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INTRODUCTION. In this paper, which has a purely theoretical aim 

and interest, we develop the rudiments of the general Structure

Semantics (meta) adjointness of Categorical Algebra. We do so by 
means of two different and parallel techniques, one using the con 

cept of Monads (often called Triples, sometimes Standard Constru£ 
tions, and some other times Triads), the other using the concept 

of Theories. we then relate (specifically) these techniques and 

prove them to be equivalent. 

We do all this in the enriched context of a V-world, that is, our 

categories are V-categories and our functors are V-functors, where 
V is a given (fixed) closed (symmetrical monoidal closed) category 

V-Monads have already been considered in many places in the litera 
ture, [1] [3] [6] [8] and probably more. In [8] a Semantics-Structu

re (meta) adjointness is established in which the Structure (meta) 

functor is Only defined on V-functors which have a V-left adjoint. 
Here, in sections §1 and §2 we have reproduced parts of Chapter II 

of [3] , where we developed the Semantics-Structure (meta) adjoin! 
ness by means of a technique relying heavily on the concept of Kan 

extensions. Structure is defined on the broader domain consisting 
of those V-functors for which the (right) Kan extensions of them -

selves along the,mselves exist. The Semantics-Structure (meta) ad 

jointness is given by (essentially) a direct instance of the ~d 

jOintness of this Kan extension. 

V-Theories have not been considered yet in the literature. We in

troduce them here, and in doing so we have developed in detail the 

case in which the V-category involved is the base category V. We 
did so because of certain peculiarities (due to the presence of a 
V-codense cogenerator in v"I'J which are not pr'esent in the more ge

neral case. These peculiarities allow us to stress the similari
ties with the first and original treatment of the subject (at least 

"in its modern form), conceived by Lawere ([7]) in his work on Al

gebraic Theories in the category of sets. Here the concept of co~ 
tensors takes the role of products. A V-theory in V is a V-categ~ 

ry with the same objects as V and in which any object is a coten
sor of the unit object I. An algebra is then a cotensor preserving 

V-functor into V. We develop in sections §3 and §4 a Semantics
Structure (meta) adjointness in this context. 
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In section §S we prove the equivalence referred to at the beginning 
of this introduction,and in doing so we take advantage of the (sim
ple) equivalence between the structure (meta) functors to deduce 
the equivalence of the two semantics. In this way we avoid the 
need for the more complicated theorems of V-triplability and charac 
terization of V-categories of algebras. 

In section §6 we (briefly) indicate how to generalize these results 
to the general case of a V-theory in a V-category A, adopting in 
this case the V-versions of what have been considered as theories 
and algebras in [9] . 

Throughout this paper (although it is not always necessary) we as
sume our base category V to be complete (all small inverse limits) 
and well powered. All the concepts and results (as well as the no
tation) of V-category theory used here can be found in [3]. All 
the logically illegitimate constructions, preceded here by the word 
(meta), become licit mathematical objects in any or the current 
foundations suited for category theory. 

§1. Semantics of V-Monads. 
§2. The V-Monad Structure. 
§3. Semantics of V-Theories. 
§4. The V-Theory Structure. 
§S. Equivalence between the V-Monad and the V-Theory techniques 

of producing a Semantics-Structure (meta) adjointness. 
§6. Remarks about V-theories in a general V-category A. 

V-MONADS. Given a V-category A, recall that a V-monad in A is a V
endofunctor A ~ A together with a pair of V-natural transforma -
tions TT ~ T and idA ~ T, II is associative and n is a left an right 
unit for II in the sense that the following diagrams commute: 

TTT ~ TT T DT > TT T Tll > TT 

jTll 1 II 
TT ~ T i~!' and i~jll 

'l T 
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We write T = (T,p,n) and call P the multiplication and n the unit. 
A mozophi,sms of monads T .t T'is a V-natural transformation T 1 T' 

such that the diagrams 

and commute. 

