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Ezio Marchi 

Vedicada al P~a6e6a~ Albe~ta Ganzllez Vomlnguez 

I. When introducing the characteristic function, one considers 

all the players of the coalition as exhibiting completely cooper~ 

tive behavior. This fact is assumed about the anticoalition too. 

Here we introduce an extension of the characteristic function by 

considering a division of both the coalition and the anticoalition 

into two sets, the support set and the difference set. The sup'

port set which is the corresponding set in the subcoalition show

ing cooperative behavior while the difference set is the subcoali

tion exhibiting non-cooperative behavior. Intuitively speaking, 

the new characteristic function assigns to each coalition a semi

cooperative power. 

The second part of this paper examines some simple technical re

sults which are used in Part III in introducing the new characte£ 

istic function. By using the important result, due to von Neumann 
and Morgenstern, concerning the simple characteristic function, a 

game is characterized by a superadditivefunction. But to each 

superadditive function can be assigned a semi-cooperative power 

This is the motivation behind this paper. From this result arises 

an intricate question related to some intuitive questions which we 

do not treat. At the end of Part II a result concerning the supe£ 

additive character of the new characteristic function is examined. 

The last section extends the concepts of solution and core by con

sideri~g domination among imputations with respect to the support 

of the coalition only and not with respect to the whole coalition. 

The new solutions and new core depend upon the support function . 

This fact can be given an intuitive interpretation. Finally, as 

an example, we calculate all these new solutions for the essential 

three-person game. It is noted that in each case Shapley's conje£ 
ture is satisfied. 
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II.' In this section we deal with sallie aspects of finite zer·o-sum 

two-person games whose strategy sets are Cartesian products of fi
nite sets. 

Let 

be a finite zero-sum two-person game. The pure-strategies set of 

the first player is the Cartesian product of the finite sets 

Ll , •. • ,Lm and the pure-strategies set of the opponent is the Car

tesian product of the finite sets Lm+1, ••• ,L n . Then the mixed ex
tension r is defined by 

r = {L1x •.• xLm L 1 x • .. XL E} 
m+ n 

For any two partitions, 

p = {P1,···,Pr } and Q. {Ql ' ... , Qs} 

of the respective sets 

M = { 1, ... ,m} and N {m+1, ... ,n} 

consider the following sets 

The symbol L indicate~ the Cartesian product of ~. with i E R . 
R 1 

We will also use the sets 

where LR indicates the set of probability distributions on L R • 

Given the game r, consider the associated game 

for the partition P and Q. which we call the semi-mixed extension 

of r by P and Q.. Such a game is equivalent to the mixed extension 
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r of the game T, when the partitions P and Q each contain only one 
element. 

A general result for such games is: 

THEOREM 2.1. Let r = O:lx",X); ,); +lx",X); ; A} be a finite 
m m f n 

aero-sum, two-person game and P and Q be partitions of the respea-

tive sets M and N. If the expeatation funation E is a bilinear 

funation in the variable 

then there exists a saddle point of the semi-mixed extension of r 
by P and Q 

r(p,Q) 

Therefore 

min E(X,Y) 
YEE 2 CQ) 

min 
YEE 2 CQ) 

max E(X,Y) 
XEE 1 (P) 

Proof. For each point (X,Y) of the set El(P) x E2 (Q) which is 
non-empty, compact and convex in a Euclidean space, consider the 
set 

1/1 (X, Y) 

where 

'" 1 (Y) 

and 

<P 2 (X) 

"'l(Y) X "'2(X) 

{UEEl(P) max E(Z,Y) 
zEE l CP) 

min E(X,Z) 
ZEE 2 CQ) 

E(U,Y)} 

E(X,V) } 

By the bilinearity of the function E the set 1/I(X,Y) is non-empty 
and convex. Hence, the fixed point theorem of Kakutani applied to 

the multivalued function 
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defined by ~(X,Y), which is obviously upper 

antees the existence of a fixed point eX,Y) 
point is a saddle point of the game r(p,Q). 

semi-continuous, guar-

E ~(X,Y). Such a 

Q.E.D. 

For this class of finite two-person games, this result is a simple 

extension of the minimax theorem. The minimax theorem is obtained 

when the pa.rtitions P and Q contain only one member each. 

