REVISTA DE LA UNION MATEMATICA ARGENTINA Volumen 24, Número 2, 1968

NOTE ON GALOIS EXTENSION OVER THE CENTER by Manabu Harada

In {2} S.U.Chase, D.K.Harrison and A.Rosenberg obtained a Galois Theory for strongly Galois extensions of commutative rings (CHR-Galois). This was generalized to non commutative rings by F.R. Demeyer {3} , T.Kanzaki {6} , H.F.Kreimer {8} and others. Recent ly, O.E.Villamayor and D.Zelinsky obtained in {11} a weak Galois theory of commutative rings in order to study the strong one from a different point of view.

In the first section of this short paper we shall use similar arguments to those of {11} to show that if an algebra Λ over a commutative ring R is a strongly Galois extension of R, then Λ and its center C are weakly Galois extensions over C and R, respectively. If Λ is a weakly Galois extension over C, Λ is the sum of all C-modules J_{σ} (see below or {10} for the definition of J_{σ}). By means of some properties of the J_{σ} 's, we shall study in section 2, a Galois theory over the center, the argument being similar to that of {7} and {5}, Theorem 1.

The author would like to express his thanks to Professor O.E.Vil<u>la</u> mayor for inviting him to Universidad de Buenos Aires and giving an opportunity to see his and Zelinsky's preprint of {11}.

1. GALOIS EXTENSION OVER R.

Let R be a commutative ring with identity, Λ an algebra over R, C the center of Λ and G a finite group of automorphisms of Λ . We say that Λ is a Galois extension with respect to G of its G-fixed ring Λ^{G} if there exist elements x_{i} , y_{i} i=1,2,...,n, in Λ such that $\sum_{\sigma \in G} \sigma(x_{i})y_{i} = \delta_{\sigma,1}$. We note that if $\Lambda^{G} = R$, then Λ is a finitely generated and separable R-algebra by {9}, Lemma 2.

Let Γ be an R-subalgebra of Λ and G the group of all automorphisms of Λ leaving invariant the elements of Γ .We quote here the definition of weakly Galois extension of {11}: Λ is said to be a (right) weakly Galois extension of Γ if the following two conditions are satisfied:

a) A is a finitely generated projective right r-module.

b) $G\Lambda_{\ell} = Hom_{\Gamma}(\Lambda,\Lambda)$, where $\sum g_i x_{i\ell}(\lambda) = \sum g_i(x_i\lambda)$ for $g_i \in G_i x_i, \lambda \in \Lambda$.

LEMMA 1. Let Λ be a strongly Galois extension of R with group G. If R has no proper idempotents, then Λ and its center C are weakly

Galois extensions of C and R, respectively.

Proof: Since A is a finitely generated R-module, there exist mutual ly orthogonal primitive central idempotents e_i such that $\sum_{i=1}^{n} e_i = 1$. Then $\operatorname{Hom}_{C}(\Lambda,\Lambda) = \sum_{i} \oplus \operatorname{Hom}_{Ce_i}(\Lambda e_i,\Lambda e_i)$ and $\operatorname{Hom}_{R}(C,C) = \sum_{i} \oplus \operatorname{Hom}_{Re_i}(Ce_i,Ce_i)$. Let $T_i = \{g \mid cG, g(e_i) = e_i\}$. We can easily see that Λe_i is a strongly Galois extension of Re_i with group T_i (see $\{3\}$). Furthermore, Λe_i and Ce_i are strongly Galois extensions over Ce_i and Re_i with respect to H_i and T_i/H_i by $\{3\}$ and $\{9\}$, where $H_i = \{g \mid cT_i, g(d) = c \lor ccCe_i\}$. Hence $\operatorname{Hom}_{Ce_i}(\Lambda e_i, \Lambda e_i) = H_i(\Lambda e_i)_{\ell}$ and $\operatorname{Hom}_{Re_i}(\operatorname{Ce}_i, \operatorname{Ce}_i) = (T_i/H_i)(\operatorname{Ce}_i)_{\ell}$. Now, we put $H_i^* = \{h \mid cG, h \mid \Lambda e_i = h'$ for some $h' cH_i, h \mid \Lambda e_j = I_{\Lambda e_j}$ for $i \neq j\}$. Then $H_i^* \subseteq H = \{h \mid cG, h \mid C = I_C\}$. Therefore, $\operatorname{Hom}_C(\Lambda,\Lambda) = H\Lambda_{\ell}$. Similarly we obtain $\operatorname{Hom}_R(C,C) = G'C_{\ell}$, where G' is the group of all automorphisms of C over R. Condition a) follows from $\{1\}$, since Λ is separable over R.