V-monads in A with morphisms of monads between them form a (meta) 
ca tegory . that we deno t%( A I . 

§1. SEMANTICS OF V-MONADS. 

Given a V-monad T = (T,p,n), a T-algebra is an object AEA together 
with a T-algebra structure, that is, a morphism TA!; A, associative 
and for which nA is a unit, in the sense that the diagrams: 

TTA ~ TA 

and commute. 

We write A = (A,a) and call A the underlying object. 
_ f _ f 

A morphism of algebras A + B is a map A + B in A such that the dia 
gram 

commutes. 

T-algebras and morphisms of algebras form a category 
. h f AT uT A T- Tf T . W1t a unctor ~,U A =A ,U = f. A 1S a 

T T - - uT and U a V-functor by defining A (A,B) ~ A(A,B) to 

AT provided 

V-category 
be a V-equal-



a 

izer of the pair of maps: 

A(a,D) 
A(~,B) , A(TA,B) 

\ f· B
) 

A(TA,TB) 

uT is obviously V-faithful and we call it the forgetful functor. 
The followi~g proposition establishes the intuitive_fact that V
functors C ..¥ AT are the same thing as V-functors C ~ A together 

s with a V-Batural T-algebra structure TS ~ S. 

PROPOSITION 1.1 •. Given a V-functor C §'_A. S admits a l.i.6Ung into 
the T-aZgebras. that is, a V-functor C §. AT such that UTS = S. if 
and onZy if there is an ac.t:..i.on of T on S. that is, a V-naturaZ 
transformation TS ~ S such that the diagrams: 

TTS ~ TS 

I jlS Is and commute. v v 
TS => S 

Proof. It is clear that in both cases we have the same data, i.e., 
a family of arrows TSC ~SC, C EC, and that the equations of T-al 
gebra for each one of the sC are exactly the equations of T'action 
for s. Consider now the diagram: 

C(C,D) 

~s (1) \ uT 

. ~A(SC SD) 

'~ 
\ 

A (sC D) A (TSC, TSD) 

~ A (TSC, SD) A (0, sD) 
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S equalizes the two maps of diagram (2) (that is, s is V-natural) 
if and only if there is a map S making diagram (1) commutative 
(that is, if there is a V-functor structure for the function 

sC C --+TSC -+ SC). This completes the proof. ~~. 

REMARK. Since UT, being V-faithful, reflects V-naturality, it 
follows that V-natural transformations S 1 H are the same thing 
that V-natural transformations S 1 H such that the diagram 

TS T<j> > TH 

II s (1) 

v <I> 

S > H 

~ h 
v 

commutes. 

AT id T T 
The identity V-functor -+ A is the lifting of U , and so there 
is an action TUT ~ uT, uA =. a. 

Also, since TT ~ T is an action of T on T, there is a lifting of T 
into the T-algebras A ~ AT, UTFT = T, FTA = (TTA ~TA). It is 

clear that uFT =~. One of the equations in the definition of an 
action is exactly diagram (1) above for u, and so there is a V-na
tural transformation FTUT ~ id, UTE = u, that, together with 
id ~ UTFT, establishes the fact that FT is V-left adjoint to UT. 

The triangular equation is the other 

equation in the definition of action, and 

So we have just proven the following: 
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PROPOSITION 1.2. The V-funatop UT has a V-left adjoint FT and the 
T T T T . 

V-monad (U F ,U e:F ,n) '!.s equal/;o T. ~. 

We call the V-functor rT the free funator and a T-algebra of the 
T form F A a free algebra. 

Given a morphism of monads T' .1 T it is trivial to see that 
T'UT <PUT .. TUT U > uT is an action of T' on uT , and so, there is 

a V-functor, denoted A<P, which makes the triangle: 

AT A<P T' ---'"'--+. A 

"'\ / uP 

A commutative. 

