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We consider a linear partial differential operator on an open 
U C RP of the form 

(1.1) a"~ 
Acp = I a "---"-

1"I:;:k" au" 
(cp E COO (U)) 

o 

where the a 
" 

a" 
are complex-valued functions defined on U an the 

aU" 
are the usual partial derivatives of order a ,where" ("I'···'''p) 

and 1,,1 = Ii"~. In this paper we make two observations: 

1) The symbol of A~ nowadays usually considered as a function on 

the cotangent bundle, can be considered, instead, as a function 

on a subset of G (RP+2), where G (RP+2) is the bundle of p-planes 
P P 

at points of RP+2. The symbol can be defined naturally here, by 

geometric considerations, without using coordinates (tho it does 

use the decomposition of RP+2 as RP x R2). If one then puts a 

coordinate system on G (RP+2), the coordinate expression of this 
P 

function becomes the usual expression for the symbol. 

2) The most general definition of a partial differential equa

tion (equation , as distinct from operator) seems to be as a sub
set of a higher order Grassman bundle. We indicate, again geome

trically, how an operator of the form (1.1) gives rise to a par

tial differential equation in this sense. Furthermore, it gives 
rise to a sequence of such equations, of orders 1 to k; the j'th 

equation being of order j. The equation of order k is (1.1) con
sidered as a differential equation; the equation of order 1 is 

the characteristic equation (the zeros of the symbol). 

We wish to consider the A of (1.1) as a k-th order vector field 
on U, i.e. as a map which assigns to each XEU a k-th order 

complex tangent vector to RP at x. Then we wish to show how such 
a k-th order vector field gives rise to functions on certain sub-

sets of G1 ,c(UxR1), ... ,G k ,c(UxR1), where Gl,cCUxR1 ) is the set of 
P P P 



complex i-th order p-planes at points of UXRl. This is to be done 

separately at each point of U so what we wish to show is that a 

k-th order complex tangent vector at x E RP gives rise to some com
plex valued functions defined on certain i-th order p-spaces in 

RP+l. 

Since RP is a real manifold and we are referring to complex tan -

gent vectors and p-spaces we briefly discuss complex tangent vec
tors to a real manifold. Let M be a p-dimensional COO real mani

fold and mE M. We now define M~, the complex tangent space to M 

at m. We could define MC to be just the complexification M ~ C m m 
of the usual real tangent space Mm. However we prefer to define 

~ directly, as follows. Let Rm be the complex local ring of M 
at m, i.e. the elements of Rm are the germs of complex valued COO 

functions at m. Let 1m be the maximal ideal of Rm' so 1m con
sists of the germs that vanish at m. For each non-negative inte
ger k we define the complex linear space M;'c to be the dual space 

of R /Ik+1 . We call elements of Mmk,c k-th order tangent vectors 
m m 

at m and call M~'c the k-th order tangent space at m. Alternati

vely a k-th order tangent vector may be considered as a linear 
k+l function on Rm that vanishes on 1m . Because every f E ~ can be 

uniquely expressed as f = fa + f1 where fa is constant and f1 Elm 

it is easily seen 

t = to + tl where 

that every 

t f = cf a a 

tEM;'C can be uniquely expressed as 

(c E C, independent of f) and tl is 

zero on constants. It is clear that Mk,c C Mk+1,c and that the 
m m 

Mk. k c usual real k - th order tangent space m cons lStS of those t E Mm' 

such that t is real whenever f is real valued. And Mk,c = 
m 

= Mk e iMk. Also, a linear partial differential operator defined 
m m 

on U ~ RP is essentially the same thing as a map which assigns to 

each xEU an element of (RP)k,c. For this reason we call it a 
x 

k-th order complex vector field on U. 

Now we define the Grassman manifold k,cG (M) of complex k-th order 
P 

p-spaces over the real d-dimensional manifold M. This is done es-

sentially as for the real case but since we need below the expli
cit relation with the real case we give some details here. We 
shall write RO , 10 for the local ring and maximal ideal formed 

m m 00 

from the real valued C functions at m. We define a p-ideal in 
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~ to be an ideal I in Rm for which there exists a set of genera

tors fn+l, ... ,fd such that dfp+l, ... ,dfd at m are linearly inde-

pendent over C. Then we define a z-th order p-ideal at m to be 

any ideal in Rm of the form I + I~+l , where I is any p-ideal in 

Rm' We define a z-th order complex p-spaoe at m 

space of an I 1(1 + rz+l) where I is any p-ideal m m 

define k,cG (M) to be the ~et of all z-th order 
p '" made into a real C manifold, and a bundle ~ver 

as any 

at m. 