THEOREM 1. Let Λ be a strongly Galois extension of R with finite group G. Then Λ and its center C are weakly Galois extensions of C and R, respectively.

Proof: We shall use the same notation and argument of {11}. Since Λ is $\Lambda \otimes \Lambda^*$ -projective, $C_x = (\operatorname{Hom}_{\Lambda}{}^{\ell}(\Lambda,\Lambda))_x = \operatorname{Hom}_{\Lambda}{}^{\ell}(\Lambda_{\alpha},\Lambda_{\alpha})$ (cf.{11}, (2.7)). Furthermore, R_x has no proper idempotents by {11}, (2.13). Hence, $H(x)(\Lambda_x)_{\ell} = \operatorname{Hom}_{C_x}(\Lambda_x,\Lambda_x)$ and $G'(x)(C_x)_{\ell} = \operatorname{Hom}_{R_x}(C_x,C_x)$, where H(x), G'(x) are as above in Λ_x and C_x . Since C is R-finitely generated, all elements of H(x) and G'(x) are induced by elements of H and G', respectively (by {11}, (2.14)). Hence $(H\Lambda\ell)_x =$ $= H(x)(\Lambda_x)_{\ell} = \operatorname{Hom}_{C_x}(\Lambda_x,\Lambda_x) = (\operatorname{Hom}_C(\Lambda,\Lambda))_x$ since Λ is C-finitely generated and projective. Therefore, $H\Lambda_{\ell} = \operatorname{Hom}_C(\Lambda,\Lambda)$. Similarly $G'C_{\ell} = \operatorname{Hom}_{P}(C,C)$.

We shall give latter an example in which a strongly Galois extension of R is not a strongly Galois extension over its center with respect to the corresponding subgroup.

2. GALOIS EXTENSION OVER CENTER.

In this section we always assume that Λ is a separable algebra over its center C. If $H\Lambda_{\ell} = Hom_{C}(\Lambda,\Lambda)$, then for any element x in Λ^{H} , x_{ℓ} belongs to the center of $Hom_{C}(\Lambda,\Lambda) = C$; hence $\Lambda^{H} = C$. We shall study some properties are treated in $\{7\}$ and $\{10\}$. For $\sigma \in H$ let $J_{\sigma} =$ $= \{x \mid \epsilon \Lambda$, $yx = x\sigma(y)$ for all $y\epsilon\Lambda\} = Hom_{\Lambda}\ell(\Lambda,\Lambda\sigma)$, where $\Lambda\sigma$ is the same module as Λ as left Λ -module and the operation of Λ as right Λ-module is defined by x*y = xσ(y). Furthermore, Λ_σ = Λ Θ_CJ_σ and Λ = ΛJ_σ (see {10}). For any element $x_t \sigma \in J_{\sigma t} \sigma \subset$ Λ_tH(x_tσ)(y) = x_{σ(y)} = yx_r for every y ∈ Λ. Hence, (J_σ)^σ_t = (J_σ)_r and Λ_tσ = Λ_tJ_{σt}σ = Λ_t(J_σ)_r = Λ_t Θ_C(J_σ)_r since Λ_tΛ_r = Λ_t Θ_CΛ_r by {1}.

PROPOSITION 2. Let Λ be separable over its center C and S a subset of H. Then $S\Lambda_{\ell} = Hom_{C}(\Lambda, \Lambda)$ if and only if $\Lambda = \sum_{\sigma \in S} J_{\sigma}$.

Proof: $S\Lambda_{\ell} = \sum_{\sigma \in S} \Lambda_{\ell} \sigma = \sum_{\sigma} \Lambda_{\ell} \otimes (J_{\sigma})_{r}$. Since C is a C-direct summand of Λ and $Hom_{C}(\Lambda,\Lambda) = \Lambda_{\ell} \otimes_{C} \Lambda_{r}$, the proposition follows.