Given a composite ~.<p, the V-functors A~'<P and A<P'A~ both cortespond 

to the same action, and so~ they are equal. The assignment of 

AT U: A to <P ~ a V-monad T and of A to a morphism of V-monads <I> is 

then a contravariant (meta) functor betweenjb(A) and the (meta) 

comma category (V-Cat,A): 

G 
j&(A)oP m • (V-Cat,A) 

the semantics (meta) functor. 

If T .1 T' is a morphism of V-Monads and T'S ~ S is an action of Tt 
"'S " on S; the composite TS ~ T'S ~ S is an action of T on S, and it 

is not difficult to check the following: 

PROPOSITION 1.3. The one to one and onto correspondence 

S ->6- (T) 
m 

(Proposition 1.1) 
TS .... S 

is natural in r with respect to morphisms of V-monads. (Where the 

above arrow is understood to be a map in (V-Cat,A) and the above 

double arrow an action of T on S). 
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§2. THE V-MONAD STRUCTURE 

S 
Given a V-functor C ~ A, the right Kan extension of S along itself 

RanS(S) 
A I A, if it exists, has a structure of V-monad given by: 

S ..ii S 

RanS(S)e: r 
==1;6.==:> 0 

and 

RanS(S) ~> RanS(S) 

RanS(S) S ~ S 

(where r is the one to one and onto correspondence which defines o 
the right Kan extension). 

We write TS = (RanS(S),p,n) and call it the oodensity V-monad. If 
it exists, we say that S admits a codensity V-monad. We say that 
S is stpongZy tpactabZe if, furthermore, RanS(S) is preserved by 

the rellresentables A A(A,-~ v. (ef. [31, Proposition 1.4.3: If A 

is cotensored, a right Kan extension with codomain A is preserved 
by the representables if and only if it is point-wise, that is, if 
and oniy if the Kan formula fo compute it as a point-wise end of 
cotensors in A can be used). 

A complete proof of the fact that the unit and multiplication defi 
ned above for RanS(S) actually define a V-monad as well as of the 
next two propositions is to be found in [31. 

PROPOSITION 2.1. Given any othep V-monad T in A. aotions of T on 

Sand mopphisms of V-monads T + TS ooppespond to eaoh othep· undep 

rot 

TS > S 

~. 

G F 
PROPOSITION 2.2. If a V-funotop 5 + A has a V-Zeft adjoint A + 5, 



12 

id ! GF , FG ~ id, then it is strongly traatable and the aodensity 

V-monad is (GF, GEF, 11).. Furthermore, RanG (G) is preserved by any 

V-funator with domain A. ~. 

THEOREM I. Given a V-funator C § A whiah admits a aodensity V-mo

nad, for every V-monad T~A), there is, naturally in T, a one to 

one and onto aorrespondenae between morphisms of V-monads T + TS 

and V-funators C + AT making the triangle 

aommutative, that 

indiaate this by 

C_AT 

~/uT 
A 

is, maps S +~ (T) 

S + G (T) 
m 

in (V-Cat.A). 

Proof. Immediate from Propositions 1.3 and 2.1. 

As usual, we 

Let ~r(V-Cat,A) be the full (meta) sub-category of (V-Cat,A) 

whose objects are the V-'functors admitting a codensity V-monad. 

From propositions 1.2 and 2.2 we know that the semantics (meta) 

functorCYm takes its values in s~r(V-Cat,A). The assignment of 

TS~(A) to a V-functor C ~ A becomes then, by Theorem I, a con

travariant (meta) functor, denotedc;m' in such a way that the one 

to one and onto corresponce (in Theorem I) is also natural in S . 

(;m is then a left adjoint to semantics, and it is called struature. 

Given a V-functor C ~ A in s~r(V-Cat,A), the codensity V-monad 

TS =~m(S) is the structure V-monad of S. 