We note that the condition of bilinearity in the above theorem is 

essential. Without this condition the above result is not always 

true as is shown by the following example. Consider the game 

where 

{ 1 , 2 } 

and the payoff function defined by 

if 

otherwise 

Then for the semi-mixed extension 

r(({1},{2}),{3}) E} 

the following equalities, which can be easily obtained by using 

simple arguments of symmetry are satisfied: 

min E(X,Y) 1 max "4 XE~lx~2 YEE 3 

and 

min E(X,Y) = 
1 max 

YEl: 3 XEE1 x E3 
2 
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These last two equations show that the minimax theorem is not 

valid for this semi-mixed extension, 

Given two partitions PI and P2 of M, suppose that for each PI E PI 

there is a P2 E P2 such that PI C P2 , Equivalently, each member' 

P2 E P2 is a union of members PI E PI' We then say that the part! 

tion PI is a refinement of the partition P2 , 

Consider any two partitions 

such that the partition PI is a refinement of the partition P2 , 

For each i = 1"" ,r2 let 

be the set of indices of members of the partition PI that are mem

bers of P2 ,i' Then, with any member X E ~l(Pl)' which is given by 

X(a) (Xp (a p )"",Xp (op )) 
1,1 1,1 1,1 l,r l 

for each a E El(P l ), we can associate a member X* E El (P 2 ) defined 

by the relation 

X*(a) = (IT. Xp (a p l"" ,IT. Xp (ap )) 
J EP 1 1 , j 1 , j J EP r 2 I , j k , j 

for each a E ,II (P2l. We denot;e by 

the set ln [1{P2') of all associate members of the elements in 

):1(P 1 ), We observe that each partition P is a refinement of fhe 

partition P fprmed by only one element. I~ an analogous way, the 

correspondill,g sets for th~ second player are defined, 

Given any partitions PI' P2 and Ql, 12.2 such that PI is a refine 

ment of P2 and Ql is a refinement of Q2 consider any points 
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and 

then for the expectation function th~ following equality is always 
true: 

E(X,Y) E(X*,Y*) 

where 

are their corresponding associated elements. 

A basic result for the subsequent discussion is given by the fol

lowing theorem. 

THEOREM 2.2. Let r = {E1x ••• xE m ' Em+1x •.. xE n ; A} be a finite 

zero-sum, two person game, PI and Q1 partitions of the respective 

sets M and N. 

Assume there is a saddle point 

of the semi-mixed extension 

Then for any respective partitions P2 and Q2 such that PI is a re

finement of P2 and Q2 is a refinement of QI' the associated element 

is a saddle point of the semi-mixed extension 

Proof. First of all, we note that the relation 
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max E(X,Y) 
XE~ 1 (P 1 ) 

E(X,Y) min E(X,Y) 
YEE 2 (Q.l) 

is true. It is also always true that 

- -
max E(X,Y) 

XEi\ (Pi) 
max E(X,Y) 

XEE 1 (P l )/P2 
max E(X,Y) 

XEEl (P 2 ) 

and 

-
min E(X,Y) 

YEE 1 (Q.l) 
min E(X,Y) 

YEE 2 (Q.l)/Q.2 
min E(X,Y) 

YEE 2 (Q.2) 

Using the relations 

E(X,Y) = E(X,Y*) E(X,Y) E(X*,Y) and E(X,Y) E(X*,Y*) 

for each X and Y, where 

- -
(X*,Y*) E El (P l )/P 2 x E2 (Q.l)/Q.2 

are the corresponding associated elements of X and Y, together 

with the above equalities we obtain 

-
max E(X,Y*) = E(X*,Y*) = min E(X*,Y*) Q.E.D. 

XEEl (P 2 ) YEE 2 (Q.2) 

A particular case of this result arises when both partitions P2 
and Q. 2 are constituted by only one member. 

COROLLARY 2.3. Let r = {Ilx .•• XL m ' Lm+lx ••• xL n ; A} be a finite 

zero-sum, tWo-person game, and P and Q. partitions of the respective 

sets M and N. 

If there is a saddle point 

of the semi-mixed extension 

r (P , Q.) f 2 (Q.) E} E} 
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then for the partitions P {M} and Q {N} the associated element 

)( 

is a saddle point of the mixed extension 

r E} 

A very special case of this result is obtained when the partitions 

are 

P {{l}, ... ,{m}} and Q {{m+l}, •.• ,{n}} 

I I I. We now introduce the (a,S) - characteristic function and ex

amine some basic properties. Finally, we will consider some spe

cial points of interest. 

