Revista de la Unión Matemática Argentina Volumen 24, Número 4, 1969.

## ON QUASI-GALOIS EXTENSIONS OF COMMUTATIVE RINGS

by Yasuji Takeuchi

In the ordinary Galois theory of fields the notion of quasi-Galois extension (in the other words, normal extension) plays an important role. Auslander, Goldman, Chase, Harrison, Rosenberg and others have developed Galois theory of commutative rings. On the one hand, Villamayor and Zelinsky studied weakly Galois theory of commutative rings. However the author thinks that in their theory there is no explicit notion corresponding to quasi-Galois extension of fields. Recently he studied on a characterization of the notion of Galois extension of commutative rings (5). It suggests a possibility for extending the notion of quasi-Galois extension of fields to the case of commutative rings. In this paper we shall try to do it.

In our first section we shall introduce a notion of quasi-Galois extension of commutative rings. In our second section we shall extend to our case theorems concerning to fixed rings in theory of fields. In our final third section we shall study on relations between Ga lois extensions and quasi-Galois extensions.

In this paper we shall assume that all rings have the identity and are commutative. If R is a commutative ring and if S is a R-algebra Aut<sub>R</sub>(S) will denote the group of all automorphisms of S over R. If T is an integral domain, <T> will denote the quotient field of T.

DEFINITION. We begin with introducing a notion of quasi-Galois extension of commutative rings.

DEFINITION 1.1. Let R be a commutative ring and S a commutative Ralgebra that is integral over R. Let G be the group of all automorphisms of S over R. Then S will be called a quasi-Galois extension of R if, for any prime ideal p of R, the following conditions hold:

- 1) If P is a prime ideal of S lying over p, the quotient field  $\langle S/P \rangle$  is a quasi-Galois extension of  $\langle R/p \rangle$
- 2) G operates transitively on the family of all prime ideals of S lying over p, i.e. if P and P' are two prime ideals of S lying over p, there is  $\sigma \in G$  such that  $\sigma(P) = P'$ .
- 3) Any automorphism of S/P over R/p is canonically induced by an element of G.

In particular we shall call S a purely inseparable extension of R if, for any prime ideal p of R, there exists only one prime ideal P

of S lying over p and <S/P> is a purely inseparable extension of <R/p>.

REMARK. Let S be a commutative ring and G a finite group of automorphisms of S. If R is the fixed ring of S under G, then S is a quasi-Galois extension of R {c.f. 1,  $n^{\circ}$  2, theorem 2}.

Let R be a commutative ring.  $\tilde{R}$  denotes the afine scheme induced by R. Then there exists a canonical bijective correspondence between the geometric points of  $\tilde{R}$  with value in a field K and the homomorphisms of R into K. If p is a geometric point of  $\tilde{R}$  with value in K, we shall denote with the same p the corresponding homomor phism;  $R \longrightarrow K$  and call it a geometric point of R with value in K (or simply, a geometric point of R).

If S is a R-algebra, the afine scheme  $\tilde{S}$  forms canonically a  $\tilde{R}$  -scheme. Let p be any geometric point of  $\tilde{R}$ . Then  $E_p^R(S)$  will denote the set of geometric points of  $\tilde{S}$  over p with value in an algebraic closure  $\Omega$  of  $\langle Im(p) \rangle$ . The set  $E_p^R(S)$  can be identified to the set of homomorphisms P of S into  $\Omega$  such that the diagram

$$\begin{array}{c} S \\ \uparrow & \searrow \\ R \xrightarrow{P} \\ \end{array} \begin{array}{c} P \\ \Omega \end{array}$$

is commutative where the vertical mapping is the structure homomorphism of R-algebra. If  $\sigma$  is a R-automorphism of S, we consider a right operation of  $\sigma$  on  $E_p^R(S)$  by  $(P\sigma)(x) = P(\sigma(x))$  for P  $\varepsilon = E_p^R(S)$ , x  $\varepsilon$  S. Let G be a group of R-automorphisms of S. Then  $E_p^R(S)$  consists of the orbits of it's element under G i.e.  $E_p^R(S) = U_pPG$ .