Notice that the (meta) adjunction: 

S ---->- G: (T) 
m 
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is, essentially, just the one to one and onto correspondence which 
defines the right Kan extensions RanSCS), 

It is iMmediate from ~ropositions 1.2 and 2.2 that the arrow 
T +~ ~CT) in~A). T + T T' is the equality. That is, the code~ m m U 

sity V-monad of UT is T. 

The 

r Cid) 
is given by the action RanSCS) S ~ S. 

The V-functor S is called the semanticaZ comparison V-functor of S. 
When S has a V-left adjoint we have: 

PROPOSITION 2.2. Given any V-functor B Q A with. a V-Zeft adjoint 

A ~ B. (&. n): F -I V G • the semantic comparison V-functor of G, 

B G .TG· • b h . GFG G& G (h . G C . d)) -+ 1'\ 1.s· g1.ven y t e aat1.on => t at 1.S, & = ro 1 , 

and is unique making the foHowing two triangZes commutative: 

G T 
B G -A 

~/ /G 
A 

(a simple proof of this fact is given in [3], Proposition 11.1.6). 

Q.:b.!!. 

V-THEOR I ES. By a V-theory in V we mean a pair (T,T), where T is a 
V-category whose objects are the objects of V(that we will write 
Vt when we think of them as belonging to T) and where 

V(W,V) ! T(Vt,wt) is a V-functor structure making the identity on 
objects a cotensor preserving V-functor vJP 1 T. 

We have then for each Vt E T, Vt = f(V,I t ) (where f(V,I t ) is the 
cotensor (in T) of V with It), and hence, the V-objects of mor -
phisms into It determine the whole V-structure. of T. Specifically 

.., 
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we have T(Wt,Vt ) ~ V(V,T(Wt,r t )) (cotensoring isomorphism). 

<I> 

By a morphism of theories (T, 1) ... (T', T') we will understand a co-

tensor preserving V-functor T ! T' sending It into It'; 

valently, any V-functor T! T' making the diagram 

T~T' 

''\ / T' 
Vop 

commutative. 

or, equi-

V-theories in V with morphisms of theories between them form a (m~ 

ta) category that we denote~(V). 

§3. SEMANTICS OF V-THEORIES. 

Given a V-theory (T,T), a T-algebra is a cotensor preserving V
functor T ~ V. Since Vt ~ r(V,I t ), we have avt = V(V,a(I t )) and 
so a on objects is completely characterized by its value at It. 
Also; the composite Vop ~ V is cotensor preserving, and hence, 
since I is a V-codense cogenerator of VOP , it is representable: 
a·T = V(-,aCI t )) CcL [3], Theorem III.2.3). (a is cotensor pre
serving if and only if a ° T is cotensor preserving if and only if 
aoT is representable). 

We can then redefine a T-algebra as being an object A E V togetheI 
with a T-algebra structure, that is, maps 

TCVt ,wt) ~ V(V(V,A) ,V'CW,A)) gI.vmg a structure of V-functor T ~ V 

to the function on objects VL~ vCV,A), and making the diagram: 

T(Vt,wt) a) V(VCV,A),V(W,A)) 

Cl) ~ <yc-,A) commutative. 

VCW,V) 

We write A = CA,a) and call A the underlying object. 

A morphism of algebras A ! B is a V-natural transformation a f > ~. 
It is completely determined by its value at It and hence we can re 
define a morphism of algebras as being a map A ! B making the dia
~rams: 
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T(Vt,wt ) 0 __________ -+ V(V(Vt,A),V(Wt,A)) 

I S I V (0, V (D,f)) 

V(V(D,f),D) V(V(Vt,A),V(Wt,B)) 

T-algebras and morphisms of algebras form a 
T 

with a functor V(T) ~ V UTA = A , UTf 

ry and UT a V-functor by defining v(T)(A,B) 

It-projection of the (large) end: 

commutative. 

category V(T) provided 

f. VeT) is a V-catego

uT 
--+ V(A,B) to be the 

That the above end exists can be seen as follows: 