Let r = {Ll' ... ,Ln ; Al , ... ,An } be a finite n-person game; let 

N = {l, ... ,n} be the set of players and let R ~ N be an arbitrary 

coalition. The players of the coalition R are divided into two 

disjoint sets 

a(R) C R and a(R) R - a(R) 

and the players of the anticoalition N-R are separated into the 

disjoint sets 

S(R) C N-R and S(R) N - (R U S (R) ) 

The set a(R) is called the support of the coalition R and the set 

S(R) is said to be the support of the anticoalition N-R. 

A function (a,S) defined on the set of all subsets R ~ N which as

signs to each coalition R the corresponding support a(R) and to 

each anticoalition N-R its corresponding support S(R) is called a 

support function of the game f. 

Intuitively speaking, the supports of the coalition R and the anti 

coalition N-R are the corresponding cooperative subcoalitions. 
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Thes~ subcoalitions have a structure that is very different from 

that of the subcoalitions a(R) of the coalition Rand S(R) of the 
anticoalition, the behavior of these latter two being non-cooper

ative, 

For a coalition R eN, consider the finite zero-sum two-person 
game 

{ X 
jER 

L, 
J 

X L. 
jEN-R J 

L 
jER 

A. } 
J 

The semi-mixed extension of this game by the partitions 

where 

S(R) 

is denoted by 

-
LS(R)xZS(R) , ER} 

In this extension, the strategy sets are determined by 

L 
s 

X 
jES 

L. 
J 

X 
jES 

L. 
J 

and ER is the expectation function of the payoff function 
A E A. 

R jER J 

We define the (a,S)-value of the coalition R in the finite, n-per

son game r as the maximin value of the corresponding semi-mixed e~ 

tension fR of the finite zero-sum two-person game r R, Hence the 

(a,S) value is defined as: 

v o(a(R) ,S(R) ;R) 

max 
-

(Xa(R)'Ua(R»ELa(R)xZa(R) (YS(R),VS(R»ELS(R)xZS(R) 



222 

As has been shown after theorem 2.1, we observe that generally the 
maximin value vo(a(R) , a(R) ; R) and the minimax value 
V O (a (R) , a (R) ; R) do not coincide. 

Given a finite n-person game r, then the (a,a)-characteristic fun£. 
tion v(a(R) , S(R) ; R) of r is a real function on the set of 
all subsets R S N giving the (a,S)-value. 

The (a,S)-characteristic function is a generalization of the char
acteristc function introduced by von Neumann-Morgenstern. This 
simple characteristic function corresponds to the case in which 
the support function is given by 

a(R) = R and S (R) N-R 

for each coalition R C N. 

The (a,s)-characteristic function and simple characteristic func
tion are connected by another more interesting relation which is 
ess'.mtially determined by the well known fact due to von Neumann
Morgenstern, which guarantees the existence of a game with charac
teristic function v for each superadditive real function v defined 
on the set of all subsets R S N = {1, •.• ,n} , wjth the zero value 
for the empty set: v(~) = O. This result together with theorem 
2.2 is used to obtain the following theorem. 

THEOREM 3.1 Let v be a superadditive real function defined on 

the set of all subsets R C N = {1, ... ,n} with v(~) = O. then there 

'exists an n-person game r such that for all support functions 

(a,S) the (a,S)-characteristic function of 'r is the function v. 

Moreover. if the function v satisfies 

vCR) + v(N-R) = yeN) 

for each R ~ N • then there exists a constant-sum n-person game r 
with total sum yeN). which is such that for all support functions 

(a,S) the (a,S)-characteristic function of r is the function v. 

Proof. Given such a superadditive function v, consider the well 
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known n - person game of 

r = U:l' ... ,l:n; Al' ... ,An } 

von Neumann - Morgenstern 
defined by the strategy setS: 

l:. = {S G N 
1. 

i E S} 

and the payoff functions of player i E N by 

! v (R.) 
1. , 

jR·1 

v (('i) J 

if R. 
1. 

otherwise 

for all i E N 

for all 

where IRildenotes the number of elements of the set Ri . 

E R. 
1. 

Then, it is well known that for each coalition R C N, the value 

vCR) is the value of the game 

where 

X l:J. 
jER 

l: AJ.} 
jER 

X 
jEN-R 

L 
J 

which is reached by using the maximin and minimax pure strategies 

OR CR, ... ,R) E l:R and 0N_R = (N-R, ... ,N-R) E l:N_R 

for the first player and the second player respectively. 

