
Revista de la 
Union Matematica Argentina 
Volumen 25, 1970. 
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The spectral theorem for self-adjoint operators in a Hilbert space 

(with real, complex, or quat ern ionic scalars) generalizes the cla~ 
sical theorems on the canonical reduction of quadratic or hermi -

tian forms and their matrices. Usually two steps are needed, the 
first passing from finite-dimensional spaces to bounded operators 

in general spaces, the second from bounded operators to unbounded. 
There has always been a certain interest (see [1], [2], [3], [4], [5]) 

in carrying out this generalization by "pure" Hilbert space me -
thods - that is to say, by using only intrinsic algebraic and geo

metric properties of abstract Hilbert space without recourse to 
special theorems drawn from classical analysis. For bounded oper~ 
tors the spectral theorem was treated in this spirit by F. Riesz 

[1] and by Lengyel and Stone [2], for unbounded operators by Y. Y. 

Tseng [3]. The present paper, while closely related to Tseng's, 

expounds a variant of his approach that may appear somewhat sim -
pIer and may shed some additional light on the techniques required. 

All methods for treating the case of an unbounded self-adjoint op~ 

rator A involve the discussion of certain related bounded opera -
tors. Most of them also use the spectral theorem for the bounded 

case, either explicitly or implicitly. Here we shall assume the 

bounded case, as treated in [2], and apply it to one of the opera
tors appearing in the characteristic !\latrix of A (see [6]) in such 
a way as to settle the unbounded case. We shall not assume any 

knowledge of [6], but shall develop on the spot the essential pro

perties of the elements of the characteristic matrix for A. 

As commutativity of operators is continually stressed in our arg~ 

ments, we must recall that a bounded linear operator D commutes 

with the self-adjoint operator A if and only if it maps the domain 

of A into itself and AD is an extension of DA. The set of all op~ 
rators\D commuting with A is called the commutant of A, while the 

set of all bounded linear operators commuting with every member of 
the commutant is called the second commutant of A. Clearly, if D 

is in the commutant of A, then so is its adjoint D*: for, if x and 
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y are vec~ors in the domain of A, we have (Ax)(D*y) = (DAx)y = 
= (ADX)y = x (D*Ay) ; and then, since A is self-adjoint, D*y must 
be in the domain of A and satisfy the relation AD*y = D*Ay. Simi 
larly, the second commutant contains both D and D* if it contains 
either. 

In order to state the spectral theorem and present its proof it 
will be convenient to introduce the following 

DEFINITION 1. A ppojection P splits a seZf-adjoint opepatop A at 

A, -""<X<+ .... if and only if 

(1) P commutes ~ith A. 

(2) if x is.·a vectop in the domain of A and in the 
pange of p. then (Ax)x";;;XUxIl 2 • 

(3) if x is a vectop in the domain of A and in the 
2 

pange of I-P. then xllxU "(Ax)x ~ith equaUty 

hoZding if and only if x = O. 

Here we note that the ranges of P and I-P are mutually orthogonal 
subspaces and that every vector x is the sum of components Px and 
(I-P)x in these two subspaces respectively, in just one way. The 
commutativity required in (1) shows that x is in the domain of A 
if and only if its two components are. Commutativity shows fur -
ther that A acts on each of these subspaces as a self-adjoint op~ 
rator therein and that the behavior of A is completely determined 
by what it does there, in accordance with the equations Ax = 
= APx + A(I-P)x = PAx + (I-P)Ax where APx = PAx and A(I-P)x ... 
= (I-P)Ax. The concept of splitting demands in addition a certain 
quantil:ative behavior (semi-boundedness) in each of these subspa
ces, as described by (2) and (3) respectively. 

We shall now state the spectral theorem, in two parts. 

THEOREM la. (Spectral Theorem, Analytic Part.) If A is a self
adjoint opepatop. then thepe exists fop each peal X. _00 < X < +00 • 

a unique ppojection Ex spUtting A at X. The ppojections E). nece!!, 

sapiZy have the folZo~ing ppopepties: 

(1) Ex is in the second commutant of A. as ~ell as 

in the commutant. 
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(2) EAElJ = E 
\I 

where \I = min(A,lJ). 

