
Revista de 1a 
Uni6n Matemitica Argentina 
Vo1umen 24, Numero 1, 1968. 

PURITY AND .ALGEBRAIC CLOSURE 

by Enzo R. Gentile 

Throughout this paper R denotes an associative ring with identity. 
We shall study the following properties associated to R. 
a) the puri tyof the inclusion ReM of R in an inj ective R-module M 
contai"ning it. 
b) the algebraic closure of M. Hall, of submodulesof free R-modules. 
c) a weak injectivity property of R as an R-module. 

Section 2 contains the main results. In Section 3 we characterize 
von Neumann rings in terms of purity. 

1. PRELIMINAIRES. 
i) PUrity. Let M and N be "TightR-modules. An exact sequence 

o -+ N -+ M of R-modules will be said pure if for every left R-module 
A, the induced sequence 0 -+ N 8 A -+ M 8 A is exact (8 = 8R). If N 
is a submoduleof M, we say that N is pure in M if the exact sequence 
o -+ N -! M , where i denotes the inclusion map, is pure. Let N be 
a right R-module. Then the following conditions are easily seen to 
.be equivalent (and we shall therefore say simply that N is pure), 
1) N is pure in any injective module containing it 
2) N is pure in its injective hull 
3) N is pure in any module containing it. 

ii) Conditions (hO), (CO), (aO), (bO). Let A be a left (resp. 
right) R-module and n £ N. An denotes the left (resp. right) R-mod
ule, direct sum of n copies of A. If a £ An we write a .. [a I ,·· ,an] 
in terins of its coordinates. With R,n (resp. R"n) we denote the 
previous situation for A = R. Let Abe a left R-module. We define 
a left pairing R"n x An -+ A by r.a = I~_Iri.ai' 

For any non-empty set seR,n, Sr denotes the right annihilator of 
S iri R"n, that is 

sr = {r / r £ R"n and s.r = 0 if s £ S} 
In analogous way we define the left annihilator TIc R,n of a non

empty set Te R"n. 
According to M. Hall {1} , a submodule S of R' n will be. said to 

be closed if S = (Sr)l = srI S We can now state 

Every finitely generated submodule of R,n is ewsed. 
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CONDITION (cO)I: Every finitely generated left ideal of R is closed. 
CONDITION (cO)1 is the special case of (hO)1 when n = 1. 

Next we define the weak injectivity referred above. This is 
CONDITION (aO)I: Every R-homomorphism of a finitely generated left 
ideal of R, into R, is realized by a dght multiplication by an el 
ement of R. 
CONDITION (bO)I: Let U and T be left ideals of R, then 

(U n Tf = U r + T r holds. 

We also define analogous conditions for right objects, we write 
them (hO) , (CO) , etc •••• 

r . r 
On restricting the previous conditions to principal ideals or c~ 

clic submodules we introduce conditions (hOO)I' (hOO)r' etc. 
The following results will be used in the sequel. 

PROPOSITION 1.1. (Ikeda-Nakayama {2}, Th. 1). The 60llow.irtg .implf 
eazion~ hold in R: 
i I (a 00) 1 <=> 

al (aO)I< > 

(COO)r 
(b 0) l' (c 00) r 

PROPOSITION 1.2. ({3}) 1, §2, Exer. 24). Lez M be. It Jt.i.ght.R-module 
and 1.1' a ~ubmodule 06 M. Then M' i~ pUAe in M i6 and only i6 6011. 
any ~ez 06 element~ ml.! e: lof', x. e: M, r .. e: R (i=l ••••• m;j-l, ••• ,n)· 

J l.J 
~ueh thltz 

As an immediate consequence of Prop. 1.2 we hav~ the following 

PROPOSITION 1.3. Lez R be an injeet.ive hull 06 R. a~ Aight R-mo-
r 

dule~. A~~ume thaz R i~ pUAe in Rr • Then any homomoAphi~m 
II: U --+ R 06 a 6inizely geneAated ~ubmodule U 06 R"n in.to It admit~ 
an ex.te.n~icm zo R"n. 

