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PARALLEL FAMILIES OF .1 
HYPERSURFACES IN RIEMANNIAN SPACE V • (1) 

n 

by John De Cicco and Robert V. Anderson 

1. ELEMENTARY CONCEPTS CONCE~~ING A POSITIONAL FIELD OF FORCE •• (2) 
Consider a field of force + •. whose force. vector acting at any point 
x = (xi), of a Riemannian space Vn • is ••• i = +i' The force vec
tor +, is considered to be a vector function of position only, and 
to be of class t~o over.a certain region of Vn • Thus the force vee 
tor + is a continuous ~unction and possesses continuous partial d~ 
rivatives with respect to the xi of first and second orders throug~ 
out the given region of Vn • Such a field of force +. is· termed a 
P04.i.t.i.ona.t ~.i.e..t_d 06 ~oJtee. • in the Riemannian space Vn • 

The positional field of force. may be given by either the cova
riant comp~nents.!i' or the contravariant component +i .. gi j • j • 

Here the g1j = g1J (X). are the contravariant components of the fu!!, 
damental metric tensor of the given Riemannian space Vn • It. is a!. 

sumed that 1+1 • 1£ gi j +i+J.1 1/2 > O. t • ± 1. The trivial case 
2n-2 d' when. is identically zero, which leads to the- geo· eS1CS of 

Vn , is omitted from consideration. 
If a particle of constant~ass m > 0, is constrained to move along 

a path C of the given region of Vn , then its speed v is governed by 
the law 

(1.1) 

where the initial speed at the point XQ, is VQ > O. The integral 
appearing in (1.1). is te.rmed the wOJtR W performed in moving. from 
Xo to x along the curve C. The quantity T • 1/2.mv2• is called the 
R.i.ne.t.i.e e.ne.Jtgy of the particle. 

If the work W is independent of the path C,then the positional 
field of force • is said to be eon4e.Jtvat.i.ve.. In this -case there 
exiS.ts a potential function V • V(x), such that 

(1. 2) _ av • -grad(V). 
axi 

For a conservative field of force +, the relation (1.1). becomes 
the energy equation, namely 
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(1.3) 
2 

T + V =7 + V(x) = E 

where E is the total constant energy. 
For any positional field of force 4>,conservative or not, the sim 

pIe family of ... n-l Falta.day i..ine.lI 06 60ltce. C, is composed of the 
... n-l integral solutions C of the system of n first order ordinary 
differential equations 

(1.4) 

where s denotes the arc length along any Faraday line of force C. 

THEOREM 1.1. 16 4> .ill a conlle.ltvaz.ive. 6.ie.i.d 06 60ltce. .in Vn, ie.z L 
be. a cultve. lIuch zhaz az e.ach po.inz P 06 L, zhe.lte. e.x.illZll a Faltaday 
i..ine. 0660ltce. C, zange.nz to L. Auume. thaz the.lIe. ... 1 Faltaday i.inu 
06 60ltce. alte. aii tltanllve.ltllai. to lIom~ CUltve. L*. Le.t AD de.noze. the. 
i.ine. 06 60ltce. az the. .in.it.iai po.int A on Land te.ltm.inai po.int D on 
L*. S.im.ii.alti.y BE de.note.lI the. i..ine. 06 60ltce. az B on L, te.ltm.inat.ing 
az E on L*. The.n 

f 14> 1 ds = f 1 q, 1 ds - f 1 q, 1 ds • 
LAB CAP CBE 

(1. 5) 

Another way of writing this is in terms of the characteristic 
function r of V. Thus 

n 

f r(x;;~)ds = f r(x;;~)ds - f r(x;~~)dS. 
LAB CAD CBE 

(1. 6) 

It ~s noted that if Pi is an absolute covariant vector, then 
. . 1/2 

r(x;p) = IEgl.Jp.p.1 ,e: !1. If the characteristic function l. J 

r(x;~~) = +1, then (1.6), becomes an analogue of the Jacobi string 

condition for V . n Also r(x;;~) = 1, is then the Hamilton Jacobi 

partial differential equation of first order. 