THEOREM 1.2. Let R be a commutative ring and S a commutative R-algebra that is integral over R. S is a quasi-Galois extension of R if and only if, for any geometric point p of R, the set  $E_p^R(S)$  consists of only one orbit of it's element under G.

In particular, S is a purely inseparable extension of R if and only if, for any geometric point p of R,  $E_p^R(S)$  consists of only one element.

*Proof:* The second statement follows easily from the first one. We shall show the first property. The "only if" part is proved similarly as the corollary to theorem 2 of  $s_2$  in  $\{1\}$ . The "if" part remains. Let p be any prime ideal of R and P any prime ideal of S

lying over p. If  $\Omega$  is an algebraic closure of S/P, the inclusion mappings of S/P and of R/p into  $\Omega$  induce a geometric point P of S and a geometric point p of R, respectively. If  $\bar{Q}$  is any R/p-isomorphism of S/P into  $\Omega$ ,  $\bar{Q}$  also induces a geometric point Q of S. By the hypothesis there is  $\sigma \in G$  such that P = Q $\sigma$  and so S/P = P(S) = = Q( $\sigma(S)$ ) =  $\bar{Q}(S/P)$ . Hence  $\langle S'/P \rangle$  is a quasi-Galois extension field of  $\langle R/p \rangle$ . Let Q be any other prime ideal of S lying over p. Since  $\langle S/Q \rangle$  is an algebraic extension of  $\langle R/p \rangle$ , there exists a R/p-isomor phism  $\bar{Q}'$ : S/Q  $\longrightarrow \Omega$ . Then  $\bar{Q}'$  induces a geometric point Q' of S over p with value in  $\Omega$ , so that there is  $\tau \in G$  such that  $P\tau = Q'$ . This implies  $\tau(P) = Q$ . It follows similarly as above that any R/p-automorphism of S/P is canonically induced by an element of G. This com pletes the proof.

COROLLARY 1.3. Let S be a commutative ring, G a group of automor – phisms of S and R the fixed ring of S under G. If G is compact in the finite topology, then S is a quasi-Galois extension of R.

**Proof:** Let  $\{x_1, x_2, \ldots, x_n\}$  be any finite subset of S. The hypothesis implies that the family  $\bigcup_{i=1}^n Gx_i$  of the orbits  $Gx_i$  forms a finite set. If we put  $S_{(x)}$  in which  $R|\bigcup_{i=1}^n Gx_i|$  of S generated by the  $\bigcup_{i=1}^n Gx_i$  over R, we obtain  $\sigma(S_{(x)}) \subseteq \sigma_{(x)}$  for all  $\sigma \in G$ . Let  $N_{(x)}$  be the set of elements of G which fix every element of  $S_{(x)}$ .  $N_{(x)}$  is a normal subgroup of finite index in G and so the factor group  $G/N_{(x)}$  can be regarded canonically as a group of automorphisms of  $S_{(x)}$ . Then R is the fixed ring of  $S_{(x)}$  under  $G/N_{(x)}$ , so that  $S_{(x)}$  is a quasi-Galois extension of R {c.f. the remark of Definition 1.1.}. We consider the family  $\{S_{(x)}\}_{(x)}$  or S. The family  $\{S_{(x)}\}_{(x)}$  forms

canonically an injective set by the inclusion mappings. Then we obtain that S is canonically isomorphism to  $\lim_{x \to \infty} S_{(x)}$ .