P1l.006: Clearly II admits an extension to II': R"n --+ Rr • Therefore 
if ul, ••. ,um denote a set of generators of U and el, ••• ,enthe ca
nonical basis of R"n, we have 

Il(u i ) = rj.l Il'(e j ).rij i"l, ••. ,m 

By the purity of R i'n R there exist elements x! , j .. 1, •••• n in R 
r J 
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satisfying 

\I (ui ) = Vi.l xj .rij 

-Consequently the mapping defined by 

ej -+ xj 

gives an extension of II. 

i=l, ••• ,m 

PROPOSITION 1.4. Let: A be a le6.t R-module. Then A .i4 .injec..t.ive 
.i6 and only .i6 eve~y homo~0~ph.i4m U -+ A 06 a 4ubmodule U 06 R,n 
.in.to A .i4 ~eal.ized by an elemen.t 06 An, .tha.t .i4, .the~e ex.i4.t4 y & An 
4uc.h .tha.t II(U) = u.y 60~ all u &U. 

2. MAIN RESULTS. 
Let Rr denote an injective right R-module containing R 

THEOREM T. The 60llow.ing .impl.ic.a.t.ion4 hold .in R: 
R .i4 ~.igh.t pu~e .in Rr <==? 

(hO) I => 

(hO 0) 1 <==? 

(aO)r 

P~006: R is right pure in Rr ==>(hO)1 
Let H be a finitely generated submodule of R,nand let 

Z! = [zl" ... 'z .1 & R,n 
1 1 n1 

i=l, ••• ,m 

be a set of generators of it. Let a = [a1, •.• ,an1 & R,n be an ele
ment of Hr, that is, such that 

(1) U & R,n, z .• u = 0, i=l, .•• ,m =-=:. a.u = 0 
1 . 

Let H" be the submodule of R"n generated by the vectors 

zi = [Zil'···'Zim] 

Then (1) says precisely that 

defines a homomorphism 

\I: H" ....... R 

, i=l, ••• ,n 

There exists then by Prop. 1.4, b = [b1, .•• ,bml & Rr satisfying 

i=l, ••• ,n 

By the purity of R in Rr we find u & R,n with 

u.Zi i=l, ••. ,m 
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thj1t is 
m m = l = l a. j-l u .• z .. or a j~l u .. Z. 

1 J 1J J J 

which amounts to saying that a £ H, as WEt wanted fo prove. 

(hQ) 1=> R is right pure in R r 
Let a. £ R, z. £ 

R,n u £ Rn , i=l, ..• ,m satisfy 
1 1 

, r 
(2) a. = u,z i i=l, •.• ,m 

1 

If b £ R"m satisfies zi.b = 0, then by (2) we have a.b = 0 and 
by condition (hO)l we have that there exist r i £ R, i=l, •.• ,m 

with a = l ~-l ri·zi 

that is ai=r.zi i=l, ..• ,m 

with r = [rl, .•. ,rn]. This proves our claim. 

(hO)l =>(hOO)l is trivial. 

Finally we prove the equivalence (hOO)l<=>(aO)r 
(hOO)l => (aO)r 

Let I = (al , ... , an> be a right ideal of R generated by a l , ... ,an' 
Let ,: I -+ R be a homomorphism of 1 into R, as right R-modules. 
Let bi = ,(ail, i=l, ••• ,n. Since, is a homomorphism, for any 

tl, ... ,tn in R 

This means that 
So there is k £ 

l~_l ai·t i 0 ='>l~_l bi.t i = 0 

[b1,· .. ,bn] £ [a1,· .. ,an]rl <[al,· .. ,anJ>· 
R satisfying 

tbl,· .. ,bn] = k.[al,· .. ,an] 

that is ,(ail = bi = k.a i 
and this proves (aO)r' 

(aO)r => (hOO) 1 

This implication will be proved following the scheme of the proof 
of Th. 5.1 in {l}. We recall that by PROP. 1.1 (or its dual), 
(aO)r =>(bO)r,(cOO)l' Let S be a submodule of R,n generat'ed by 

al,···,an · 
The proof will proced by induction on n. For n = 1 , S is a pri!!. 

cipal left ideal of R and by (cOO)1 we have that S = S. ~et 2 ~ ~ 
and assume that every cyclic submodule of R' (n-1) is closed. Let 

