Revista de la Unión Matemática Argentina Volumen 25, 1970.

> UNIFORM APPROXIMATION TO BOUNDED ANALYTIC FUNCTIONS T. W. Gamelin and John Garnett Dedicado al Profesor Alberto González Domínguez

Let \triangle denote the open unit disc in the complex plane C, and let $H^{\infty}(\triangle)$ denote the algebra of bounded analytic functions on \triangle . We wish to prove the following theorem, which was proved in the case that E is open by A. Stray [5].

THEOREM 1. Let $f \in H^{\infty}(\Delta)$, and let E be a subset of $b\Delta$ such that f extends continuously to each point of E. Then there is a sequence $f_n \in H^{\infty}(\Delta)$ such that each f_n extends to be analytic on some neighborhood of E, and f_n converges uniformly to f on Δ .

For E a subset of b^{Δ} , let H_E^{∞} denote the subalgebra of $H^{\infty}(\Delta)$ of functions which extend continuously to each point of E. The theorem asserts that the functions in $H^{\infty}(\Delta)$ which extend analytically to a neighborhood of E are dense in H_E^{∞} . Combining the theorem with Carleson's corona theorem, we obtain the following corollary, which is due to Détraz [2].

COROLLARY. The open unit disc ${\vartriangle}$ is dense in the maximal ideal space of H^∞_E .

Proof of the main theorem. We proceed now directly to the proofs. The symbols C_0 , C_1 ,... will all denote universal constants. All norms will be supremum norms.

LEMMA 1. Let Q be a closed subset of bA, let W be an open subset of C at a positive distance from Q, and let $\varepsilon > 0$. Let f be a bounded Borel function on C, such that f is analytic on A. Suppose there is a continuous function u in a neighborhood of Q such that

|f(z) - u(z)| < d

for all $z \in \Delta$ which are near Q. Then there is a bounded Borel function h such that

- (i) h is analytic on an open set containing $\Delta \cup Q$.
- h extends analytically across any arc on b∆ across which f extends analytically.
- (iii) f-h is analytic on W and satisfies $|f-h| < \varepsilon$ there.
- (iv) $|f(z)-h(z)| < C_1 d$ for all $z \in \Delta$.

Proof. For $\delta > 0$, the open δ -neighborhood of Q will be denoted by Q(δ). By hypothesis, we can choose $\delta_0 > 0$ so small that Q(δ_0) does not meet W, that u is defined on Q(δ_0), and that |f(z)-u(z)| < d for $z \in Q(\delta_0) \cap \Delta$. Since u is uniformly continuous in a neighborhood of Q,we can shrink δ_0 so that also $|u(z)-u(\zeta)| < d$ for all $z, \zeta \in Q(\delta_0)$ satisfying $|z-\zeta| < 2\delta_0$.

Let Γ be the union of the arcs on b Δ across which f extends analy<u>t</u> ically. There is then an open set U containing Γ such that |f(z)-u(z)| < d for all $z \in Q(\delta_0) \cap U$. Let F be the function which coincides with u on $Q(\delta_0) \setminus (\Delta \cup U)$, and which coincides with f elsewhere. Then F is a bounded Borel function which satisfies

(*)
$$|F(z)-F(\zeta)| < 3d$$
 whenever $z, \zeta \in Q(\delta_0), |z-\zeta| < 2\delta_0$.

Since F coincides with f on Δ , on W, and in a neighborhood of Γ , it will suffice to obtain the conclusions of the lemma, with f replaced by F.

Now we are in a position to use Vitushkin's scheme for approximation, as developed for instance in Chapter VIII of [3], or in [6]. Because we are working on the unit circle, we can employ the version of this technique matching only one coefficient of the appropriate Laurent expansions (cf. [6], V.4). The details are as follows.