Let p be any geometric point of R and P, Q two geometric points of S over p. If  $g_{(x)}$  is the canonical homomorphism :  $S_{(x)} \longrightarrow S$ ,  $Pg_{(x)}$ and  $Qg_{(x)}$  are also geometric points of  $S_{(x)}$  over p. We consider the sets  $G_{(x)} = \{\sigma^1_{(x)}N_{(x)}, \sigma^2_{(x)}N_{(x)}, \dots, \sigma^{n(x)}_{(x)}N_{(x)}; \sigma^i_{(x)} \in G,$  $Pg_{(x)}\sigma^i_{(x)} = Qg_{(x)}\}$ .  $G_{(x)}$  is not empty and n(x) is finite. The family  $\{G_{(x)}\}_{(x)}$  forms naturally a projective set, i.e. if  $S_{(x)} \subseteq S_{(y)}$ , the morphism  $\lambda_{(x),(y)}: G_{(y)} \longrightarrow G_{(x)}$  is defined by  $\lambda_{(x),(y)}(\sigma_{(y)}^i N_{(y)}) = \sigma_{(y)}^i N_{(x)}$ . Then we have  $\lim_{x \to 0} G_{(x)} \neq \emptyset$ . We obtain easily that any element of  $\lim_{x \to 0} G_{(x)}$  induces canonically an automorphism  $\tau$  of S and so  $P_{\tau} = Q$ .

**COROLLARY 1.4.** Let R be a commutative ring. If S is a quasi-Galois extension of R and if T is a purely inseparable extension of R, then  $S \oplus_{n} T$  is a quasi-Galois extension of R.

**Proof:** Let p be any geometric point of R and P, Q two geometric points of S  $\bigotimes_R T$  lying over p. If we denote with f the natural hom<u>o</u> morphism : T  $\longrightarrow$  S  $\bigotimes_R T$ , we have Pf = Qf since they are geometric points of T over p. On the other hand if g is the natural homomorphism : S  $\longrightarrow$  S  $\bigotimes_R T$ , then Pg and Qg are geometric points of S over p, so that Pg $\sigma$  = Qg for some  $\sigma \in \operatorname{Aut}_R(S)$ . This implies P( $\sigma \bigotimes_R 1$ ) = Q where  $\sigma \bigotimes_R 1$  is the R-automorphism of S  $\bigotimes_R T$  induced by  $\sigma$  and the ide<u>n</u> tity automorphism of T.

## 2. FIXED RINGS.

We begin with an extension of a well-known theorems in theory of fields.

**PROPOSITION 2.1.** Let S be an overring of R that is a finitely generated separable R-algebra. If S is a purely inseparable extension of R, then we have S = R.

*Proof:* Since, for any maximal ideal m of R,  $S_m/mS_m$  is a separable extension field of  $R_m/mR_m$  and is purely inseparable over  $R_m/mR_m$ , we have  $S_m/mS_m = R_m/mR_m$  and so  $S_m = R_m + mS_m$ . Hence we obtain S = R.

PROPOSITION 2.2. Let R be a commutative ring and S a R-algebra. If S is a quasi-Galois extension of R, then the fixed ring of S under the group G of all R-automorphisms of S is a purely inseparable extension of R.

**Proof:** Let p be any geometric point of R and P, Q two geometric points of  $S^G$  over p. Then P and Q can be extended to geometric points P' and Q' of S, respectively. Since S is a quasi-Galois extension of

R, we have  $P'\sigma = Q'$  for  $\sigma \in G$  and so P = Q. This proves our proposition.

LEMMA 2.3. Let R be a commutative ring without proper idempotent and S a R-algebra. Assume that S is a direct sum of finite number of indecomposable R-algebras which are isomorphic to each other as R-algebras. If S is a finitely generated separable R-algebra, then the fixed ring S<sup>G</sup> is finitely generated as a R-module where G == Aut<sub>p</sub>(S).