complex 
M, with 

dual 

We now 

p-spaces, 
the follow 

ing differentiable structure. Let xl, ... ,xd be any coordinate 
system of M with a cubic domain Q. Let N be the submanifold of M 
defined by 

N = [m E Q I xp+l (m) = ••• Xd (m) = 0] 

and let p be the associated projection of N into Q. L~~ zQ all 
%-~h order complex p-spaces (m,P) such that mEQ and P 

= (Im/(I + I~+l))*, where P is any p-ideal having a set of gener~ 
tors o£ the form 

where the hp+l, ..• ,hd are C'" functions on N. We then define the 

collection of functions w~ , 'w; , "w; for a = ("'1"" ,,,,p) , 

1",1 ~ z , p+1 ~ r ~d , by 

w~ (m,P) 

'wa(m,P) = Re w"'(m,P) , 
r r 

w'" (m,P) 
r 

aah 
r 

ax'" 
(m) 

'rhe set of all such (w~ 'w 
l' r 

"w } make k,cC; (M) into a real COO 
r p 

!!lI~lit'.1! i. and a bundle ave!" >f. 

We note that the usual kG (M) is a submanifold of k,,:(. (M) Lon,ist 
p p' 

ing of all the (m,P) such that the c~responding p-ideal has a 
set of real-valued generators. These are the elements (in the 
domain of such a coordinate system) for which all "w'" = O. We 

r 
call elements of kG (M) real z-th order p-spaces. 

p 
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We now define, for each ye R, an applicatien t , of a ,Subset of 
y 

k,cG (RP+l) ~ kG (RP+2). This is the application that carries 
P P 

each xe RP+l ~ (x,y) e RP+2 and carries the complex p-plane whose 

coordinates (relative to the w~, '",rJ. 1 ' "wrJ. 1 ' - obtained from 
1 P+ p+ 

the usual coordinate system of RP+l) to the element of G (RP+2) 
p , 

whose coordinates are these same numbers, i.e. 

o w. 
1 

w~ 
1 

The geometric construction in going from a linear partial 
differential op'erator to a partial differential equation, or to 
the symbol of the operator, is just the projection of a k-th 
oraer vector into a plane P, skew to both factors, followed by a 
projection into the second factor. Then in case the second 
factor is Rl the resulting vector, which is a function of P, can 
be described by its coefficients of orders 0 to k (there is one 
coefficient for each of these orders when the second factor is 
R1). so we have k+1 functions of P (depending on the initial 
vector field), and these include the symbol and the partial dif
ferential equation. In the case where the second factor is of 
dimension greater than 1, we obtain vector-valued functions of P. 
We now describe this geometric process more precisely. 

Let M and N be real C· manifolds of dimensions p and q, and let 
d = p+q. Let m be a point of M and n a point of N. We shall 
speak of vectors tangent to M or to N at (m,n), meaning vectors 
tangent to the submanifolds M x (n) or (m) x N ~ by tangent 
vector we shall always mean complex tangent vectors. Let 

k,CGp(m,n) be the set of k-th order complex p-spaces of M x N at 

(m n)' let k,cM be the space of k-th order tangent vectors , , (m, n) 

to M (really to M x (n) at (m,n), and define k,c N( ) similarly. m,n 
We have natural projections, that we denote by p and cr of 

k,C(MxN)(m,n) into k,CM(m,n) and of k,C(MxN)(m,n) into k,CN(m,n) 

p and cr are the k-th order differentials of the natural 

projections of M x N into M x (n) and (m) x N (and we could 

generalize to the case where M and N are only "k-th order factors" 

of some manifold Q). From p we define a subset E of k,CGp(m,n) 

by: E consists of all elements of k,cG (m n) on which p is non-p , 
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singular. We then define a map V of E x k·~(m.n) into k,CN(m.n) 

by:ifPEE and tEk,cM( ') and if t' is the unique element of P m.n 

such that Pt' = t then 

V(p.t) at' 

We now write a formula for this V. in terms of coordinate systems. 
or equivalently. we wish coordinate expressions for V. in case 
M = RP and N = Rq • in terms of the usual coordinates of Eucli-

I 

dean space. We hence assume now that M = RP • N = Rq and let 
u1 ••.•• us De the usual coordinate system of RS . Then. as usual. 
V(P.t) can be expressed as 

V (P. t) 

where the vS-are complex valued functions which we wish to find 
explici t Iy in terms of the coordinates of P and of t. Since 
V(P.t) is clearly linear in t the main thing will be to compute 
the functions vSa defined by 

aa 
(P • -) 

aua 

and lal.;;; k • 

lsi.;;; k. And we now wish to. express these vSa in terms of the 

above coordinates {we:' • 'wa '''wa } of p. we shall write 
1. r' r ' 

w~= 'w; + i"w~ and express the vSa in terms of the w~ . 