Consider the diagram: 
E 

1 
V (A,B) vcw./ ~.-) 

V(V(W,A),V(W,B)) (1)v w V(V(V,A),V(V,B)) , 

V(T(V t ,Wt),V(V(V,A),VlW,B))) 

j V CT.OJ 

V (V (W,V),V (V(V ,A),V (W,B)) 
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where the arrows fo f1 f2 and f3 are the maps which correspond by 
adjointness to: 

t 
__ ~V~(_-L,~eW~_)~'~a~ __ -+, V(V(aWt,ewt),V(aVt,ewt)) 

. V(aV\-)·e t t t t 
---->."'-'-~-<-....::...---+, V (V (aV ,ev ), V (aV ,ew )) 

V(W,V) V(-,V(W,B))·V(-,A) , V(V(V(W,A),V(W,B)),V(V(V,A),V(W,B))) 

V(W,V) V(V(V,A),-).V(~ V(V(V(V,A),V(V,B)),V(V(V,A),V(W,B))) 

and where E is the intersection of all the equalizers of the two 

maps in diagrams (l)V,W' 

From diagram (1) (page 13) and the above definitions it is not di

fficult to see that diagrams fa) and (b) commute. This, together 
with the equation V(A,B) = V(V(V,A),V(V,B)) (cf. [31 ) 

V 

CV-Yoneda Lemma) easily implies that E = fvt V (aVt , evt) . 

uT is the V-functor "evaluation at It", and from the above cons -
truction it is obvious that it is V-faithful. We call it the for
getful functor. 

T(Vt ) 
PROPOSITION 3.1. The T-algebras T \ ,-~ V are the values of a 

T 
V-functor V ~ VCT) • V-left adjoint to UT, 

Proof· 

vCT) CT(Vt ,-) ,a) ~ aVt = VCV,A) 

where the above CV-rratural in a) isomorphism is given by the V-Yo' 
neda lemma. Q.E.D 

We call the V-functor FT the free functor and a T-algebra of the 

form FTV = CTCVt,It),TCVt ,-)) a free algebra. 
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Given a morphism of theories fT' ,T') ! (T,T) , it is clear that 
for any T-algebra T ~ V , the composite T' t T ~ V is a T' -algebra. 

T' From the universal property vf ends and the fact that U is 
V-faithful it is easy to see that this function between the objects 

of VeT) and those of VCT ') has a (unique) structure of V-functor, 

V~ ,.making the diagram 

:ommutative. Again, it is completely straightforward to check the 
T 

equation v~·~ = V~·V~ , and so, the assignment of VCT) ~ V to a 

V-theory (T,T) and of V$ toa morphism of V-theories is a contrava 

riant (meta) functor between{?(V) and the (meta) comma category 
(V-Cat,V) : 

G t 
---'---+. (V -Ca t, V) 

the 8emantios (meta) functor. 

14. THE V-THEORY STRUCTURE. 

Given a V-functor C ~ V; we will say that it is tractable if for 
any pair of objects V,W E V, the end 

Ie V(V(V,SC),V(W,SC)) exists in V. 

,That is, if for any pair of objects V,W E V, the class of V-natu -

ral transformations between VCV,S( - )) and V(W,SC - )) is a set, 
and furthermore, it is the underlying set of an object of V, name
ly, the end displayed above. 

There is no difficulty in checking that the objects of V together 
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with the a.bove end between them form a V-category, T S ' the clone 
of operations of S; 

Ic V(V(V,SC),V(W,SC)) . 

The collection of maps (which is a V-natural family): 

V(W,V) V(-,SC), V(V(V,SC),V(W,SC)) 

lifts into the end, providing a structure of (contravariant) V
functor to the identity map between objects: 

TS has a V-left adjoint [ putting W = I in the definition of tracta 

ble, it follows that Ic V(V(V,SC),SC) = RanS(S) (V) (see Proposi -

tion 5.1) exists, then, for any other W, 

V(W, f C V(V(V,SC),SC)) = Ts(Vt,Wt ) = TS(Vt,TS(W)) 1 and therefore 

it preserves cotensors. W~ have then that the pair (TS,TS) is a 
VCtheory in V, V-theory which we call lithe structure of C § V ". 