It is equivalent to consider the saddle point 

defined by 

if if 

and 
otherwise otherwise 
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in the semi-mixed extension 

E 2 (Q) 

corresponding to the partitions 

where 

Rand { j r+ 1 ' •.. ,j n } N-R 

with the value 

Now, any support function (a,S) determines partitions 

where 

of the coalition R and the anticoalition N-R, such that the parti-
- -

tions P and Q are respectively refinements of P and Q. There-
a B 

fore theorem 2.2 assures that the associated strategy 

is a saddle point of the semi-mixed extension 

which implies the equality 

v (a (R) , (3 (R) ; R) = v (R) . 

If the function v also has the additional property 

vCR) + v(N-R) = yeN) for all R C N 
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it is well known that there is a constant sum game 
r = {El, ... ,En ; B1 , .. . ,Bn } defined by the strategies sets as be

fore and by the payoff function as: 

for i E N,.whose total sum is v(N). Moreover, for each coalition 

R C N the value vCR) is the value of the game 

E BJ. } 
jEN 

with the saddle point 

Consequently, the associated strategy 

of (XR,YN- R) is a saddle point of the semi-mixed extension 

where FR denotes the expectation function of the function E 

Therefore we have jEN 

B. 
J 

V (a (R) , S (R) ; R) = v (R) . Q.E.D. 

Now, based on this result, one might argue that for each game ex

pressed' by a superadditive function, which assigns to each coali

tion the measure of cooperative power, such a measure can also be 

interpreted as any semicooperative power in the sense described by 

the (a,s)-characteristic function. 

Consider that the following result might be true; for each nand 

each superadditive function v defined on the set of all subsets 

R S N = {1, ... ,n} , with v(¢) = 0, there exists a game r such that 

the simple characteristic function is v and for all support func

tions (a,S) different (non-trivially) from that which generates 

the simple characteristic function, the (a,s)-characteristic and 
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the characteristic function are different. 

In such a case, for each superadditive function there is a game, 

for which the measure of the power of a coalition assigned by the 

superadditive function, can be only interpreted as the compl~te co 

operative power, and not in any semicooperative manner. 

We do not deal here with this v~ry intricate question. However, 

we are going to examine in general the superadditive property of 

the (a, S) -characteristic function, which by the above, theorem is 

only guaranteed for some particular cases. 

Such a characterization is given in the following result. 

THEOREM 3.2. Let r be an n-person game suah that for eaah pair of 

disjoint aoalitions Rand S: 

(I(S) U S(RUS) C S(R) 

and 

a(R) U a(S) C a(RUS) 

Then the (a,S)-ahal'Cwter1:stia funation is superadditive, i.e.: 

v(a(RuS),i(l~uS);RUS) ;;;. v(L1(R),S(R);R) + v(a(S),S(S)jS) 

for eaah pair oj' disjoint aoalitions Rand S. 

Proof. We have a maximin strategy 

- -
(R),Ua(R») E "a(R) x Za(R) 

of R in the semi-mixed extension game fR which satisfies 

for each strategy 

Analogously, we have a maximin strategy of the coalition S in the 
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semi-mixed extension fs: 

-
(Xa(S),Ua(S») E Ea(S) x Za(S) 

which fulfills 

- -
ES ((Xa (S),Ua (S»)'(YIl(S),Vj3(S»)) ;;. v(a(S),Il(S);S) 

for each strategy 

Now, since the following relations hold: 

a (RUS) [a(R)Uy(R)] U [a(S)Uy(S)] 

and 
a (RUS) [a(R) -y(R)] U laCS) -yeS)] 

where 

y (R) ~ a (R) and y (S) C a (S) 

one obviously obtains a strategy 

- -
(Xa(RUS),Ua(RUS») E Ea(RUS) x Za(RUS) 

in the semi-mixed extension rRus'by choosing Xa(RUS) as the asso
ciate of the strategy 

~ - -
in the set Ea(RUS) where UY(R) and Uy(S) are the respective re-

~ 

strict ions of the strategies Da(R) and Da(S) to the set Ea(RUS)' 

by taking each strategy cra(RUS) E Ea(RUS) with the probability 

- - - - -
Xa(RUS)(cra(RUS»)=Xa(R)(cra(R»)UY(R)(crY(R»)Xa(S)(cra(S»)Ua(S)(cry(S») 

and Ua(RQS) defined for each cra(RUS) E Ea(RUS) by 
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where U~(R)_Y(R) and U- are the respective restrictions ~ _ Cl (S):Y (S) 
of the strategies UCl(R) and UCl(S) 