(3) lim EHe:x EAx strong~y when e: > O. 
e: .... o 

(4) lim EAx 0 8trong~y. 
A-~_~ co 

(5) lim EXx x 8trong~y. 
A .... +'" 

We recall that a family of projections satisfying (2) to (5) above 
is called a speatra~ fami~y or a aanoniaa~ reso~ution of the iden

tity.With this terminology we state the second part of the spec -
tral theorem as follows. 

THEOREM 1b. (Spectral Theorem, Synthetic Part). If EA' -'" < A < +"'. 
is a speatra~ fami~y of projeations. then there exists a unique 

se~f-adjoint operator A suah that EA spUts A at A. 

Here we shall prove only Theorem 1a. The proof of Theorem 1b, as 
is well-known, depends on the construction of A as a limit of Rie 
mann-Stieltjes sums 
n-l' 

r A~+I(EA - EA ) 
k .. O . k+l k 

, and the verification 

of the splitting property for EA, 

The proof of Theorem 1a depends in the last analysis on the follow 
ing specialization. 

THEOREM 2. (Splitting Theorem). If A is a seLf-adjoint operator. 

there exists a projeatio~ E that sp~its A at 0 and is in the se -

aond aommutant of A •• 

Indeed, we shall begin by proving 

THEOREM 3. The SpUtting Theorem impUes the Speatra~Theorem. 

Ana~ytia Part. 

The proof will be presented as a series of lemmas and theorems. 

LEMMA 1. A projeation P sp~its A at A if and onLy if it spLits 

A-AI at O. 

Proof. This proof will be left to the reader. 

COROLLARY 1. The SpUtting Theorem impUes that t'hel'e exists a 
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projection El in the second commutant of A such that El spLits A 
at l, _00 < l < +00 

LEMMA 2. If P~ and Ql are commuting projections that spLit A at 

~ and A respeotiveLy, then ~ ~ A impLies P Q, = P and l = ~ im-
~ 1\ ~ 

Proof. Since P and I-Q, are commuting projections, the intersec 
~ 1\ -

tion of their ranges is a subspace with R = Rl~ = P~ (I-Ql) as its 
projection. Thus for arbitrary x the vector y = Rx is in the ra£ 

ges of P and I-Q,. Since P and Q, split A at ~ and at l respec 
~ 1\ ~ 1\ -

tively, we have AUyU 2 ~ (Ay)y ~ ~UyU2 with equality on the left 

if and only if y = O. Thus ~ ~ A implies AU yll2 = (Ay)y and hence 

y = O. It follows that Rx = 0 or P Q, = Q, P = P. When A = W , 
~ 1\ 1\ ~ ~ 

we can interchange P ~ and QA' obtaining QA = P ~ QA = QA P ~ = P ~ 

COROLLARY 2.1. The SpUtting Theorem impUes that, if PA spUts 

A at A, then P is unique and is in the second commutant of A. 

Proof. Let EA be the projection of which the existence is assert 
ed by the Splitting Theorem; and let PA split A at A. We verify 

that PA and EA commute. In ract, PA commutes with A and El is in 
the second commutant of A, so that this is obvious. In Lemma 2 

we can now take A = ~ , QA = El and conclude .that PA = EA' 

COROLLARY 2.2. The splitting Theorem impLies aLL statements com

bined in the SpectraL Theorem, AnaLytic Part, except those concern 

ing properties (3) , (4) , (5). 

Proof. The existence of a splitting family is given by Corollary 
1. Its uniqueness and its inclusion in the second commutant of A 

are guaranteed by Corollaries 1 and 2.1. Property (2) is then e

vident from Lemma 2. 