TI {[x1,0, .•. ,0] £ R"n / al.xi = O} 

T2 = {[O,x;, ... ,x~] £ R"n / a 2 .x; + ••• + an'x~ O} 

Clearly T l' T 2 c: Sr _ 1 
Then for every U = [u l , .•. ,un} £ S we have U £ T l' so ul.xi 0 

and by the closeness of <al> we get u l = t.a l ' t £ R. 
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Now U - t[al •..•• an] = [o.v2 •••• vn] = V £ S c::: T~. By the closure 
of the principal left submodule generated by [a2 •.••• an] we have 

[o.v2•••• .vn] = r[O.a2 •·•• .an] 

Let 11 = <al ) • 12 = (a2 •...• an>. Then w £ 11 n 12 if and only 
if there exist xl ••••• xn £ R such that 

w ='al.xl = -(a2.x2 + ••• + an.xn) 

But 

give 

that is 

and since we 

Hence 

and 

r £ (11 n 1 )1 
2 

have condition (bO) 1 • r can be written as 

r '" ml + m2 • mi £ I~ • i=1.2 
1 

v = [O.r.a2 •.••• r.an] = [O.ml .a2 •.••• ml .an] 

ml·[al·····an] 

U • V + t.[al ••••• anI = (m l + t).[al •...• an]£ s 
Theorem is now proved. 

AN EXAMPLE. 

Let R be a right Ore domain (that is. a ring without zero divisors 
rJ 0 and with the right common multiple property). Then if heR) is 
the injective hull of R. heR) carries a ring structure which makes 
it isomorphic to the left field of quotients of R. Clearly R is 
right pure in heR) if and only if heR) = R is a division ring. More 
generally. for any n £ N. Mn (R) is right pure in Mn (h (R)) if and 
only if R = heR). (Mn( ) denotes the full ring of, matrices). In fact, 
if Mn(R) is right pure in Mn(h(R)). then by THEOREM 1. Mn(R) sat
isfies condition (aO)r. But this readily implies that condition 
(aO) holds in R. We are done. since a ring without zero divisors r 
rJ 0 and satisfying (aO) is necessarily a division ring. r 

THEOREM 2. L~~ R b~ 4 te6~ ~emihe~edi~4~Y ~ing. Then 

(aO)l' (cO)l =>(hO)l 
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P~oo6: Let S be submodule of R,n generated by the vectors 

i=l, ..• ,s 

Let S· be the submodule of S consisting of all vectors with 0 in 
the first component. Then 

LEMMA 1. S· ~4 6~n~te!y gene~ated 

P~oo6: Let 

A = Lall,a21, ••• ,aslJ £ R" s 

and auume. for the time being, that the left annihilator of A in 
R's be generated by 

i=l, .•• ,m 

Then if x £ S· we have r 1 •.•. ,rs £ R satisfying 

x = E ~-1 ri·A i = [O,E~.l ri·ai2,···,E~_1 ri·ainJ 

therefore 

that is 

k= 1 , •••• s 

But then 

E 
S 

rk·Ak = E S Em tj .bV .Ak x = k-l k-l ( j-l 

= E 
m 

tj • CE s b~.Ak) j-l k-l 
We now claim that 

j=l, .•• ,m 

generate S~ In fact, notice that x was an arbitrary element of S· 

and that the first component of Aj is E ~-1 b~.akl 0 
Our claim follows. 

Now, in order to complete the proof of Lemma 1 we need to prove 
that we can assume that the left annihilator of A in R,n is finitely 
generated. For this we shall use the hypothesis that R is a left 
semihereditary ring. Let F be a free left R-module generated by 
f 1 , ••• ,fs and 0 -+ K -+ F ~ L -+ 0 be an exact sequence where L is 
the left ideal of R generated by a 11 , .•. ,as1 and ~ be the homomorphism 
defined by ~ : f. -+ a. 1 . Notice that K is isomorphic to the left 

J J 
annihilator of A in R's. Since L is projective, that sequence splits 
and K is then a direct summand of a finitely generated R-module, there 

fore is finitely generated. This ends the proof of Lemma 1. 
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We proceed the proof of THEOREM 2 by induction in the length of 
the vectors in S. If n = 1.then S is a finitely generated left i
deal of R. and so by condition (cO)l is closed. Let 2 4n and as
sume that every finitely generated submodule of R,(n-l) is closed. 
In particular. the submodule ScR,(n-l) associated to S·. dropping 
the first coordinate of the elements in S·. is closed. Next we 
need to prove another partial result 