2. THE LAME DIFFERENTIAL PARAMETERS OF FIRST AND SECOND ORDERS. (3) 

If u(x) and v(x) are two absolut~ scalar functions of at least class 
C1, then their gradients au. and avo , are two absolute covariant 

axl. axl. 

vectors orthogonal to the "two (n-l) dim.ensional hypersurfaces u (x) = 
constant and v(x)=constant. The inner product between these two 
gradients is called .the Laml d.i66 e.lte.nt.iai paltame.te.1t 06 oltde.1t one.. 
It is written as 
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(2.1) Ill(U,V) (grad u,grad v) 

In particular if u(x) = vex), this becomes 

(2.2) " au au III (u) = III (u,u) = g1J_. 
axl. axj 

Now since in a conservative field of force there is a potential 
function V = V(x), such that ~i = _avi , it is seen that 

ax 

(2.3) I~I = I grad vi 

If ~i is the covariant form of the force vector ~, then the di
v~~g~nc~ of ~ is defined by the absolute scalar 

(2.4) e=div(~)=.g~. ='g ~-r. ik ik [a.... J' 
l.,k a~ l.k 

A field of force ~ is said to be 6olenoidal if and only if the di 
vergence of the force vector ~ is zero throughout the region of V 

n 
under consideration. 

If g = I &:ij I, the determinant of the gij , then another form of 
(2.4), is 

(2.5) 1 [a r.-7'J e = div(~) =!fgj axL >'Igi ~l. 

It is noted that the form of the divergence given in (2.5~, is 
that most convenient for applications. 

The Lame differential parameter of the second order is the Lapl~ 
c~an. It is defined by 

(2.6) 

where u = u(x) is an absolute scalar function of position. 
A positional field of force is said to be Laplacean if and only 

if it is both conservative and solenoidal. Thus a conservative 
field of force ~, with a potential function Vex) is Laplacean if and 
only if Vex) is a harmonic function. That is ;v = o. 

3. CONSERVATIVE FIELDS OF FORCE ~ FOR WHICH THE EQUIPOTENCIAL HY 
PERSURFACES FORM A PARALLEL FAMILY. Let ~ be a conservative field 
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of force with potential function V = Vex). The family Vex) • con
stant represents a set of CD

l hypersurfaces. called equ.i.poten.U.al 
hIJP~II..suII.6ac.e~. each of which is of deficiency one. It is assumed 
that Al(V) ~ O. Then a unit vector orthogonal to these hypersur-
faces is 

(3.1) I';i 
1 av 

IIA1(V)1 axi 

The contravariant form of this vector is 

(3.2) I';i 
1 gij av. 

IIA1(V)1 axJ 

Therefore the orthogonal trajectories C of this set of CD l equip~ 
tential hypersurfaces Vex) = constant are the CDn -] Faraday lines 
of force given as the integral solutions C of the system of n first 
order ordinary differential equations dx i = I';i 

ds 
The CD

n - l curves C and the CD
l hypersurfaces V = constant are said 

to form a nOll.mal 6am.i.llJ. Also a set of CD
l hypersurfaces Vex) -

constant is said to be pall.allel if and only if it cuts orthogonally 
f n-l d' f a set 0 CD geo eSlCS C 0 Vn • 

THEOREM 3.1. The ~et 06 CD
l equ.i.potent.i.al hlJpell.4Ull.6ac.e4 Vex) • 

c.on4tant 06 a c.on~ell.vat.i.ve 6.i.eld 06 601l.c.e ~, .i.4 a pall.allel 6am.i.ly 
.i.6 and only .i.6 the Laml pall.ametell. ill(V) .i.~ a 6unc.t.i.on 06 the po.(:e!!. 
t.i.al 6unc.t.i.on V = Vex) alone. Thu4 

(3.3) £F(V) 

For, in this case the CDn- l orthogonal trajectories are the CDn- l 

geodesics C of Vn ' Hence parallel displacements of the unit tangent 
vectors along these curves C are also tangent to the respective cur 
ves C. Therefore 

(3.4) [ ,-1/2 ijaV) kaaV - 0 
Ll g -. g - -

1 axJ axa 
'k 

where ill = ill(V), and the symbol ( )'k means the cova~iant derivati 
ve of the quantity inside the parenthesis with respect to the xk. 
Thus 
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(3.5) o 

Since Igij I ~ 0, it is seen that 

(3.6) o 

However it is easily seen that 

(3.7) 

Substitute this result into (3.6). Then interchange the dummy 
indices k and a and substract. It is evident that 

(3.8) 

Since at least one avo ~ 0, and since Igkal ~ 0, these conditions 
axJ become 

(3.9) ll.l a V _ ll.l a v 
axa axk axk axa 

= a (flJ ,V) 

a (xk ,xa ) 
o 

Hence 1l1(V) and V are functionally dependent. As these steps are 
reversible the proof of Theorem 3.1, is complete. 