THEOREM 4. If A ~ ~ , the projection F = FA~ = E~- EA = E~(I-El) 
commutes with A and has range Lying in the dC'main of A. For aLl 

. 2 2 
Y 1-n the range of F A lIyll ~ (Ay)y .;;; ~ UyU with equaUty on the 

Zeft if and onZy if y = o. 

Proof. Apart from the notation, all of this theorem except for 
the assertion that the range of F lies in the domain of A is 

proved in the discussion of Lemma 2: it is only necessary to take 
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P = E and Q, = E" there, Now if x is in the domain of A so is 
j.l j.l A 

Y - Fx. Since UyH2 = (Fx)x and (Ay)y - (AFx)x we have "(Fx)x < 

< (AFx)x < j.l (Fx)x or, equivalently, 0 < ((A-AI)Fx)x < (j.l-") (Fx)x < 

< (j.l-A) H xH 2. Thus the operator H - F (A-" 1) has the same domain 

as A and satisfies the relations (Hx)z - x(Hz) and 0 < (Hx)x < 

< (j.l-A)HXH 2 for all x and z in the domain of A. A standard use 

of polarization shows that HHxH < ~-")UxH for all x in the domain 

of A. If Y i~ an arbitrary vector in the range of F, there is a 

sequence zn in the domain of A converging strongly to y. Thus 

Yn - FZn and HZn are Cauchy sequences converging to Fy - Y and z* 

respectively, Hence for all x in the domain of A we have 

(Ax)y - lim (Ax)Yn - lim (FAx) zn 
n+ oo n+ oo 

lim ((H+" F)x) zn lim x(Hzn ) + lim x (AYn) 
n+ oo n+ oo n+ oo 

x(z* + " y) 

Since A is self-adjoint, we conclude that y is in the domain of A 

(and Ay z* + "y). 

LEMMA 3. E" has property (3). 

2 

Proof. If v < j.l we have UEj.lx-EVxll - ((Ej.l-Ev)x)x = (Ej.lx)x-(Evx)x, 

so that (Ej.lx)x is a monotone increasing function of j.l with real 

values between 0 and UxU 2 • As a function of x it is quadratic. 

When" < j.l the function q(x) - lim ((E - E,,)x)x exists and is also 
j.l->" j.l 

quadratic with real values between 0 and HxU 2 • Hence there exists 

a bounded self-adjoint operator F such that (Fx)y = lim((Ej.l-E,,)x)y. 
j.l+" 

Thus if " < v < j.l we have 

(FX)((Ej.l- E\)y) = lim ((E v - E,,)x)((Ej.l- E,,)Y) 
v+" 

lim ((E v - E,,)x)y - (Fx)y . 
v+" 

Hence (Ej.l- E,,)Fx - Fx , so that Fx is in the range of Ej.l- EA, Thus 
2 

by theorem 4 we see that Fx is in the domain of A with AUFxU < 

< (AFx)x < j.lHFxH 2 ,where the equality holds on the left if and 

only if Fx - o. 
we obtain "HFxU 2 

2 
lim U E x - EA xU 
j.l+A j.l 

If we let j.l tend to A in this double inequality 

(AFx)x an'd hence Fx - 0, It follows that 

lim ((Ej.l - E,,)x)x = (Fx)x = 0 . 
j.l+" 
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A+e: , e: > 0 , we conclude that lim IIEA+e:X - EAXII 
e:-+o 

LEMMA 4. EA ha$ property (4). 

o . 

Proof. Let x be an arbitrary vector and e: an arbitrary positive 
real number. We can then take y in the domain of A so that 

lIx-yll ~ t e: Let A <-Z.UAyll/e:. Then EAy is in the domain of A 

and (AEAy)y ~ dEAyU Z. Hence IA 1 UEAyllZ ~ (-AEAy)y = (EAy) (-Ay) ~ 

~ IIEAyUllAyl1 and REAyl1 ~IIAyU/IAI ~ t e:. Finally 

1 UEAxU ~ UEAyU + UEA(x-y)U ~ I E + Ux-yU ~ e: , as was to be proved. 

LEMMA 5. EA has property (5). 