First. for each a = (al •...• ap ) and S = (Sp+I •...• Sd) with 

lal> lsi we define PSa to be the unique polynomial such that. 

for all functions gp+I •...• gd in C· at m • 

aa S+l Sd 
(m) [(gp+l - gp+l (m)) p ... (gd - gd (m)) 

aUa 

P Sa ( ...• 
a l1g 

r (m) •••. ) . 
au ll 
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Hence if N = the number of n = (n1, ... ,n p) such that 0 ~ n ~ a 
then Plla is a polynomial in (d-p)N variables. It is clear that 
this defines unique polynomials Plla . It will be important that 
the variables here are labellea with the subscripts (n,r) as ahov 

The formula we desire to prove for ~he vSa is: 

(1 .2) 

and we nQW make the calculations. to prove (1.2). We first seek 

aa 
the coordinates of that t! E P such that pt I = -- That t~ 

will have the form 

(a) t' a 

~ a aua ~ 

aY 
Lyaya -y-\.m) 

au 

~. ~ thru all y 

we have 

(b) V Sa (II) a(O, S),a 

Hence we are interested in the 8ya for which Yl = •••• 

But for the moment we consider general y. We write 

From (a) we have the usual formula: 

t' (U - U(m,n))Y 
a 

(g* ~(m))(u - U(m,n))Y 
Ua 

a 
_d_(m) (eU - U (m,n)) y • g) 
aua 

o . 
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We write y = y' + y" where y' = (Yl' ... ,yp'O, ... ) and 

y" (O, ... ,O,Y p+1 ' ..• 'Yd). So the above becomes 

a a '_tf 

-a(m) [ (U-U(m))Y (g-g(m))Y 1 
au 

(c) = L 

We recall the fact, easily proved by induction, 

(d) 

(where a 

(e) 

n! 0 an if 

a.! a 0:,- y t II 

---'::.!-- ---, (m) ((g- g (m)) Y ) 
(a-y')! aua- y 

If we take y = (D,S), so y' 0, y" y, this gives (1.2). 

Now we specialize to the case where q= 1 (d=p+1). so the 

vSa ' PSa ' aSa becomes vo.a,···.vk •a • po,a.···.Pk.a. ao.a.···,ak.a· 

In this case we give the explicit expression for-the P_ by 
J .a 

iterating the Leibnitz product rule. We have 

j -2 j -1 j-l 
a! a a- n h an - n han 

1, j-2 j-l), j-l, ---1··· j-2 j-l---y::T 
(a-n ) .... (n -n ·n . aua- n aUn -n aUn 

1 j -1 . 
where this sum is taken over all choices of n , ... ,n such that 

Applied at m to h = g-g (m), all 
undifferentiated terms vanish so 



(1 .3) P. ( ... ,w n, ••• ) 
J,'" 

84 

where this sum is taken over all n1, •.. ,n j - 1 such that, 

'" > n1 > n2 > ••• > nj - 1 > O. We note, in particular, that all 

non-zero terms of Pj,'" are products of at least j w's, and 

contain no wn with Inl > k-j+1. Hence 

j-l n 
wp + 1 

where this sum is taken over all n1, ... ,n j - 1 such that 

'" > n1 > ••• > nj - 1 > O. If j=k and this is oJ 0 then we must 

have 1",1 = k, and all these products of wp+1's are the same, all 

being equal to 

Furthermore, when j = k 1",1, k!/"'! is the number of such 
1 k-l sequences n , ... , n (as is shown by an easy induction) so 

Hence 

(1 .4) 

6 '" 
(w p ) P 

p+l if I", I k 

which is the usual formula for the symbol of (1.1). 

As given by (1.2) and (1.3) the v j ,'" are functions on k,CGp(M) but 

since all non-zero terms in (1.3) contain only wn with 
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Inl < k-j+1 we see that v. is the lift of a function defined on 
J ,ct 

k-j+l,CGp(M) , hence the same is true of v(P ~ a a ) 'Llctl<k ct --ct 
- aU 

and this function defines the j-th partial differential equation 

associated with A, to which we referred in the introduction. In 

particular, the k-th equation, given by (1.4), is defined on 

1, c G (M). 
p 
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