Revista de la Unión Matemática Argentina Volumen 25, 1970.

A REMARK ON SIDON SETS R. Kaufman

Dedicado al Profesor Alberto González Domínguez

Let $\Lambda = (\lambda_k)_1^{\infty}$ be an increasing sequence of positive numbers and E a compact set of real numbers. Then Λ is a *Sidon set for* E provided an inequality

 $\max_{t\in E} |\sum_{k=1}^{i\lambda_{k}t} a_{k} e^{i\lambda_{k}t}| \ge \delta \sum_{k=1}^{i\lambda_{k}} |a_{k}| , \delta > 0 \text{ constant}$

holds for all polynomials $\sum_{k=1}^{\lambda_{k}t} k^{t}$ with frequencies in Λ . It is natural to study sets E with the property that there is a Sidon set Λ for E subject to a growth condition; the most familiar condition is log $\lambda_{k} = O(k)$ [4, p. 223]. Following the method of Helson and Kahane [1], it is proved in [5] that if T > 1 and Hausdorff dimension E > 0 [3,II], there exists a Sidon set Λ for E fulfilling $\lambda_{k+1} < T\lambda_{k}$.

It seems very difficult to decide whether this condition on a Sidon set for E forces E to have positive dimension; concerning a related problem a final answer is obtained by Ivasev-Musatov [2]. In this note we prove that the theorem stated above is best-possible in a certain direction.

Let h(u) be a continuous increasing function on $[0,+\infty)$ and h(0)=0, and let us write $E \in (h)$ provided there is a Borel probability measure μ concentrated in E such that $\mu(I) = O(h(|I|))$ for all intervals I. A theorem of Frostman [3, p. 27] shows that dim E > 0if and only if $E \in (u^c)$ for a c > 0.

THEOREM 1. Suppose that for every $\alpha > 0$, $u^{\alpha} = o(h(u)) (u \rightarrow 0)$. Then we can construct a compact set $E \in (h)$ so that no Sidon set Λ for E can fulfill $\log \lambda_{L} = O(k)$.

THEOREM 2. Let there exist, for each R>1, and integer N>R, and a system $(I_m)_{m=1}^N$ of N intervals of length N^{-R} whose union contains E.

Then no Sidon set A for E can fulfill $\log \lambda_k = O(k)$

106

Theorem 1 will be derived afterwards from Theorem 2. To prove Theorem 2 we suppose on the contrary that for any integer $M \ge 1$ and any choice of signs \pm the polynomial $p(t) = \sum \pm e^{i\lambda_k t}$ satisfies $\max_E |p(t)| \ge \delta M$, while $\delta \log \lambda_k \le k$ for each k. Let then $R \ge 4\delta^{-2}$ and N be the integer specified in the hypotheses; next let M be defined by $\lambda_M \le N^{-\frac{1}{2}R} < \lambda_{M+1}$, whence $1+M > \frac{1}{2} R \delta \log N$. Choose any $a_m \in I_m$ ($1 \le m \le N$) and observe that

$$\max_{\mathbf{E}} |\mathbf{p}(\mathbf{t})| \leq \max_{\mathbf{m}} |\mathbf{p}(\mathbf{a}_{\mathbf{m}})| + N^{-R}\max_{\mathbf{m}} |\mathbf{p'}|$$

$$\leq \max_{\mathbf{m}} |\mathbf{p}(\mathbf{a}_{\mathbf{m}})| + M_{\lambda} N^{-R} .$$

Thus max $|p(a_m)| \ge \delta M - N^{-R} M_{\lambda_M} \ge \frac{1}{2} \delta M$.

To complete the proof we choose the signs \pm as the Rademacher functions $\phi_1(x), \ldots, \phi_M(x)$ on (0,1); we write P instead of dx for Lebesgue measure, and p(t;x) to indicate the dependence on x. We have only to prove that for large N

$$\sum_{m=1}^{M} P\{ | p(a_{m};x) | \geq \frac{1}{2} \delta M \} < 1$$

and this is a consequence of

$$P\{|p(t;x)| \ge \frac{1}{2} \delta M\} < N^{-1}$$
, $-\infty < t < \infty$.

For any y > 0

$$\int_{-\infty}^{1} \exp y |\operatorname{Re} p(t;x)| dx \leq 2(\cos hy)^{M} \leq 2e^{\frac{1}{2}My^{2}}$$

and similarly for the imaginary part. Therefore for any b > 0 we obtain

$$P\{|p(t;x)| > b\} \le 4e^{\frac{1}{2}My^2} e^{-\frac{1}{2}by}$$

= 4 exp $-\frac{1}{4}b^2M^{-1}$ (for the best value of y > 0)
= 4 exp $-\frac{1}{16}\delta^2M$ when $b = \frac{1}{2}\delta M$.

Using the inequality M+1 > $\frac{1}{2}$ R δ log N we obtain

$$P\{|p(t;x)| > b\} \leq CN^{-\frac{1}{32}} R\delta^{3}$$

This proves Theorem 2.

The deduction of Theorem 1 from Theorem 2 is an easy consequence of the facts in [3, I,II]. Let $r = (r_j)_1^{\infty}$ be a sequence of positive numbers decreasing to 0 and E_r the set of all sums $\sum_{j=1}^{\infty} \pm r_1 \dots r_j$. Then E_r has the property specified in Theorem 2. Moreover, if h is the function defined in Theorem 1, there is a sequence r such that $2^{-j} = o(h(r_1 \dots r_j))$ and now $E_r \in (h)$.

REFERENCES

- H. HELSON and J. P. RAHANE, A Fourier method in diophantine problems, J. Analyse Math. 15 (1965), 245-262.
- [2] O.S. Ivašev-Musatov, M-sets and h-measures, Mat. Zemetki 3 (1968), 441-447. (Russian).
- [3] J.-P. KAHANE and R. SALEM, Ensembles Parfaits et Séries Trigonométriques, Hermann, Paris, 1963.
- [4] J.-P. KAHANE, Généralisation d'un théorème de S. Bernstein, Bull. Soc. Math. de France 85 (1957), 221-230.
- [5] R. KAUFMAN, A random method for lacunary series, J. Analyse Math. 22 (1969), 171-175.

Recibido en febrero de 1970.