COROLLARY. A is a weakly Galois extension if and only if $\Lambda = \sum_{\sigma \in S} J_{\sigma}$, where S is a finite subset of H. Furthermore, A is generated by units as C-module if and only if $SA_{\ell} = Hom_{C}(\Lambda, \Lambda)$ and the elements of S are inner-automorphisms.

Proof: It is clear.

Let S be a subset of H. We call S strongly distinct if there exists a family of elements $\{x_i^{(\sigma)}, y_i^{(\sigma)}\}_{i=1}^{n=n(\sigma)}, \sigma \in S$ such that

 $\sum_{i} \tau(x_{i}^{(\sigma)}) y_{i}^{(\sigma)} = \delta_{\tau,\sigma} \text{ for all } \sigma, \tau \in S.$

It is clear that this condition is equivalent with the existence of Galois generators if S is a group.

THEROREM 3. Let S, J_{σ} be as above and $\Gamma = \sum_{\sigma \in S} J_{\sigma}$. If S is strongly distinct, then $\Gamma = \sum_{\sigma \in S} \Theta J_{\sigma}$. Conversely, if $\Gamma = \sum_{\sigma \in S} \Theta J_{\sigma}$ and Γ is a direct summand of Λ as C-module, then S is strongly distinct.

Proof: Assume that $\Gamma = \sum_{\sigma} \oplus J_{\sigma}$ and Γ is a direct summand of Λ as C-module. $\Lambda_{\ell} \otimes \Lambda_{\Gamma} = \operatorname{Hom}_{\mathbb{C}}(\Lambda, \Lambda)$, since Λ is C-separable. Let P_{σ} be a projection of Λ onto J_{σ} . Then $P_{\sigma} \in \operatorname{Hom}_{\mathbb{C}}(\Lambda, \Lambda)$. Hence, there exist elements $\{x_{i}^{(\sigma)}, y_{i}^{(\sigma)}\}_{i=1}^{n=n(\sigma)}$ in Λ such that $\sum_{i\ell} x_{i\ell}^{(\sigma)} \otimes y_{i\Gamma}^{(\sigma)} = P_{\alpha}$. There fore, $0 = P_{\sigma}(J_{\tau}) = J_{\tau}\sum_{\tau} \tau(x_{i}^{(\sigma)})y_{i}^{(\sigma)}$ for $\sigma \neq \tau$. Since $\Lambda J_{\tau} = \Lambda$, $\sum_{\tau} \tau(x_{i}^{(\sigma)})y_{i}^{(\sigma)} = 0$. Similarly, $J_{\sigma}(I - \sum_{\sigma} \sigma(x_{i}^{(\sigma)})y_{i}^{(\sigma)}) = 0$. Hence, $I = \sum_{\sigma} \sigma(x_{i}^{(\sigma)})y_{i}^{(\sigma)}$. Conversely, assume S is strongly distinct. We assume $0 = \sum_{\sigma \in S} z_{\sigma}$, $z_{\sigma} \in J_{\sigma}$. Then $0 = \sum_{i}\sum_{\tau} \tau x_{i}^{(\sigma)} z_{\tau} y_{i}^{(\sigma)} = \sum_{\sigma} z_{\sigma}(\sum_{i} \tau(x_{i}^{(\sigma)})y_{i}^{(\sigma)}) = z_{\sigma}$. Hence, $\Gamma = \sum_{\sigma} \oplus J_{\sigma}$.

LEMMA 2. Let $A \supset B$ be R-algebras. If B is R-separable, then $V_A(B)$

is a direct summand of A as two-sided $V_A(B)$ -module, where $V_A(B) = \{a \mid eA, ba = ab \text{ for all } b \in B\}$.

Proof: We consider A as a left B $\Theta_R B^*$ -module. Since B is R-separable, there exist elements $\{x_i, y_i\}_i$ in A such that $[x_i y_i] = 1$ and $[bx_i \Theta y_i] = [x_i \Theta y_i] b$ for all $b \in B$. Now we define a map $\phi: A \to A$ by setting $\phi(a) = [(x_i \Theta y_i^*)a] = [x_i a y_i]$ for a ϵ A. From the above relations of $\{x_i, y_i\}$ we obtain $\phi(A) \subseteq V_A(B)$ and $\phi|V_A(B) = I_{V_A(B)}$. Furthermore, $\phi(aa') = [x_i a a' y_i] = ([x_i a y_i]a'] = \phi(a)a'$ for $a' \epsilon V_A(B)$. Similarly $\phi(a'a) = a'\phi(a)$. Hence, ϕ is $V_A(B) - V_A(B)$ homomorphism. Since $V_A(B)$ is $V_A(B)$ - projective, $A = V_A(B) \oplus \ker \phi$.

