf{r}_{i} \mathbf{a}_{in}\right] \in S^{\circ}$$

and by the hypothesis we have

$$D = \sum_{k=2}^{n} \sum_{i=1}^{s} r_{i}a_{ik} \cdot x'_{k}$$
$$= \sum_{i=1}^{s} r_{i} \cdot \sum_{k=2}^{n} a_{ik}x'_{k}$$

which says that

$$a_{i1} \rightarrow \sum_{k=2}^{n} a_{ik} x_{k}'$$

defines an R-homomorphism of the left ideal generated by a;1,i=1,..,s into R. By property $(a^{\circ})_1$ there is $-x_1 \in R$ realizing ϕ , that is

$$a_{i1}x_1 + a_{i2}x_2' + \dots + a_{in}x_n' = 0$$
 i=1,...,s

and this ends the proof of LEMMA 2.

To complete the prcof of THEOREM 2 we follow the scheme of proof of THEOREM 5.2 of {1}. Let $\mathcal{U} = [u_1, \dots, u_n] \in S$. S^r contains all those vectors

 $[x_1, 0, \dots, 0]$ such that $a_{i1}x_1 = 0$, $i=1, \dots, s$

Therefore

 $x_1 \in \langle a_{11}, a_{21}, \dots, a_{s1} \rangle^r$ $u_1 \in \langle a_{11}, a_{21}, \dots, a_{s1} \rangle^{r1} = \langle a_{11}, a_{21}, \dots, a_{s1} \rangle$

(by condition (c°),),

S_o,
$$u_1 = r_1 a_{11} + \dots + r_s a_{s1}$$
, $r_i \in R$
Let $U' = \sum_{i=1}^{s} r_i A_i$
 U' belongs to S and moreover $V = U - U' = [0, v_2, \dots, v_n] \in \overline{S}$

satisfies

(')

$$v_2 x_2 + \ldots + v_n x_n =$$

for any $[x_1, x_2, \ldots, x_n] \in S^r$.

Let \mathcal{D} denote the submodule of $\mathbb{R}^{r(n-1)}$ of all elements x_2, \ldots, x_n for which there is $x_1 \in \mathbb{R}$ satisfying $[x_1, x_2, \ldots, x_n] \in S^r$.

Clearly we have $\mathcal{D} \subset \mathcal{B}^r$. But by LEMMA 2, $\mathcal{B}^r \subset \mathcal{D}$. So $\mathcal{D} = \mathcal{B}^r$.

Furthermore $[v_2, \ldots, v_n] \in D^1 = B^{r1} = B$ according to the inductive hypothesis. Of course we need to know that B is finitely generated, but this follows from LEMMA 1 and the definition of B.

We have then that $[0, v_2, \dots, v_n] \in S^{\circ} \subset S$ and finally

 $u = v + u' \in S$

This means that $\overline{S} \subset S$ and THEOREM 2 is proved.

COROLLARY. Let R be a left and right semihereditary ring. Assume that $(c^{\circ})_{1}$ and $(c^{\circ})_{r}$ holds. Then $(a^{\circ})_{1} < \Longrightarrow (a^{\circ})_{r}$.

Proof: Assume that $(a^{\circ})_1$ holds. Then

 $(a^{\circ})_{1} \iff (h^{\circ})_{1}$, by Theorem 2 $\implies (h^{\circ \circ})_{1}$ $\implies (a^{\circ})_{\mathbf{r}}$, by Theorem 1

The other implication follows in the same way.

3. VON NEUMANN RINGS.

In this section we give characterizations of von Neumann rings in terms of purity. We recall that a von Neumann ring is a ring R satis fying: for every a ϵ R there is x ϵ R such that a.x.a = a

We shall say that a ring is absolutely flat (resp. pure) if any right R-module is flat (resp. pure).

THEOREM 3. Let R be a ring. The following conditions are all equivalent:

- a) R is absolutely pure
- b) R is a von Neumann ring
- c) R is absolutely flat

d) every cyclic right R-module is pure

Proof: a) \implies b) Let $z \in R$. Then the right ideal z.R is pure in R. Since R has identity we can write z = 1.z. By the purity there is $x \in R$ such that z = (z.x).z as we wanted to prove.

0

b) \implies c) is a well known result c) \implies d) and c) \implies a) are clear

Let I be a right ideal of R, a \in R and ϕ : $\langle a \rangle \rightarrow R/I$ be a homomorphism of the right ideal $\langle a \rangle$ generated by a into the cyclic module R/I. Let S be an injective right module containing R/I. There exists s \in S satisfying

and since R/I is pure in S, we can find $c \in R/I$ such that

$$\phi(a) = c.a$$

This means that ϕ can be extended to a homomorphism of R into R/I. Being I and a ε R arbitrary we can apply Th. 3 of {2} to conclude that R is a von Neumann ring.