Proof: Let  $S = S_1 \oplus S_2 \oplus \ldots \oplus S_n$  be a decomposition as the assumption. Then each  $S_i$  is a Galois extension of the fixed ring  $T_i$  of  $S_i$  under the group  $G_i = \operatorname{Aut}_R(S_i)$ . Hence each  $T_i$  is finitely generated as a R-module. Now we take any R-isomorphisms  $\sigma_1^i \colon S_1 \longrightarrow S_i$  for  $i = 2, 3, \ldots, n$  and the identity mapping of  $S_1$  as  $\sigma_1^1$ . Set  $\sigma_i^j = \sigma_1^j \cdot (\sigma_1^i)^{-1}$  for  $i, j = 1, 2, \ldots, n$ . Then  $\sigma_i^j$  is a R-isomorphism:  $S_i \longrightarrow S_j$ . We shall consider R-automorphisms  $\tilde{\sigma}_i^j$  of S such that  $\tilde{\sigma}_i^j \mid S_i = \sigma_i^j \cdot \tilde{\sigma}_i^j \mid S_j = \sigma_j^i$  and  $\tilde{\sigma}_i^j \mid S_k = identity$  mapping of  $S_k$   $(k \neq i, j)$  for  $i, j = 1, 2, \ldots, n$ . Let  $\Box$  be a subgroup of G generated by the  $\tilde{\sigma}_i^j \colon S_i$ . Then G is a semi-direct product of H and  $\tilde{\sigma}_i^{-1} = \{t + \tilde{\sigma}_1^2(t) + \ldots + \tilde{\sigma}_i^n(t); t \in T_i\}$ , so that  $S^G$  is finitely generated as a R-module.

THEOREM 2.4. Let R be a commutative ring and S a commutative overring of R which is a separable R-algebra and is projective as a Rmodule. If S is a quasi-Galois extension of R, then R is the fixed ring of S under the group G of all R-automorphisms of S.

**Proof:** First we assume that R has no proper idempotent. S is a direct sum of finite number of indecomposable R-subalgebras. Hence we can write with a form  $S = S_1^{n_1} \oplus S_2^{n_2} \oplus \ldots \oplus S_r^{n_r}$  where  $S_i$  are indecomposable R-algebras such that  $S_i$  and  $S_j$  ( $i \neq j$ ) are not isomorphic over R, and  $S_i^{n_i}$  denotes a direct sum of  $n_i$  copies of  $S_i$ . If we put  $G_i = \operatorname{Aut}_R(S_i^{n_i})$ , then G is isomorphic to the direct product of the  $G_i^{ts}$ . Let  $T_i$  be the fixed ring of  $S_i^{n_i}$  under  $G_i$ . Then we have  $S^G = T_1 \oplus T_2 \oplus \ldots \oplus T_r$ . Since each  $T_i$  is finitely generated as a R-module,  $S^G$  is so. Therefore it follows from (2.3) that  $S^G = R$ . In

general R, the same conditions as our theorem are inherited under the fibres  $S_x$  and  $R_x$  for any point x of the Boolean spectrum of R. Moreover the group of all  $R_x$ -automorphisms of  $S_x$  is equal to the group  $G_x$  of automorphisms of  $S_x$  induced by the elements of G. Then we have  $R_x = (S_x)^x$ , since  $R_x$  has no proper idempotent. Hence we obtain  $R = S^G$  {c.f., 7}.

3. RELATIONS BETWEEN QUASI-GALOIS EXTENSIONS AND GALOIS EXTENSIONS. Let R be a commutative ring, S a R-algebra and G the group of all R-automorphisms of S. For any maximal ideal M of S, as usual,  $G_{\rm T}(M)$ and  $G_{\rm Z}(M)$  (or simply,  $G_{\rm T}$  and  $G_{\rm Z}$ ) will denote the inertia group and the decomposition group of M, respectively.

THEOREM 3.1. Let R, S and G be as above. Then S is a Galois extension of R with a Galois group G if and only if S is a faithful, projective, separable R-algebra and is a quasi-Galois extension of R such that the inertia group  $G_{\rm T}(M)$  of a maximal ideal M of S lying over any maximal ideal m of R reduces to the identity.

**Proof:** The "only if" part follows from {2}, so that it is sufficient to show the "if" part. It follows from (2.4) that R is the fixed ring of S under G. Let M be any maximal ideal of S. If we put m == R ∩ M, then S/mS is a finitely generated separable R/m-algebra so that the number of R/m-automorphisms of S/mS is at most finite. Now each element (≠ 1) of G induces a non-trivial R/m-automorphism of S/mS. Hence G is finite. Furthermore the inertia group of any maxi mal ideal of S reduces to the identity, since all inertia groups of maximal ideals of S lying over a maximal ideal of R are conjugate to each other. This completes the proof.