PROPOSITION 4.1. If a V-functor B Q V has a V-left adjoint V g B, 
then it is tractable and 

Proof· IB V(V(V,GB),V(W,GB)) ~ IB V(B(FV,B),B(FW,B)) ~ B(FW,FV) 

The second isomorphisms given by the V-Yoneda Lemma. 

THEOREM II. Given a tractabZe V-functor C § V ~ there is a V-fun~ 

tor C § VeTS) making the triangZe 
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S (TS) 
C -> v 
\,(1)/ T 

'\ IUS 
V 

commutative 

nd such that given any other V-theory (T,T) together with a V-fun£. 

or C ¥ VeT) making the triangle 

(Jommutativ.e, there is a unique morphism of theories T ! T S making 
the triangle 

S (T S) 
C-V 
~ (3) 1 v<P 

.. ~ veT) 
commutative . 

Proof. For any C E C define SC E VeTS) , SC = (SC,n e) where 

Ts(Vt,wt ) ~ V(V(V,SC),V(W,SC)) is the C-projection of the end. 

By definition of TS (page 17) , 

commutes, and so (SC,n C) is a Ts-algebra. The collection of maps 

(which is a V~natural family) 

C(C,C') ~ V(SC,SC') V(V,-l V(V(V,SC),V(V,SC')) = V(nc(Vt),nc,(Vt )) 

lift into The end V(TS)(SC,SC'). providing a structure of V-functor 

to S whi~ .. (in particular) makes triangle (1) commutative. 
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Given C ~ VeT) , GC =$C,yc) , then, there is a unique 

commutes 

(recall that aC was (by definition) the projection of the 
But the commutative diagrams (4) are exactly the equation 
that is, commutativity of triangle (3). 

end). 
V4>.S = Gl 

~. 

Let 6tV-Cat,V) be the full (meta) sub-category of (V-Cat,V) whose 
objects are the tractable V-functors. From Propositions 3.1 and 
4.1 we know that the semantics (meta) functorGYt takes its values 

ill ~v-cat.V). The assignment of (TS,TS ) E~(V) to a V-functor 

C ~ V becomes then, by Theorem II, a contravariant (meta) functor, 

" denotedGt , left adjoint to semantics. 

Gt 
k;(V)op ~ :t;;v-Cat,V) -

From the V-Yonada Lemma and Propositions 3.1 and 4.1 it is clear 

that the arrow (T,T) ~~t~(T) in~(V) , T ~ T T ' is the equality 
U 

(or rather, an isomorphism). That is, the clone of operations of 

UT is T. 

The arrow S --.C5,pt(S) in ~fv-cat,v). , c § VCTS) has been construe 

ted in Theorem II and it is called the semantical comparison V-func 
tor. 
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§5. EQUIVALENCE BETWEEN THE V-MONAD AND THE V-THEORY TECHNIQUE 

OF PRODUCING A SEMANTICS-STRUCTURE (META) - ADJOINTNESS. 

First let us check tha.t the domain (meta) categories of the two 
structure (meta) functors coincide, that is, that they are both 
the same full (meta) sub-category of (V-Cat,V). 

PROPOSITION 5.1. Given a V-funatop C § V. then: S admits a aoden

sity V-monad if and onty if S is stpongty tpaatabte if and onty if 
S is tpaa tab te . 