Proof of Theorem 3 is now complete.

d) \implies b)

REMARK 1. Using the absolute purity of von Neumann rings, as shown in THEOREM 3, we can give an immediate answer to a question posed in {4 }, \$25.(1). Namely: Let A be a right R-module, where R is a von Neumann ring. Suppose that A is generated by n elements. Then every finitely generated submodule of A is generated by n elements. In fact, let A' be a finitely generated submodule of A, a_1, \ldots, a_n a set of generators of A and a'_1, \ldots, a'_m a set of generators of A'. We have $r_{ii} \in R$ satisfying

 $a_i^{\prime} = \sum_{j=1}^{n} a_j \cdot r_{ji}$, i=1,...,mBeing A' pure in A there exist $x_i^{\prime} \in A'$, j=1,...,n satisfying

 $a_{i}^{!} = \sum_{j=1}^{n} x_{j}^{!} \cdot r_{ji}$ Clearly, x'_i is a set of generators of A'. Next we characterize those right semihereditary rings which are von Neumann rings.

LEMMA. (Compare {3}, Chap. I, §2, Exer. 18 a)). Let R be a right semihereditary ring and let B be an injective right R-module containing R such that R is pure in B. Then any finitely generated submodule of a projective right R-module is a direct summand of it.

Proof: Let P be a projective right R-module and let M be a finitely generated submodule of it. Without loss of generality we can assume that P is finitely generated and free. In fact, if F is a free module of which P is a submodule then we can write $F = F_1 \oplus F_2$, with F_1 free, finitely generated and containing M. If M is a direct

summand of F_1 , it is also a direct summand of F and therefore of P. Being R right semihereditary, M is a projective module. Let a_1, \ldots, a_n be elements of M and ϕ'_1, \ldots, ϕ'_n mappings of M into R, satisfying

$$\mathbf{a} = \sum_{i=1}^{n} \mathbf{a}_{i} \cdot \mathbf{\phi}_{i}'(\mathbf{a})$$

for every $a \in M$.

Since R is pure in B, by PROP. 1.3, the mappings ϕ_i can be extended to mappings $\phi_i: P \to R$. Let $\phi: P \to M$ be the mapping defined by $\phi: x \to \sum_{i=1}^{n} a_i \cdot \phi_i(x)$

Clearly ϕ defines a projection of P onto M. M is then a direct summand of P.

REMARK 2. The previous Lemma permits to give an immediate answer to a question posed in $\{4\}$, \$25.(1). Namely, let R be a von Neumann ring. Then if every torsion free R-module is projective, R is a left self-injective ring. In fact, let h(R) be an injective hull of R. Then h(R) is torsion free, therefore it is projective. Let $I = \langle e \rangle$ be a principal non-zero left ideal of R, e an idempotent. By the previous Lemma I is a direct summand of h(R) and so I is injective. Since I was arbitrary, we have also that $J = \langle 1-e \rangle$ is injective. Therefore $R = I \oplus J$ is injective as we wanted to prove.

THEOREM 4. Let R be a ring. Then R is a von Neumann ring if and only if R is right semihereditary and pure (in some injective right R-module containing it).

Proof: Apply the previous Lemma to P = R to get that every finitely generated right ideal of R is a direct summand of R. This is enough to assure that R be a von Neumann ring.

Base in the same Lemma we have

PROPOSITION 3.1. Let R be a ring. Then R is a von Neumann ring iff R is right semihereditary and satisfies condition $(a^{\circ})_{-}$

Proof: To prove part "if" we proceed as in the proof of the Lemma applied to the situation P = R and using condition $(a^{\circ})_{r}$ to extend the mappings $\phi'_{!}$.

COROLLARY. Let R be a left noetherian, left hereditary ring sat

isfying condition (a°). R is then a semisimple (d.c.c.) ring.

Proof: According to a result by L.W. Small ({5}, COROLLARY 3) the two first hypothesis imply that R is right semihereditary. Condition $(a^{\circ})_{r}$ and the previous proposition prove our claim, since a left noetherian von Neumann ring is necessarily semisimple (d.c.c.).

REFERENCES

- Marshall Hall. A Type of Algebraic Closure. Annals of Mathematics 40 (1939), 360-369.
- 2. M. Ikeda and T. Nakayama. On Some Characteristic Properties of Quasi-Frobenius and Regular Rings. Proceedings of the A.M.S 5 (1954), 15-19.
- 3. N. Bourbaki. Algebre Commutative. Chap. I and 2. (1961) Hermann, Paris.
- 4. R.S. Pierce. Modules over Commutative Regular Rings. American Mathematical Society Memoir 70 (1967).
- 5. L.W. Small. Semihereditary Rings. Bulletin of the A.M.S. 73 (1967) 656-658.

UNIVERSIDAD NACIONAL DE BUENOS AIRES BUENOS AIRES ARGENTINA