For a fixed δ satisfying $0 < \delta < \delta_0$, choose discs $\Delta_k = \{ |z - z_k| < \delta \}$, $z_k \in Q$, which cover Q, and choose functions g_k supported on Δ_k such that $0 \le g_k \le 1$, $\sum g_k = 1$ in a neighborhood of Q, $\left| \frac{\partial g_k}{\partial \overline{z}} \right| \le 4/\delta$, and no point z is contained in more than C₂ of the discs Δ_k . If

$$G_{k}(\zeta) = \frac{1}{\pi} \iint \frac{F(\zeta) - F(z)}{\zeta - z} \frac{\partial g_{k}}{\partial \bar{z}} dx dy , \zeta \in C ,$$

then G_k is a bounded Borel function, G_k is analytic wherever F is analytic, G_k is analytic off Δ_k , and $G_k(\infty) = 0$. Moreover, $F - \sum G_k$ is analytic on the interior of the set on which $\sum_{k} g_{k}$ assumes the value 1. In particular, F - $\sum_{k} G_{k}$ is analytic in a neighborhood of Q. The condition (*) can be used to estimate G_k , yielding the bound

$$\|G_{\mu}\| \leq C_{3}d$$

Suppose the expansion of G_k near ∞ is given by

$$G_k(z) = \frac{a_1}{z - z_1} + \dots$$

By Schwarz's lemma we have

$$|a_1| \leq \|G_k\| \delta$$

Now the analytic capacity of the connected open set ${\tt A_k \backslash \bar{A}}$ is at least one fourth its diameter. Hence we can find a continuous function H_{L} on C such that H_{L} is analytic off a compact subset of Δ_l\Δ,

$$H_{k}(z) = \frac{a_{1}}{z - z_{k}} + \dots$$

Now $\|G_k - H_k\| \leq C_4 d$ so that

(**)
$$|G_k(z) - H_k(z)| \le C_4 d_{\delta^2} |z - z_k|^2$$

for $z \in A_k$. As H_k has been defined so that $G_k - H_k$ has a double zero at ∞ , the estimate (**) persists for all $z \in C$.

Now we define

$$h = F - \sum (G_k - H_k)$$

Since F - $\sum_{k} G_{k}$ is analytic wherever F is analytic, and each H_{k} is

analytic in a neighborhood of \overline{A} , the function h is analytic on A and extends analytically across Γ . Moreover, h is analytic in a neighborhood of Q, so that (i) and (ii) are valid. Since F - h is analytic off Q(δ), F - h is analytic on W. To complete the proof, it suffices now to obtain the estimates in (iii) and (iv).

To verify (iii), fix $z \in W$ and consider $F(z) - h(z) = \sum [G_k(z) - H_k(z)]$. Since no point lies in more than C_2 discs Δ_k and each Δ_k meets $b\Delta_k$, there is a grand total of at most $2\pi C_2/\delta$ discs Δ_k . Thus by (**)

(***)
$$\sum |G_k(z) - H_k(z)| ≤ 2\pi C_2 C_4 d_{\delta} / [dist(W, ∪Δ_k)]^2$$
.

Taking δ much smaller than dist(W,Q(δ_0)), we get $|F - h| < \varepsilon$ on W.

To verify (iv), we first observe that F - h = $\sum [G_k - H_k]$ is analytic off Q(δ), so that it suffices to obtain the estimate

$$\sum |G_{\mu}(z) - H_{\mu}(z)| \leq C_{1}d$$

for $z \in Q(\delta)$. So fix a point $z \in Q(\delta)$. Let M(m) be the number of discs Δ_k whose centers satisfy $m\delta \leq |z - z_k| < (m+1) \delta$. Since no point z is contained in more than C_2 discs, there will be a constant C_5 such that

$$M(m) \leq C_r$$
 if $0 \leq m \leq 1/\delta$,

providing δ is sufficiently small. (Here we use the geometry of the unit circle, and the fact that z is close to the unit circle) Using the estimate $|G_k(z) - H_k(z)| \leq C_4 d$ for the at most C_2 indices k for which $|z - z_k| < \delta$, the estimate (**) for those k for which $m\delta \leq |z - z_k| < (m+1)\delta$ and $1 \leq k \leq 1/\delta$, and the same estimate used to obtain (***) for those k for which $|z - z_k| \geq 1$, we find that

$$\sum |G_{k}(z) - H_{k}(z)| \leq C_{2}C_{4}d + \sum_{k=1}^{1/\delta} M(k)C_{4}d/k^{2} + 2\pi C_{2}C_{4}d\delta \leq C_{1}d.$$

That completes the proof.

