Revista de la Unión Matemática Argentina Volumen 24, Número 4, 1969.

N O R M A L I T Y A X I O M S by Y.K.Choudhary and B.C.Singhai

1. Here we define and study some new separation axioms, which we call normality axioms. These are weaker than the corresponding regularity axioms, defined by Davis $\{1\}$ and are connected with these and other separation axioms in a natural way. We also define and study a map which we shall call an *almost homeomorphism*, under which some of the normality and regularity axioms are preserved.

2. In the following definitions G, G_1 , G_2 etc. always denote nonempty open subsets; F, F_1 , F_2 etc. denote nonempty closed subsets; A, A_1 , A_2 etc. denote arbitrary nonempty subsets and x, x_1 , x_2 etc. denote arbitrary points of a given topological space (X,J). By $A_1 \mapsto A_2$, we mean that there exist G_1 and G_2 such that $A_1 = G_1$, $A_2 = G_2$ and $A_1 \cap G_2 = \emptyset$, $A_2 \cap G_1 = \emptyset$. By $A_1 \mapsto A_2$ we mean that there exist G_1 and G_2 such that $A_1 = G_1$, $A_2 = G_2$ and $G_1 \cap G_2 = \emptyset$. By $A_1 \mapsto C$ A_2 we mean that there exist G_1 and G_2 such that $A_2 = G_2$ and $G_1 \cap G_2 = \emptyset$.

DEFINITIONS. The space (X,J) will be said to satisfy the main

- 2.1 N_o iff [x]' does not contain two nonempty disjoint closed sets.
- 2.2 N_1 iff $[\bar{x}_1] \cap [\bar{x}_2] = \emptyset$ implies $[\bar{x}_1] \longmapsto [\bar{x}_2]$.
- 2.3 N_{1a} iff $[\bar{x}_1] \cap [\bar{x}_2] = \emptyset$ implies $[\bar{x}_1] \rightarrowtail^c [\bar{x}_2]$.
- 2.4 N₂ iff $[\bar{x}] \cap F = \phi$ implies $|\bar{x}| \rightarrow F$
- 2.5 N_{2a} iff $[\bar{x}] \cap F = \phi$ implies that there exists a cont<u>inuous</u> function f: $(X,J) \longrightarrow [0,1]$ such that $f[\bar{x}] = [0]$, and f[F] = [1].

REMARKS. We denote the axiom of normality by N_3 . The axiom R_{1a} has been defined in {2}*. R_3 -axiom denotes $N_3 + R_0 \cdot R_{2a}$ is complete

* A topological space is said to satisfy the R_{1a} -axiom iff $[\bar{x}_1] \neq [\bar{x}_2]$ implies $[x_1] = c[x_2]$.

regularity. Also, none of the normality axioms defined above implies R_0 . This follows from the fact that N_3 does not imply R_0 . {5, p. 100}.

3. THEOREM 3.1. The following results hold for any topological space.

Proof: (i) The proofs are obvious except for $N_1 \longrightarrow N_0$. Suppose the space (X,J) is not N_0 . Then for some $x \in X$, [x]' contains two nonempty disjoint closed sets F_1 and F_2 . Let $x_1 \in F_1, x_2 \in F_2$ then $[\bar{x}_1] \cap [\bar{x}_2] = \emptyset$ but $[\bar{x}_1]$ is not strongly separated from $[\bar{x}_2]$. (ii) $R_0 \longrightarrow N_0$. If the space is not N_0 then for some $x \in X$, [x]'contains two nonempty disjoint closed sets F_1 and F_2 . Now $x \in \sqrt{F_1}$ but $[\bar{x}] \notin \sqrt{F_1}$. Hence the space is not R_0 . The proofs for the other statements in this section are trivial.

- (iii) Obvious.
- (iv) Obvious.
- (v) Obvious in view of (iii) and the fact that

 $T_1 \xrightarrow{\longrightarrow} T_2 \xrightarrow{\longrightarrow} T_{2a} \xrightarrow{\longrightarrow} T_3 \xrightarrow{\longrightarrow} T_{3a} \xrightarrow{\longrightarrow} T_4$.

(vi) Any indiscrete space containing more than one point is $\rm R_3$ but not $\rm T_o$.

REMARK 3.2. Y.C.Wu and S.M.Robinson {3} have given two axioms, which they call Strong T_0 and Strong T_D , both of which are weaker then T_1 -axiom and give the T_1 -axiom in presence of N_3 .

We give here an axiom, which we shall call the T_c -axiom, which is weaker than both the Strong T_c and the Strong T_b -axiom, is independent of the T_0 -axiom and implies the T_1 -axiom in presence of any one of the normality axioms (including the N_0 -axiom).