Proof. The discussion is similar to that of Lemma 4. For given 

x and e: we choose y as before and A so that A > 2UAyU/e: We 

observe that (I-EA)y is in the domain of A and that 

1 1 Since Ux-yU ~ I e: and U(I-EA)yU ~ UAyU/A ~ Ie:, we conclude that 

Ux-EAxil ~ e: 

We have thus established Theorem 3 and reduced the proof of Theo

rem 1a to the proof of Theorem 2, the Splitting Theorem. For the 
latter we need to introduce the bounded self-adjoint operators B 

and C that occur in the characteristic matrix 

of the sel£-adj oint operator A (see [6]). It is then easily shown 
that the projection E supplied for C by the Splitting Theorem ser

ves also as the desired splitting projection for A. Thus the 
Splitting Theorem for bounded self-adjoint operators is seen to 

imply the theorem for all self-adjoint operators. With this moti
vation we turn to the discussion of the operators Band C. 

Following von Neumann [7], we study the graphs of the relations 

y = Ax , -Ay = x in the Hilbert space of ordered vector-pairs 

(x,y) with the scalar product (xl 'Yl) (xz,Yz) = x1x Z + YlYZ. The 
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graph of A or the graph of the equation y = Ax is the set 

MA = {(x,y) ; y = Ax}. Similarly the inverse graph of the oper~ 

tor -A or the graph of the equation -Aw = z is the set 

NA = {(z,w) ; -Aw z} The orthogonality of elements (x,y) and 

(z,w) chosen from these sets is expressed by the equation 

xz + yw = x(-Aw) + (Ax)w = 0 or (Ax)w = x (Aw) . The fact that 

(z,w) is orthogonal to every element of MA is expressed by the 

statement that xz + yw =xz + (Ax)w = 0 for all x in the domain 

of A; and the latter statement is valid for self-adjoint A if and 

only if w is in the domain of A and Aw = -z, that is, if and only 

if (z,w) is in NA. Thus when A is self-adjoint, NA is the ortho

gonal complement Mr of MA. Similarly, MA is the orthogonal com

plement of NA. Thus MA aHd NA are both closed linear subsets, or 

subspaces, of the Hilbert space of vector pairs. We denote by 

P = PA the projection of the latter on MA , t·he graph of A. Now 

the operators Band C are defined as the composite mappings x + z 

and x + w , respectively, read off from the diagram 

z 
p t 

x + (x,O) + (z,w) \, 
w 

Since each arrow in the diagram represents a bounded linear map -

ing from source to target, Band C are bounded linear mappings or 

operators with the original Hilbert space as source and target. 

Since P is the projection on MA ' the projection on NA is I-P 

The equation (x,O) = P(x,O) + (I-P)(x,O) shows that P(x,O) = 

= (Bx,Cx) is in MA and that (I-P) (x,O) = (x-Bx,-Cx) is in IJ A 

Thus Bx is in the domain of A and Cx = ABx, while -Cx is in the 

domain of -A and (-A)(-Cx) = x - Bx or Bx + ACx = x. It follows 

that Bx is in the domain of A2 (which is the same as that of I+A2) 

and A2(Bx) = A(AB)x = ACx , (I+A2)Bx = Bx + ACx = x. We have 

thus proved 

LEMMA 6. Band C have ranges contained in the domains of I + A2 

and A respectively. The operators A. B. C satisfy the identities 

(1) C AB (2) B + AC = I 

LEMMA 7. B is a self-adjoint operator with self-adjoint inverse 

1+ A2. 