COROLLARY 3.2. Let S be a Galois extension of R with the group of all R-automorphisms of S as a Galois group. If R is a field, then so is S.

THEOREM 3.3. Let S be a Galois extension of a ring R with a Galois group G and T an intermediate ring of S and R. Then there exists a normal subgroup N of G with  $T = S^N$  if and only if T is quasi-Galois and separable over R.

**Proof:** The "only if" part is trivial. It is sufficient for proving the "if" part to show  $\sigma(T) = T$  for all  $\sigma \in G$ . Let p and P be the na tural homomorphisms : R  $\longrightarrow$  S/M and T  $\longrightarrow$  S/M, respectively, for any

maximal ideal M of S. Then p is a geometric point of R and P is also a geometric point of S over p. On the other hand, if f is the natural homomorphism:  $\sigma(T) \longrightarrow S/M$ , then  $f\sigma$  is also a geometric point of T over p. Since T is a quasi-Galois extension of R, we obtain  $P\tau = f\sigma$  for some  $\tau \in \operatorname{Aut}_R(T)$ . Then  $P(T) = P\tau(T) = f(\sigma(T))$ and so  $T + M = \sigma(T) + M$ . Now let m be a maximal ideal of R and  $\{M_1, M_2, \ldots, M_n\}$  the set of all maximal ideals of S lying over m. Then  $S/M_1 \oplus S/M_2 \oplus \ldots \oplus S/M_n$  is a Galois extension of R/m with a Galois group G. Hence there exists a canonical bijective correspondence between the separable R/m-subalgebra of  $S/M_1 \oplus S/M_2 \oplus \ldots \oplus S/M_n$ and the separable R-subalgebra of S. This implies that T and  $\sigma(T)$ coincide, since the natural images of T and  $\sigma(T)$  in S/mS coincide.

PROPOSITION 3.4. Let R be a commutative ring and S a commutative R-algebra. If S is weakly Galois over R  $\{c.f: 7\}$ , then S is a quasi-Galois extension of R. Conversely if S is a faithful, projective, separable R-algebra and is a quasi-Galois extension of R, then S is weakly Galois over R.

**Proof:** The first statement is trivial {c.f. 7} and the remark of Definition 1.1. Assume that S is a faithful, projective, separable R-algebra and is a quasi-Galois extension of R. Then it is clear that, for any point x of the Boolean spectrum of R, the properties are inherited under the fibre  $S_x$  {c.f. 7}. Hence the fibre  $R_x$  is the fixed ring of  $S_x$  under the group of all  $R_x$ -automorphisms of  $S_x$ . Then we have  $\rho(S_x)G_x = Hom_{R_x}(S_x,S_x)$  and so  $\rho(S)G = Hom_R(S,S)$  where  $\rho: S \longrightarrow Hom_R(S,S)$  denotes the usual regular representation of S and G = Aut\_R(S). This completes the proof.

## REFERENCES

| {1}<br>{2} | N.Bourbaki. Algèbre commutative, Chap. 5-6, Hermann París 1964. |
|------------|-----------------------------------------------------------------|
|            | S.U.Chase, D.K.Harrison and A.Rosenberg. Galois theory and Ga-  |
|            | lois cohomology of commutative rings.Mem.Amer.Math.Soc. N°52    |
|            | (1965) 15-33.                                                   |

[3] D.K.Harrison. Abelian extension of commutative rings. ibid.
[4] N.Jacobson. Lecture in abstract algebra, Vol. III, Nostrand New

- York 1964.
- {5} Y.Takeuchi. A note on Galois coverings (to appear).

 (6) O.Villamayor and D.Zelinsky. Galois theory for rings with finitely many idempotents, Nagoya Math. J., Vol. 27 (1966) 721-731.
(7) ------. Galois theory for rings with infinitely many idem-

Potents.
8) 0.Zariski and P.Samuel. Commutative algebra T. TT. Noetrand

[8] O.Zariski and P.Samuel. Commutative algebra I, II. Nostrand, New York (1960).

> Universidad de Buenos Aires. Osaka Kyoiku University.