PROPOSITION 4. Let Λ be a central separable C-algebra and Γ a separable subalgebra ($\Gamma \supseteq C$). Then Γ is a direct summand of Λ as a two-sided Γ -module.

Proof: We know from {6}, Theorem 2 that $r = V_{\Lambda}$ (V_{Λ} (r)) and V_{Λ} (r) is C-separable. Hence the proposition follows from Lemma 2. From now we assume that the subset S of H is a finite group G.

PROPOSITION 5. Let Λ be a central separable C-algebra and G a finite subgroup of the group of C-automorphism of Λ_3 let $\Gamma = \sum_{\sigma \in G} J_{\sigma}$. Then the following statements are equivalent:

1) $\Gamma = \sum_{\sigma \in G} \Phi J_{\sigma}$ and |G| is a unit in C. 2) $\Gamma = \sum_{\sigma \in G} \Phi J_{\sigma}$ and Γ is C-separable. 3) Λ is a strongly Galois extension of Λ^{G} and Λ^{G} is C-separable.

Proof: 1) \leftrightarrow 2) It is clear from ({4} Lemma 4) by localization of C.

2) \longrightarrow 3) Since r is C-separable, r is a direct summand of A as r-module by Proposition 4. Hence, G is strongly distinct by Theorem 3.

3) \longrightarrow 1) |G| is unit in C by {5} , Proposition 5, and the rest is clear.

LEMMA 3. $J_{\sigma}J_{\tau} = J_{\tau\sigma}$ for any σ, τ .

Proof: Let m be a maximal ideal in C. Then $(J_{\sigma})_{m} = \text{Hom}_{\Lambda_{m}^{\mathfrak{l}}}(\Lambda_{m}, \Lambda_{m}^{\sigma})^{\mathfrak{l}} = C_{m}u_{\sigma}$, where $\sigma(y) = u_{\sigma}^{-1}yu_{\sigma}$. Hence, $(J_{\sigma}J_{\tau})_{m} = C_{m}u_{\sigma}u_{\tau}$ and $u_{\tau\sigma}(u_{\sigma}u_{\tau})^{-1}$,

 $u_{\sigma}u_{\tau}u_{\tau\sigma}^{-1}$ belong to C_m . Therefore, $J_{\sigma}J_{\tau} = J_{\tau\sigma}$.