Ppoof. The first two statements are clearly equivalent since any 
_ __--1" igh-t----Kan- ex-teJl-s-i()n-w4-t-h-eedO'lltai-n-V--i-s---p1Jbrtwi.-s~-ar-t r ac note 

implies strongly tractable is easily seen by putting Wt = I in the 
definition of tractable (page 16). The resulting end is just the 
Kan formula for pointwise computing of RanS(S), Vice-versa, assu~ 
ing that RanS(S) exists, since the representables preserve it, for 
every V E V, RanS(V(V,S( - ))) exists, and, being with codomain V, 
it is pointwise. Then, the'pontwise Kan formula shows that S is 
tractable. ~. 

In order to relate the domain (meta) categories of the two seman
tics (meta) functors it is in order to de~ine the KteisZy V-cate
gory associated to a V-monad in V (cf [8]). 

iecall that given a V-monad T (T,~,n), the objects of V with the 
following V-structure between them 

(1) 
K (wt,vt) = V(W,TV) 

T def 

constitute a V-category,KT ' the Kleisly V-category of T. 

V(W,V) V(D,nVl KT(Wt,vt ) give a structure of V-functor V 

the identity between objects,which,just by definition has a V-right 
T 

adjoint KT ~ V sending v t into TV. The adjunction isomorphism is 

given by the equaZity (1). The V-monad associated to the adjoint 

pair fT, uT = KT(I t ,-) is clearly T again. 

The pair ((fT)OP,K~P) is obviously a V-theory in V, and there is no 

difficulty in seeing that the passage,n,(V) ~ 6(V), 

K~(T) '" ((fT)OP,K~P) is a (meta) functpr [the V-functor correspon

ding to a morphism of V-monads T 1 T' is given by 
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On the other hand, given any V-theory (T,T), the V-functor 
t 

T T(-,I l Vop is a V-left adjoint to Vop l T (the adiunction given 

by the cotensoring isomorphisms T(Wt,Vt ) = T(Wt,f(V,I t » g, 

g, V(V,T(Wt,I t ». Hence, we rediscover T by means of the formula 

T 
- t T(-,I ). 

The following formal manipulation, 

V(V,T(f(W,It),I t ) g T(f(W,It),f(V,I t » = T(wt,Vt) , proves that 

the Kleisly V-category associated to the V-monad de~ermined by the 

V-adjoint pair a: f(-,I t ) -1V T(-,I t ) ~s the dual of T, while the 

commutativity of the diagram below 

[where nV 

properly be called lithe Gelfand transformation")] shows that 'the de 

finitiJn of fT produces in this case the V-functor T. Therefore we 

wholly recover the starting V-theory (T,T). This implies that the 

assignment of the V-monad T(f(-,It),It)to a given V-theory (T,T) is 

actually a (meta) functor~(V)~f~(V) which together with the (m~ 

tal functor K~ establishes an equivalence of (meta) categories bet 

ween (;(V) andj1o(V). (Notice that this V-monad sends an obj ect 

WE V into the V-object of W-ary operations). 

THEOREM III. There is an equivaLenae of (meta) aategorie~ 
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between the (meta) aategories of V-Theories in V and of V-Monads 

in V suah that the fo 1 Zowing diagram: 

t;(V)Op ~ 

jlK lK~" G~nt~ . t;" ?:; (V-Cat V) 
~ r sr ' 

~(V)op .~ 

aommutes up to naturaZ isomorphisms. 

1) 

2) ... G 
t 

where the (meta) funators G9 G? are the respeative semantias-stru~ 
ture (meta) adjointness. . 

Proof. The (meta) functors ~K and K~ have been defined and proven 
to be an equivalence in the considerations made before the state -
ment of the Theorem 

Since the semantics (meta) functors are adjoints to the structure 
(meta) functors (Theorems I and II), it will be enough to prove 
equations 1) That is: Given a tractable (equivalently, strongly 
tractable, Proposition 5.1) V-functor C ~ V: 

a) The codensity V-monad of S is the V-monad associated by tK to 
the ClOne of operations of S. This is clear just by the defini -
tions involved (the assignment Vt.~ RanS (S)V was seen to be a V-

I f d . . Vop T S T 1 7) eta J01nt to -+ S' see page . 

b) The clone of operations of S is the dual of the Kleisly V-cate 
gory associated to the cod~nsity V-monad of S. Again, this is 
clear just by the definitions involved 

(TS(Vt,Wt ) = Ic V(V(V,SC),V(W,SC)) = RanS(V(W,S(-))(V) 

V(W,Rans(S) (V)) 
t t . 