LEMMA 2. 16 [xi ••••• x~] £ sr, zhen zhe~e exi4Z4 Xl £ R 4ueh Zh4Z 

[xl.xi .; ..• X~] £ Sr 

P~oo6: Let r 1 ••••• r 8 £ R satisfy r ~=1 r i .ai1 = O. Then 

r ~-1 ri·A i .. [o.r~_l riai2.···.r~_1 riain] £ S· 

and by the hypothesis we have 

o r ~_2(r ~-1 r~aik)·xk 

r ~=1 ri·(r :.2 aikxk) 
which says that 

~ : a -+ ~n a x' 
.. it 4k-2 ik k 

defines an R-homomorphism of the left ideal generated by a i1 .i.1 •••• s 
into R. By property (aO)l there is -xl £ R realizing •• that is 

a i1x1 + ai2xi + ••• + ainx~ = 0 

and this ends the proof of LEMMA 2. 

i .. 1 ••••• s 

To complete the prcof of THEOREM 2 we follo~ .the scheme of proof 
of THEOREM S.2 of {1}. Let U = [u1 ' •••• un] E S. Sr contains all 
those vectors 

Therefore 
r 

xl £ (a11'a21.···.a81> 

o • i=l ••••• s 

u1 £ (a11'a21.···.a81)r1 .. (a11'a21····,a81) 

(by condition (cO)l)' 

S •• u 1 r 1a 11 + ••• + r a 81 r. £ R 8 1 

Let U' r 
8 r .• A. i-I 1 1 

U' belongs to S and moreover V = U - U' [O.v 2•·•• ,vll.J £ S 
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satisfies 

(' ) o 

for any [xl ,x2 , .•. ,xn] £ Sr. 

L·t V d t th b d 1 f Ru(n-I) f 11 1 ~ eno e e su mo u e 0 0 a e ements x2 , ••. ,xn 
for which there is xl £ R satisfying [XI ,X2 ,···,Xn]£ Sr. 

Clearly we have Vc Sr. But by LEMMA 2, Br c V. So V = Br. 

Furthermore [v2 , •.. ,vn] £ VI = SrI = B according to the inductive 
hypothesis. Of course we need to know that B is finitely genera~ed, 
but this follows from LEMMA 1 and the definition of B. 
We have then that' [O,v2 , .•. ,vnJ £ S·cS and finally 

U V + U' £ S 

This means that S cS and THEOREM 2 is proved. 

COROLLARY. Lez R be a te6z and ~~ghz ~em~he~ed~za~y ~~ng. A~~ume 

zhaz (cO)1 and (cO)r hotd~. Then (aO)I<~(aO)r' 

P~oo6:Assume that (aO)1 holds. Then 

(aO)I<=>(hO)1 by iheorem 2 

=>(hOO)1 

=>(aO)r by Theorem 

The other implication follows in the same way. 

3. VON NEUMANN RINGS. 
In this section we give characterizations of von Neumann rings in 

terms of purity. We recall that a von Neumann ring is a ring R satis 
fying: for every a £ R there is x £ R such that a.x.a = a 

We shall say that a ring is absolutely flat (resp. pure) if any 
right R-module is flat (resp. pure). 

THEOREM 3. Lez ~ be a ~~ng. The 6ottow~ng c.ond~Z~oM a~e att e
qu~vatenz: 

a) R ~~ ab~otuzety pu~e 
b) R ~~ a·von Neumann ~~ng 
c.) R ~~ ab~otuzety 6taz 
d) eve~y c.yc.t~c. ~~ghz R-modute ~~ pu~e 

P~oo6: a) =>b) Let z £ R. Then the right ideal z.R is pure in R. 
Since R has identity we can write z = 1.z. By the purity there is 
x £ R such that z = (z.x).z as we wanted to prove. 
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c) =>: d) 

d) -> b) 
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is a well known result 
and c) ==> a) are clear 

Let 1 be- a right ideal of R, a £ Rand +: <.a> - R 11 be a homomor
phism of the right ideal <a> generated by a into the cyclic module 
R/I. Let S be an injective right module containing R/I • 
There exists s £ S satisfying 

+(a)=s.a 

and since R/I is pure in S, we can find c £ R/I such that 

+ (a) = c. a 

This means tha.t + can be extended to a homomorphism of R into R/I • 
Being 1 and a £ R arbitrary we can apply Th. 3 of {Z} to conclude 
that R is a von Neumann ring. 
Proof of The6rem 3 is now complete. 