Now recall that since Vex) is an absolute scalar function it is 

known that 

THEOREM 3. 2. ! 6 V (x) = co n.6 tant, wah II ICV) ~ 0, 6011.m 11. .6e-t 06 
... 1 equipotential hypelL.6 ulL6ace.6 06 11. con.6 eIr.vat..iv e Meld 06 6011.ce .", 
eack ~6 de6iciency one, wh..ich 60ILm 11. palLalLeL 6amiLy, thelLe exi.6t.6 
11. non-con.6tant 6unct~on X = xCV) which obey.6 the HamiLton-Jacobi 
palLtiaL di66e:Jr.entiaL equation o{ 6..iIL.6t OII.delL, nameLy 

(3.10) 

ConvelL.6eLy ..i6 x(x) • con.6tant obey.6 the HamiLton-Jacob..i equation 
then it lLeplLe.6ent.6 11. palLaLLeL 6amiLy. 

For, in Theorem 3.1 set xCV) = J 'IF~:)I ,where FeV) is a non

constant function of V = Vex), and note that Vex) = constant is p~ 
rallel if and only if 
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(3.11) [ £th (X)]1 / 2 = [£gij aJ<. ~.]1/2 
axi axJ 

.r (x' aX) = +1 , a x 

Thu~ Theorem 3.2 is proved. 

4. SOME CONDITIONS FOR PARALLEL FAMILIES OF ~ HYPERSURFACES IN 
RIEMANNIAN SPACE Vn • If Ai is an absolute covariant vector in Vn ' 
its covariant first order partial derivative is given by 

(4.1) A. • 
1,J 

~ - r~. A 
a~ 1J a 

In particular if V Vex), is an absolute scalar function 

2 

(4.2) V. 
,1 

a V _ r~. av 
axiaxj 1J axa 

v .. 
,1J 

Thus the ordinary partial deri'l.tativeof the first order Lame dif 
ferential parameter 61 = 61(V),with respect to xa is 

(4.3) 

Let Tae , denote the absolute covariant tensor of second order de 
fined by 

(4.4) 

Now supposing that 61(V) > 0 ,and since g 
ing result is evident. 

- V V.] ,a ,Je . 

THEOREM 4.1. Lez zhepozenzial 6unczion V = VeX), 06 a con~e~v· 
az.ive 6iad 06 60~ce 4>, be 06 az leuz cla~~ zwo in a given open 
~egion 06 Riemannian ~pace Vn , wizh 61 (V) po~izive. Then zhe 6am· 
ily 06 ~1 hype~~u~6ace~, each 06 de6iciency one, de6ined u zhe 
equipozenzial hype~~u~6ace~ Vex) = con~zanz 06 zhe 6ield G6 60~ce 

4>, i~ a pa~allel 6amily i6 and only i6 

(4.5) T = gij V . [V a V - V V. el = 0 ae ,1 , , j a ,a , J 

Mo~eove~, each componenz 06 zhi~ zen.()o~, wf.en a ." a, a,e 6bc.ed, 

namely 

(4.6) V Q V. - V V. Q 

'.,,, ,Ja ,a ,J" 

i~ o~zhogonat zo Vex) = con4zanz. 
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Now the condition (4.S) can, be written in the form 

(4.7) 

Let p be defined so that 

(4.8) gij V . V. = pV 
.1 .JIII .a gij V i V ·S - pV S. 

• • J • 

The second set of equations in (4.8) follows from the first since 
at lea~t one V' is not zero • 

• a 

THEOREM 4.2. A ~ama!l o~ ",1 e.qu..i.pote.n.t.i.a.l h!lpe.JUu.IL~a.eu Vex) -
eon4ta.nt o~ a. eon4e.lLvat.i.ve. ~.i.e.ld o~ ~olLee. t, w.i.th pote.nt.i.a.l ~u.net.i.o" 

V .. Vex), a.nd ill (V) > 0, .i.4 a. pa.Jta.ll.e.l ~a.ma!l .i.~ a.nd onl!l .i.~ 

(4.9) 

whe.lLe. a=1.2 ••••• n, a.nd p .i.4 a.n a.b40lu.te. 4ea.la.1L ~u.net.i.on. Thu.4.i.{ 
ill ,> 0, .i.4 n·ot a. eon4ta.nt :the. two ~a.m.i.Uu ill = eon4ta.nt a.rld V(x)
eon4ta.nt a.1Le. .i.de.nt.i.ea.l. 