PROPOSITION 6. Let G be a finite subgroup of H and assume Λ is a strongly Galois extension of Λ^{G} ; let Ω be a separable C-algebra b<u>e</u> tween Λ and Λ^{G} . Then the following statements are equivalent: 1) $\Omega = \Lambda^{H}$ for some subgroup H of G. 2) $V_{\Lambda}(\Omega) = \sum_{\sigma \in S} J_{\sigma}$ for some subset S of G. 3) There exist elements $\{x_i \in \Omega, y_i \in \Lambda\}$ such that $[x_iy_i = I and$ $\sum \rho(\mathbf{x}_i) \mathbf{y}_i = 0 \text{ for } \rho | \Omega \neq \mathbf{I}_{\Omega}, \ \rho \in \mathbf{G}. \quad (\{8\}, \text{ Proposition } 3.5).$ *Proof:* Since $V_{\Lambda}(\Omega) \subseteq \sum_{\sigma \in G} \Phi J_{\sigma}$, S is a subgroup from Lemma 3. Fur thermore, $\operatorname{Hom}_{\Omega_{-}}(\Lambda,\Lambda) = \Lambda_{\ell} \Theta_{C} V_{\Lambda}(\Omega)_{r}$ by {6}, Theorem 2, since Ω is C-separable and therefore 1) and 2) are equivalent. 1) \longrightarrow 3) Let G = $\bigcup_{i} \rho_{i}H$. Then $\Gamma = \sum_{\sigma \in G} \Theta J_{\sigma} = \sum_{i} \Gamma_{H} J_{\rho_{i}}$ and Γ is a direct summand of Λ as r-module, where $r_{\rm H} = \sum_{\sigma \in \rm H} \Theta J_{\sigma}$. Let p be a projection of Λ onto $\Gamma_H J_i = J_H$. Then $p \in \operatorname{Hom}_{\Gamma H_g}(\Lambda, \Lambda) = (\Lambda^H)_g \otimes \Lambda_r$. Hence, there exist { $x_i \in \Lambda^H$, $y_i \in \Lambda$ } such that $\sum x_{i\ell} \otimes y_{ir} = p$. 3) \longrightarrow 2) Put H = { $\sigma | \epsilon G, \sigma | \Omega = I_{\Omega}$ }. Then $V_{\Lambda} (\Omega) \supseteq \sum_{\sigma \epsilon H} J_{\sigma}$. Let $y \in V_{\Lambda}$ (Ω) and $y = x_{\rho_1} + x_{\rho_2} + \dots$, where $x_{\rho_i} \in \Gamma_H J_{\rho_i}$. Then $y = yI = V_{\Lambda}$ $= y \sum_{i} x_{i} y_{i} = \sum_{i} x_{i} y_{i} = \sum_{j} \sum_{i} x_{i} x_{\rho_{j}} y_{i} = \sum_{\rho_{j}} \sum_{\rho_{j}} (x_{i}) y_{i} = x_{\rho_{1}}.$ Hence $V_{\Lambda}(\Omega) =$ $= \sum_{\alpha \in H} J_{\alpha}$.

Finally, we shall give an example of a strongly Galois extension Λ of R, such that Λ is not a strongly Galois extension over its center with respect to its subgroup. However Λ is a strongly Galois extension over its center with respect to a suitable group.

Let G_2 be a cyclic group of order 2 and Q the field of rational numbers. Put $G = G_2 \times G_2$ and $K = Q(\sqrt{2})$. Then $L = K \otimes_Q K$ is a strongly Galois extension of Q with respect to G by {9}, Proposition 1. Let g and h be the inner-automorphisms of Q₂ induced by

 $\begin{pmatrix} -1 & 0 \\ & \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 1 \\ & \\ 1 & 0 \end{pmatrix}$

respectively. Then (g) × (h) \approx G and Q₂ is a strongly Galois extension of Q with respect to G, since $\frac{1}{2}$ { e_{11} , e_{11} , e_{22} , e_{22} , e_{21} , e_{12} , e_{12} , e_{21} } is a family of Galois generators. Put $\Lambda = Q_2 \oplus L$. Then Λ is a strong ly Galois extension of Q with group G if we define g(a+b) = g(a)+g(b)

for $g \in G$, $a \in Q$ and $b \in L$. It is clear that the fixing group of its center is equal to G. But if we define g(a + b) = g(a) + b, then A is a strongly Galois extension of its center with respect to G.

REFERENCES

- [1] M. Auslander, and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960) 367-409.
- {2} S.U. Chase, D.K. Harrison and A. Rosenberg, Galois theory and cohomology of commutative rings, Mem. Amer. Math. Soc. 52(1965) 15-33.
- F.R. Demeyer, Some notes on the general Galois theory of rings Osaka J. Math. 2 (1965) 117-127.
- [4] M. Harada, Some criterion for hereditarity of crossed products.
 ibid 1 (1964), 69-80.
- M. Harada, Supplementary results on Galois extensions, ibid 2 (1965) 243-350.
- [6] T. Kanzaki, On commutor rings and Galois theory of separable algebras, ibid 1(1964) 103-115.
- [7] T. Kanzaki, On Galois algebras over a commutative ring, ibid.
 2 (1955) 309-317.
- [8] H.F. Kreimer, A Galois theory for noncommutative rings, Trans. Amer. Soc. 127(1967) 29-41.
- K.Takeuchi, On Galois extensions over commutative rings, Osaka
 J. Math. 2(1965) 137-145.
- [10] A. Rosenberg and D. Zelinsky, Automorphisms of separable algebras, Pacific J. Math. 11(1961) 1109-1118.
- [11] O.E. Villamayor and D. Zelinsky, Galois theory for rings with infinitely many idempotents. (To appear).

Universidad de Buenos Aires Osaka City University