REMARK 1. Using the absolute purity of von Neumann rings, as shown 
in THEOREM 3, we can give an immediate answer to a question posed 
in {4 }, §Z5.(1). Namely: Let A be a right R-module, where R is a 
von Neumann ring. Suppose that A is generated by n elements. Then 
every finitely generated submodule of A is generated by n elements. 
In fact, let A' be a finitely generated submodule of A, al, ••• ,an 
a set of generators of A and ai, ... ,a~ a set of generators of A'. 
We have r ji E R satisfying 

I_\'. n a i - L j-l aj.r ji i=l, ... ,m 

Being A' pure in A there exist xj £ A', j=l, •••• n sa~isfying 
1 ~ n , 

a i = L j-l xj.r ji 

Clearly, x~ is a set of generators of A'. 
J 

Next we characterize those right semihereditary rings which are von 
Neumann rings. 

LEMMA. (Compare {3}, Chap. I, §Z, Exer. 18 a)). Let R be a Jr..£.ght 
4emiheJr.editaJr.Y Jr.ing and let B be an injective Jr..£.ght R-module co"~ 
tai.ning R 4uch thaA: R i4 pUJr.e in B. Then any. 6.£.nitely geneJr.ated 
4ubmodule 06 a pJr.ojective. Jr.ight R-module i4 a diJr.ect 4ummand 06 it. 

PJr.006: Let P be a projective right R-module and let M be a finitely 
generated submodule of it. Without loss of generality we can as
sume that P is finitely generated and free. In fact, if F is a free 
module of which P is a submodule then we can write F = Fl e F2 ' 
with Fl free, finitely generated and. containing M. If M is a di~ect 
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summand of FI , it is also a direct summand of F and therefore of P. 
Being R right semihereditary,M is a projective module. Let al, .. ,an 
be elements of M and + i, ... ,+~ mappings of Minto R, satisfying 

a = r n 
L i-I a i '+i (a) 

for every a E M. 

Since R 
tended to 

ed by 

is pure in B, by PROP. 1.3, the mappings +i can be ex
mappings +i: P -+ R. Let +: P -+ M be the mapping defin-

+: x -+ I I?' I 11 •• +. (x) 
1- 1 1 

Clearly + defines a pro~ectionQf Ponto M. M is then a direct 
summand of P. 

REMARK 2. The previous Lemma permits to give an immediate answer 
to a question posed in {4}, §25.(1). Namely, let R be a von Neu
mann ring. Then if every torsion free R-module is proje~tive, R 
is a left self-injective ring. In fact, let.h(R) be an injective 
hull of R. Then heR) is torsion free, therefore it is projective. 
Let I p <e) be a principal non-zero left ideal of R, e an idempo
tent. By the previous Lemma I is a direct summand of heR) and so 
I is injective. Since 1 was arbitrary, we have also that J=(l-e) 
is injective. Therefore R = 1 e J is injective as we wanted to 
prove. 

THEOREM 4. Le~ R be a ~~ng. Then R ~4 a von Neumann ~~ng ~6 
and only ~6 R ~4 ~~gh~ 4em~he~ed~~a~y and pu~e (~n 40me ~njee~~ve 
«9h~ R-moduleeon~a~n~ng ~~I. 

P~oo6: Apply the previous Lemma to P = R to get that every fini
tely generated right ideal of R is a direct summand of R. This is 
enough to assure that R be a von Neumann ring. 

Base in the same Lemma we have 

PROPOSITION 3.1. Let R be a ~.£ng. Then R .£4 a von Neumann ~~ng .£66 
R ~4 ~~gh~ 4em~hell.ed~~a~y and 4at~46.£u eond.£~.£on (aQ)r 

P~oo6: To prove part "if" we proceed as in the proof of the Lemma 
applied to the situation P = R and using condition (aO)r to extend 
the mappings +i. 
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P~oo6; According to a result by L.W. Small ({S} , COROLLARY 3) the 
two first hypothesis imply that R is right semihereditary. Condi
tion (aO)r and the previous proposition prove our claim, since a 
left noetherian von Neumann ring is necessarily semisimple (d.c.c.). 
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