It is noted that if ill - C > O. is identically constant. then by 
a suitable homothetic map T. the conservative field of force t. 
with potential function V = Vex). is such that the force vector 

t ... - av • has unit magnitude. 
1 axi 

S. CARTOGRAMS AND PARALLEL FAMILIES. Let Vn and Vn' be two Ri,! 
mannian spaces whose metl'ics are given by the two definite quadratic 
differential forms: ds2 .. g.jdxidxj • ·and ds 2 = g .. dx).dx~. where each 

1 1J 
of the 2n2 functions g .. (x). g .. (x). is of at least class three in 

1J 1J -
an n dimensional region of points of V • or V. Two points. one of _ n n 
V and the other of V • are said to correspond if and only if they 
a~e determined bythen4a.me. curvilinear coordinates x=(x1.x2 ••••• xn). 
This establishes a point to point transformatien between Vn and Vn. 
Such a transformation between V and V • is called a ea.lLtoglL4m T. 

n n 
If p isa positive scalar point function of at least class three 

in the given region of V such that ds "pds. then the cartogram T 
n 

is said to be c.on6olLma.! and the two Riemannian spaces V and V are 
. . _ 2 n _i· n 

said to be c.on~olLma.!!!I e.qu..i.va.!e.nt. Hence g .... p g ..• and g J .. 
_ 1J 1J 

= 1 gij. 
-2 
P 

V • 
n 

In this case V is called a c.on~oJtma.l .i.ma.ge. of the space. 
n 
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In particular if the positive scalar point function p is a constant 
then V is called a homo:the:tic. ..6magt of V and T is called a homo-

11 _ n 

:the:ti.c. :tltan.6601tma:tion T. If p = +1, Vn is called an i.6ome:tltic. im-

age of·A/ and T is an i.6ome:tltic. c.nltlte.6pondenc.e. In this case V n . n 
is said to be applic.able to Vn . 

Now let Vex) = constant represent a parallel family of equipote~ 
tial hypersurfaces of a con se rvative field of force q, in Vn . The 
condition for this is 

(5.1) gij V . V. = p V 
,1 ,Ja ,a' 

fora=1,2, ... ,n, andp a scalar function. 
Suppose that this parallel family in Vn corresponds to a parallel 

family of CD l hypersurfaces in V. Thus the condition (5.1) must n 
hold in both V and V. Hence for some scalar functions p (x) and 

n n 
;- (x) 

2 
av [ a2 v (5.2) . 'aV [ a V r~ a V ] av -ij -A av ] = g1J_ - p- g 
a xi a xj axa 

- r. 
a xi a xj a xa Ja a xA axa Ja axA 

- aV 
p 

axa 

Hence 

2 

(5.3) C ij p. gij) aV a V av (pgijr~a pgijF~a) av 0 pg - -
axA axi axj axa axi 

Now p and p are independent of the partial derivatives of Vex). 
Clearly (5.3) is an identity for all such partial derivatives. Hence 

necessarily 

(5.4) 

-
-ij-A 

pg r ja o 

2 
Set u I!.. > o. 

p 
Then £rom the first of equations (5.4) it is seen 

• • 1 •• 
that g1J = -2 g1J. Thus we have established that Vn and Vn are nec-

u 

essarily related by a conformal cartogram T. 
Now if T is a conformal cartogram the Christoffel symbols of 

second kind correspond by the equations 

(5.5) 

However the second of equations (5.4) yields 

the 
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(5.6) 

Upon comparing (5.5) and (5.6), it is found that 

(5.7) o. 

Since u > 0 and g Ig ij I # 0, these reduce to 

(5.8) +cSAau AeaU 
a J. - gJ. a g -0 

ax ax P 

o. 

Multiply through by gja. Upon simplification (5.8). reduces to 

(5.9) gja au = o. 
axj 

Again since l/g Igjal # 0, it is seen that au 
ax j 

0, for j=1,2,.,n. 

THEOREM 5.1. Let V and t be two Riemannian ~pace~ 604 which the 
n n 2. . 

6undamental quad4atic di66e4ential 604m~ a~e ds = g .. dx 1 dxJ and 
- 2 - i· 1J 

ds = g .. dx dxJ 4e~pectively. Suppo~e that Vex) = con~tant i~ pa4al 
1J -

lel 6amily 06 ~l hype4~u46ace~ in V , whe4e Vex) i~ the potential 
n 

6unction 06 a con~e~vative 6ield 06 604ce ~ in Vn • Then eve4y ~uch 
6amily will c044e~pond to a pa4allel 6amily 06 ~l hype4~u46ace~ in 
Vn , by a ca4tog4am T, i6 and only i6 T i~ a homothetic map. 

For, in this case the scale function u(x) obeys fia = 0, for a= 
1,2, ... ,n. Since the scale function is always positive, it is seen 
that u = u(x) = c > 0, where c is a constant. Thus the proof of 
Theorem 5.1 is complete. 
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