Proof. By Lemma 6 (3) we see that Bx o implies x O. Hence B 
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has an inverse, of which I+A2 must be an extension. Now if y is 

an arbitrary vector in the domain of I+A2 , we put z=y-B(I+A 2)y, 

noting that (I+A2)z = O. Thus IIzll2 + IlAzl1 2 = ((I+A2)z)z = 0 , 

z = 0 , y = B(I+A2)y, and y is in the range of B.Hence the range 

of B is the dOmain of I+A2 and the two operators are inverses of 

one another. Now (Bx)y = (Bx) ((I+A2)By) = ((I+A 2)Bx)By = x(By) 

for all x and y because A is self-adjoint. To show that I+A2 is, 

like B, self-adjoint, Yet y and y* be such that ((I+A 2)x)y = xy* 

for all x in the domain of I+A2 Here we can put x = BZ,obtain

ing zy = (Bz)y* for all z. It follows that By* = Y because B is 

self-adjoint. Hence y is in the domain of I+A2 and (I+A2)y = y*. 

Accordingly, I+A2 is self-adjoint. 

We turn now to some commutativity properties of A, B, C. 

LEMMA 8. Band C commute with A and with each other. Consequen~ 

ly C is self-adjoint, as are A and B. 

Proof. If x is in the domain of A, the equation ACx = Bx - x 

shows that ACx is also in the domain of A and that A2Cx = ABx-Ax = 

= Cx-Ax. Thus Ax = (I+A 2 )Cx and BAx = Cx = ABx. Thus B commutes 

with A. It now follows that Cx = BAx is in the domain of A and 

that ACx = A2Bx = ABAx = CAx because B commutes with A. Hence C 

commutes with A. Now for all z we have BCz = BABz ABBz = CBz 

because B commutes with A. Hence Band C commute. Finally we 

observe that C = AB implies that C* is an extension of B*A* 

= BA C AB. Thus C and C* coincide on the domain of A and must be 

identical by continuity, since the domain of A is everywhere 

dense. Thus C is self-adjoint. 

LEMMA 9. A bounded linear operator D commutes with A if and only 

if it commutes with both Band C. 

Proof. If D commutes with A we have DCz = DABz = ADBz , Dz 

DBz + DACz = DBz + ADCz = DBz + A2DBz = (I+A2)DBz. Hence BDz 

DBz and Band D commute. We .then have from the first equation 

DCz = ADBz = ABDz CDz, so that C and D also commute. On the 

other hand, if D commutes with Band C and x is in the domain of 

A, we have CDx = DCx = DABx = DB~x = BDAx and hence Dx = B(Dx) + 

+ CAC) (Dx) = BDx + ABDAx. Thus Dx is in the domain of A. We now 

have BADx = CDx = DCx = BDAx and hence ADx = DAx. 

We are now ready to prove our principal result. 
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THEOREM 5. The projeation E supplied by the Splitting Theorem 

for the bounded self-adjoint operator C serves as the operator re 

qui red in order to validate the Splitting Theorem for A. 

Proof; We have to show that E splits A at 0 and is in the second 
commutant of A. E is in the second commutant of C and therefore 
commutes with Band C, both of which commute with C by Lemma 8. 
Hence E commutes with A, by Lemma 9. If D commutes with A, it 
also commutes with C, by Lemma 9. Hence it commutes with E, be
cause E is in the second commutant of C. Thus E is seen to be in 
the second commutant of A. To show that E splits A at 0, we take 
x in the domain of A and note that Ax = (I+A 2 )BAx = (I+A 2 )ABx = 

- 2 
= (I+A )Cx by Lemmas 7 and 8. Now if x is in the range of E so 
is Ax because EAx = AEx = Ax. We therefore have (Ax)x = 
= ((I+A 2)Cx)x = (Cx)x + (ACx)(Ax) = (Cx)x + (CAx)(Ax) ~ 0 , be-
cause E splits C at O. Similarly, when x is in the range of I -E 
we see that Ax is in the range of I-E. We then have (Ax)x 
(Cx)x + (CAx) (Ax) ~ 0 with equality if and only if (Cx)x = 0 and 
hence if and only ifx = O. 

The proof of the Spectral Theorem, Analytic Part, is thus comple! 
ed by reference to the paper of Lengyel and Stone [2], where it 
is shown by "pure" methods that the Splitting Theorem holds for 
every bounded self-adjoint operator. 
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