KT (W ,V )). 
S 
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These observations complete the proof of the theorem. ~. 

Notice that equations 2) in the theorem just proven mean that 

given any V-monad, the V-category of algebras is V-isomorphic to 
the V-category of algebras over the dual of its Kleisly V-category 

and, vice-versa, given any V-theory, the V-category of algebras is 

V-isomorphic to the V-category of algebras over the associated V
monad. 

§6. REMARKS ABOUT V-THEORIES IN A GENERAL V-CATEGORY A. 

We have observed that for any V-theory in V, Vop r T. the V-func

tor T has a V-left adjo1nt. This is ultimately due to the fact 
that I E V is a V-codense cogenerator of VoP: Also, for the same 

reason, given any T-algebra T ~ V, the composite Vop r T ~ V is a 

representable V-functor (cf. [3] , Theorem III. 2.3). 

We can define then a V-theory in A as a V-functor AOP r T, bijec

tion in objects and having a V-left adjoint. Similarly, a T-alg~ 
bra as a V-functor T ~ V such that AOP r T ~ V is representable 

(cf. [9]). All of section §3 of this paper can then be carried over 

with no great difficulty. In particular, the T-algebras form a V
category and the forgetful V-functor (sending a into the represen

ing object of a'T) has a V-left adjoint (which sends A E A into 
T(At ,-), which is a T-algebra since th~ composite T(At'-)'T is re-

v t v 
presented by T A E A (T the V-left adjoint to T)). We obtain in 
this way a Semantics (meta) functor which takes its values in the 

(meta) sub-category of (V-Cat,A) of strongZy tractable V-functors. 
On the other hand, any strongly tractable V-functor C ~ A is trac

table (but not vice-versa) (exactly the same proof given in Proposi 
tion 5.1 applies to this general case), and hence we can apply word 

by word the Structure(meta)functor construction developed in section 

§4 to strongly tractable V-functors C ~ A. In this case, the clone of 
T 

operations of S, AOP ~ TS is such that TS has a V-left adjoint 

(sending At E TS into RanS(S) (A)) and hence it is a V-theory in A 

according to our definition above. We obtain in this way a Seman
tics-Structure (meta) adjointness between V-theories in A (having 

a V-left adjoint) and strongly tractable V-functors into A, which, 

is completely equivalent to the Semantics-Structure (meta) adjoin! 

ness developed in sections §1 and §2. Theorem III with A in place 
of V holds exactly. 
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If we do not require a V-theory in A to be such that AOP r T has a 
V-left adjoint, then some new kind of phenomena appears which makes 
the situation different than in the case of V-theories in V. 

A T -algebra is defined in the same way, i. e., any V -functor T 5! V 
such that n'T is representable. T algebras form a V-category with 
a forgetful V-functor which now in general will not have a V-left 
adjoint (the V-functors T T(At.-), V are not T-algebras since 
T(At'-)'T is not r.epresentable any more). This forgetful V-functor, 
however, is still tractable (but not strongly .tractable), and we 
obtain a Semantics (meta) functor which takes its values ~n the (m~ 
ta) sub-category of (V-Cat,A) of tractable V-functors. The struc' 
ture (meta) functor construction (§4) applies exactly (in this case, 

T the clone of operations AOP ~ TS will not have a V-left adjoint) 
and we obtain a Semantics-Structure (meta) adjointnes's between V
theories in A and tractable V-functors into A which contains the 
previous ones. 
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