DEFINITION 3.3. A topological space (X,J) is said to satisfy the T_c -axiom iff for every x ε X, either $[x]' = \varphi$ or [x]' contains two nonempty disjoint closed sets.

The proof of the above assertions, which strengthen (iii), are easy

4. We now give some theorems in which the N_1 and the N_2 -axioms replace respectively the T_2 -axiom and the axiom of regularity.

THEOREM 4.1. A paracompact space is N_2 iff it is N_1 .

Proof: Let $[\bar{x}] \cap F = \emptyset$, where F is closed. For $y \in F$, $[\bar{y}] \cap [\bar{x}] = \emptyset$. Hence there exist open sets U_y and U_y^x such that $[\bar{y}] \in U_y$, $[\bar{x}] \in U_y^x$ and $U_y \cap U_y^x = \emptyset$. The family $\{\nabla F\} \cup \{U_y : y \in F\}$ is an open cover of the space X and has a locally finite open refinement. The rest of the proof is similar to that of Lemma 2 in $\{6, p.154\}$.

THEOREM 4.2. A paracompact space is N_3 iff it is N_2 .

Proof: Similar to that of Theorem 4.1.

THEOREM 4.3. A Lindelöf space is N_3 iff it is N_2 .

Proof: Similar to the proof of the Theorem 7 in {6,p.139} .

THEOREM 4.4. A space having σ -locally finite base is N₃ iff it is N₂.

Proof: Similar to the proof of Lemma 1 in {6, p.168} .

5. It is well known that the N_3 -axiom is preserved under closed and continuous mappings. We generalize this result partially.

DEFINITION 5.1. A closed and continuous mapping f of (X,J) onto (Y,U) is said to be an *almost homeomorphism* iff the inverse images of point closures are point closures. An almost homeomorphism becomes a homeomorphism if the domain space is T_1 .

THEOREM 5.2. The normality axioms $N_{\rm o}$, $N_{\rm 1}$ and $N_{\rm 2}$ are preserved under almost homeomorphisms.

Proof: For the No-axiom is trivial.

- 電話の報 コム

Now suppose (X,J) is N_1 . Let x_1 , $x_2 \in Y$ be such that $[\bar{x}_1] \cap [\bar{x}_2] = \phi$ then $f^{-1}[\bar{x}_1]$ and $f^{-1}[\bar{x}_2|$ are disjoint point closures in (X,J) and are therefore strongly separated by open sets U and V such that $f^{-1}[\bar{x}_1] \subset U$, $f^{-1}[\bar{x}_2] \subset V$. Then $\circ f [\circ U]$ and $\circ f [\circ V]$ are disjoint open neighborhoods of $[\bar{x}_1]$ and $[\bar{x}_2]$ respectively. The proof for the N_2 -axiom is similar.

THEOREM 5.3. The regularity axiom R_{o} is preserved under almost homeomorphisms.

Proof: Let f: $(X,J) \longrightarrow (Y,U)$ be an almost homeomorphism and suppose (X,J) is R_0 . If x_1 , $x_2 \in Y$ then $f^{-1}[\bar{x}_1]$ and $f^{-1}[\bar{x}_2]$ are point closures in (X,J) and so either $f^{-1}[\bar{x}_1]=f^{-1}[\bar{x}_2]$ or $f^{-1}[\bar{x}_1] \cap f^{-1}[\bar{x}_2]=\emptyset$ This gives either $[\bar{x}_1] = [\bar{x}_2]$ or $[\bar{x}_1] \cap [\bar{x}_2] = \emptyset$.

COROLLARY. The regularity axioms ${\rm R}_1$, ${\rm R}_2$ and ${\rm R}_3$ are preserved under almost homeomorphisms.

REFERENCES

- {1} Davis, A.S., Indexed systems of neighborhoods for general topological spaces, Amer. Math.Monthly. 68(1961), 886-893.
- {2} Choudhary Y.K. and Singhai, B.C., R_{1a}-topological spaces (to be published).
- {3} Wu, Y.C. and Robinson, S.M., Weaker separation axiom than T implies a normal space is T₄, Notices, Amer. Math. Soc., 15¹ (1967), 694.
- {4} Kelley, J.L., General Topology, Von Nostrand, New York, 1955.
- {5} Vaidyanathaswamy, R., Set Topology, Chelsea, New York, 1960.
- {6} Gaal, S.A., Point Set Topology, Academic Press, New York, 1964.

Department of Mathematics University of Jodhpur JODHPUR (INDIA).