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Let A = (A k); be an increasing sequence of positive numbers and E 

a compact set of real numbers. Then A is a Sidon set for E pro
vided an inequality 

o > 0 constant 

iA t 
holds for all polynomials Lake k with frequencies in A. It is 
natural to study sets E with the property that there is a Sidon 

~et A for E subject to a growth condition; the most familiar con
dition is log Ak = O(k) [4, p. 223]. Following the method of Hel 

son and Kahane [11, it is proved in [5] that if T > 1 and Haus
dorff dimension E > 0 13,11], there exists a Sidon set A for E 

fulfilling Ak+1 < TA k . 

It seems very difficult to decide whether this condition on a Si

don set for E forces E to have positive dimension; concerning a 

related problem a fina.1 answer is obtained by Ivasev-Musatov (2]. 

In this note we prove that the theorem stated above is best-pos
sible in a certain direction. 

Let h(u) be a continuous increasing function on [0,+00) and h(O)=O, 

and let us write E E (h) provided there is a Borel probability 

measure ~ concentrated in E such that ~(I) = O{h(III))for all in
tervals I. A theorem of Frostman [3, p. 27] shows that dim E > 0 
if and only if E E (uc ) for a c > O. 

THEOREM 1 . 

Then we aan 

A for E aan 

THEOREM 2. 

and a system 

tains E. 

Suppose that for every a > 0, ua = o(h(u)) (u + 0) 
aonstruat a aompaat set E E (h) so that no Sidon set 

fuLfiZL log Ak = O'(k). 

Let there exist, for eaah R > 1, and integer N > R, 
(Im)!=1 of N intervaLs of Length N- R whose union ao~ 

Then no Sidon set A for E aan fuZfiLZ log Ak O(k) 
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Theorem will be derived afterwards from Theorem 2. To prove 

Theorem 2 we suppose on the contrary that for any integer M ~ 1 

iA t 
L ± e k satis-and any choice of signs ± the polynomial pet) 

fies max I p (t) I ~ 8M , while 8 log Ak ".; k for each k. Let then 
E 

R~ 48- 2 and N be the integer specified in the hypotheses; next 
.LR 

l R 8 let M be defined by AM ".; N 2 < A whence l+M> log N M+l , 
2 

Choose any a E 
m t (1 ".; m ".; N) and observe that 

m 

max I p (t) I ".; max Ip(am)1 + N-Rmax I p' I 
E m 

< max Ip(am)1 + MAM N- R 
m 

Thus max Ip(am)1 ~ 8M-W RMAM ~ 
1 8M. 
2 m 

To complete the proof we choose the signs ± as the Rademacher func 

tions ¢l(x)' ... '¢M(x) on (0,1); we write P instead of dx for Le
besgue measure, and p(t;x) to indicate the dependence on x. We 

have only to prove that for large N 

" 

and this is a consequence of 

P{lp(t;x)1 ~ -00 < t < 00 

For any y > 0 

1 1My2 f exp ylRe p(t;x)ldx"'; 2(cos hy)M ".; 2e 2 
o 

and similarly for the imaginary part. Therefore for any b > 0 we 

obtain 

1My2 _1 by 
p{lp(t;x)1 > b} ".; 4e 2 e 2 

4 exp _l b2W 1 
4 (for the best value of y > 0) 

4 _.l 82M when b 1 exp 
16 "20 M. 
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Using the inequality M+1 > Ra log N we obtain 
2 

1 Ra3 
p{ Ip(t;x) I > b} .;;; CN-TI 

This proves Theorem 2. 

The deduction of Theorem 
of the facts in [3, I,II]. 

tive numbers decreasing to 

from Theorem 2 is an easy consequence 

Let r = (r j )7 be a sequence of posi

o and Er the set of all sums 

Ii=1 ± r 1···r j Then ~ has the property specified in Theorem 2. 

Moreover, if h is the function defined in Theorem 1, there is a 

sequence r such that 2- j = o(h(r 1 ... r.)) and now E E (h). 
J r 
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