LEMMA 2. Let $f \in H^{\infty}(\Delta)$, and let E be a subset of $b\Delta$. Suppose there is an open set U containing E, and a function u defined and continuous on U, such that $|f(z) \cdot u(z)| < d$ for all $z \in U \cap \Delta$. Then there is $h \in H^{\infty}(\Delta)$ such that h extends to be analytic in a neighborhood of E, and

$$\sup_{z \in \Delta} |f(z) - h(z)| \leq C_0 d$$

Proof. By replacing E by $U \cap b\Delta$, we can assume that E is relatively open in $b\Delta$. Then we can write $E = (\cup Q_n) \cup (\cup R_n)$, where Q_1, Q_2, \ldots are pairwise disjoint closed intervals, R_1, R_2, \ldots are pairwise disjoint closed intervals, each Q_n joins the endpoints of two of the R_k 's, and each R_n joins the endpoints of two of the Q_k 's. Then we can choose $\delta_n > 0$ so that the δ_n -neighborhoods of the Q_n 's are pairwise disjoint.

Starting with ϕ_0 = f, we construct by induction a sequence of Borel functions ϕ_n^{\dagger} such that

- (i) ϕ_n is analytic on Δ , and ϕ_n is analytic on a neighborhood of Q_n .
- (ii) $\phi_n \phi_{n-1}$ is analytic off the δ_n -neighborhood of Q_n and satisfies $|\phi_n - \phi_{n-1}| < d/2^n$ there.

(iii)
$$\|\phi_n - \phi_{n-1}\| < 2C_1 d$$
.

Indeed, having chosen $\boldsymbol{\varphi}_{n-1},$ we note that on the part of $\boldsymbol{\Delta}$ near \boldsymbol{Q}_n we have

$$\begin{split} |\phi_{n-1} - u| &\leq |\phi_{n-1} - \phi_{n-2}| + \dots + |\phi_1 - f| + |f - u| \\ &< d/2^{n-1} + \dots + d/2 + d < 2d \end{split},$$

so that Lemma 1 will provide the desired function ϕ_n .

For each z, $|\phi_j(z) - \phi_{j-1}(z)| < d/2^j$ for all but at most one index j, while always $|\phi_j - \phi_{j-1}| < 2C_1 d$. Hence the ϕ_j converge point-

wise to a function ϕ satisfying

$$|\phi(z) - f(z)| \leq \sum |\phi_{i}(z) - \phi_{i-1}(z)| \leq (2C_{1}+1)d$$

The convergence is uniform on any compact set at a positive distance from lim $Q_n = bE$, so that ϕ is analytic on Δ . Since $\phi_j - \phi_{j-1}$ is analytic on the δ_n -neighborhood of Q_n for $j \neq n$, while $\phi_n - \phi_{n-1}$ is analytic in a neighborhood of Q_n , ϕ - f will also be analytic in a neighborhood of each Q_n .

Now we perform essentially the same construction on the R_n 's, being careful to retain analyticity across the Q_n 's. Choose $\varepsilon_n > 0$ so that the ε_n -neighborhoods of the R_n 's are disjoint. Starting with $\psi_0 = \phi$, construct by induction a sequence ψ_n such that

- (i) Ψ_n is analytic on a neighborhood of $\Delta \cup R_n$.
- (ii) ψ_n is analytic across the arcs of bA across which ψ_{n-1} is analytic.
- (iii) $\psi_n \psi_{n-1}$ is analytic off the ε_n -neighborhood of R_n and satisfies $|\psi_n - \psi_{n-1}| < d/2^n$ there.
 - (iv) $\|\psi_n \psi_{n-1}\| < C_7 d.$

This is again possible by Lemma 1. As before we see that the ψ_n converge to a function h, uniformly on sets at a positive distance from bE, such that $h \in H^{\infty}(\Delta)$, h extends analytically across each Q_n and across each R_n , and $|h - \psi| < (C_7 + 1)d$. Then h is analytic across E, and $|h - f| < (C_7 + 2C_1 + 2)d$, so that h is the required function.

COROLLARY. Let $f \in H^{\infty}(\Delta)$, let E be a subset of $b\Delta$, and let d > 0. Suppose that for each $z \in E$, the diameter of the cluster set of f at z is less than d. Then there is $h \in H^{\infty}(\Delta)$ such that h extends to be analytic in a neighborhood of E, and

 $\sup_{z \in \Delta} |f(z) - h(z)| < C_0 d$

Proof. As the diameter of the cluster set of f at $z \in b\Delta$ is an upper semicontinuous function of z we can replace E by a larger open set. It is now easy to construct a continuous function satisfying the hypotheses of Lemma 2.

Proof of Theorem 1. If f extends continuously to each point of E, then we can take the d of the preceding corollary to be arbitrarily small. The resulting h's will approximate f uniformly on Δ , and they will be analytic on E.

Proof of the Corollary to Theorem 1. To show that Δ is dense in the maximal ideal space of H_E^{∞} , one must show that if $f_1, \ldots, f_n \in H_E^{\infty}$ satisfy $|f_1| + \ldots + |f_n| \ge \delta > 0$ on Δ , then there are $g_1, \ldots, g_n \in H_E^{\infty}$ satisfying $\sum f_j g_j = 1$. In fact, it suffices to show this for f_1, \ldots, f_n lying in any dense subalgebra of H_E^{∞} , so that by Theorem 1 we can assume that f_1, \ldots, f_n extend analytical ly to a neighborhood of E. Then there is a simply connected open set $U \supseteq \Delta \cup E$ such that f_1, \ldots, f_n are bounded on U and satisfy $|f_1| + \ldots + |f_n| > \delta/2$ there. By Carleson's theorem, applied to U, there are bounded analytic functions g_1, \ldots, g_n on U satisfying $\sum f_j g_j = 1$. Since the g_j 's belong to H_E^{∞} , they are the required functions.

CONCLUDING REMARKS. For a subset E of bA, let L_{E}^{∞} denote the uniform closure of the functions in $L^{\infty}(d\theta)$ which extend continuously to an open set containing E. Then L_{E}^{∞} consists of the functions in L^{∞} which are constant on each "fiber" of the maximal ideal space of L^{∞} lying over points of E. If we identify functions in $H^{\infty}(\Delta)$ with their radial boundary values, we can regard $H^{\infty}(\Delta)$ as a subalgebra of $L^{\infty}(d\theta)$. Under this identification, H_{E}^{∞} becomes a subalgebra of L_{E}^{∞} . In fact, $H_{E}^{\infty} = H^{\infty} \cap L_{E}^{\infty}$, and H_{E}^{∞} is a logmodular subalgebra of L_{E}^{∞} (cf. Détraz [2]).

For $f\in L^{^{\infty}}(d\theta)$, we define as usual the distance from f to $L_{_{\mathbf{F}}}^{^{\infty}}$ by

and we define $d(f, H_E^{\infty})$ similarly. Lemma 2 can be restated as follows.

THEOREM 2. There is a universal constant C_0 such that for all $E \subset b\Delta$ and all $f \in H^{\infty}(\Delta)$,

$$d(f, L_{E}^{\widetilde{n}}) \leq d(f, H_{E}^{\widetilde{n}}) \leq C_{0}d(f, L_{E}^{\widetilde{n}})$$

We hope to study the smallest possible constant C_0 in another paper.

ACKNOWLEDGMENTS. The authors would like to acknowledge the partial support of the National Science Foundation Grant #GP-11475 in the preparation of this manuscript. The first-named author would like to acknowledge the partial support of the Alfred P. Sloan Foundation.

REFERENCES

- L. CARLESON, The corona theorem, Proceedings of the Fifteenth Scandinavian Congress (Oslo, 1968), Springer Lecture Notes in Mathematics, Vol. 119, pp. 121-132.
- [2] J. DETRAZ, Étude du spectre d'algèbres de fonctions analytiques sur le disque unité, C.R. Acad. Sci. Paris 269 (1969), 833-835.
- [3] T.W. GAMELIN, Uniform algebras, Prentice-Hall, 1969.
- [4] E.A. HEARD and J.H. WELLS, An interpolation problem for subalgebras of $\rm H^{\infty},$ Pacific J. Math. 28 (1969), 543-553.
- [5] A. STRAY, An approximation theorem for subalgebras of $H^{"}$, Pa cific J. Math., to appear.
- [6] A.G. VITUSHKIN, Analytic capacity of sets and problems in ap proximation theory, Uspehi Mat. Nauk 22 (1967), 141-199. Russian Math. Surveys 22 (1967), 139-200.

University of California Los Angeles

Recibido en agosto de 1970.