- -By using the strategy (XCl(RUS),UCl(RUS»)' in the semi-mixed exten-
sion f RUS against an arbitrary strategy (Ya ,Vo U »), the ex ,,(RUS) ,,(R S 
pectation of the payoff to coalition RuS becomes 

- -
E RUS ((XCl(RUS),Uii(RUS»)'(YS(RUS),VS(RUS»)) 

- - - - -E R ( (X Cl (R) , U ii (R) ) , ( (Y S (RU S) ,X a (s ) , U a (S) ) , (V S (RU S ) ,U ~ (S ) - a (S) ) ) 

since 

S (R) S (RuS) U a (S) U a (S) , S (R) S CRUS) U a (R) U a (R) 
and 

HR) S (RUS)U [a (S) - a (S)l, s (S) S (RUS)U [a (R) - a (S)l 

where 

a(R) ~ a(R) and a(S) ~ a(S) • 

Now, by choosing YS(R) as the associate of the strategy 

in the set LS(R)' and YS(S) as the associate of the strategy 

- -
(YS(RUS),Xa(R),UO(R») E LS(RUS) x La(R) x ZaeR) 

in the set LS(S)' and finally, the strategies 

(V s (RUS) ,U a ( R ) - a (R) ) 
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we obtain 

ERUS ( (X a (RUS) ,U a (RUS) ) , (Y 13 (RUS) , Va (RUS ) ) ) 

~ v(a(R),13(R);R) + v(a(S),13(S);S) . 

Therefore 

v(a(RUS),8(RuS);RUS) ~ v(a(R),13(R);R) + v(a(S),13(S) ;S) 

Q.E.D. 

The condition on the supports of the coalitions and anticoalitions 

in the above theorem can be easily transformed to an equivalent 

condition which has a more symmetric expression, namely: for each 

paii of disjoint coalitions Rand S 

a(R) U a(S) C a(RuS) 

13(RUS) ~ 13(R) n 13(5) 
and 

Some particular kinds of support functions, for which the (a,13)

characteristic function satisfies the condition 01 superad

ditivity, immediately arise from the last condition, namely: 

a) If for each pair of disjoint coalitions Rand S: 

a (R) = 13 (N-R) 

a(RUS) = a(R) U a(S) 

In this case, the characteristic function can be obtained by 

taking the support of the coalition as the coalition: 
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a(R) = R 

Another simple case is presented if the support is empty: 

a(R) = t/> 

b) If for each pair of disjoint coalitions Rand 5 

a(R) = t/> 

a(Ru5) c a(R) n a(5) 

and finally, 

c) if for each pair of disjoint coalitions Rand 5 

a(RU5) J a(R) U a(5) 

a(R) N - R 

IV. Theorem 3.2 assures the fulfillment of .the superadditive 

property by the (a,a)-characteristic functions whose support fun£ 

tionssatisfy the mentioned relation, an.d therefore for these , 
characteristic functions we are in an analogous situation to the 

description of a game by a superadditive function. Thus, it is 
natural to try to extend the basic concepts by using the concept 

of a support function. 

In this section we deal with a possible extension of the concept 

of solution which is based upon a generalization of the concept 
of domination among imputations. We find all these new solutions 

of the constant-sum three-person essential game and in the end we 
consider some remarks; otir principal motive is only to illustrate 

a semi-cooperative extension of the cooperative interpretation of 

the characteristic fUIiction. 

Consider an n-person game described by a superadditive function 

as its (a,a)-characteristic function whose support function (a,a) 
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satisfies the requirement in theorem 3.2. 

Given two imputations 

for the (a,s)-characteristic function v, i.e., vectors whose com

ponents satisfy a i ~ v({i}) for all i E Nand LiENai v(N), we 

say that the imputation b a-dominates the imputation Q with re
spect to R C N, if 

a (R) ¥ ¢ 

and 

bi > ai for all i E a(R). 

We note that in the preceding definition the function S does not 

play any roles. Therefore without loss of generality and for sim 

plicity, we can consider the function S defined by S(R) = N-R for 
all R eN. 

This is a natural extension of the classic concept of domination, 

which was obtained by weakening the last condition. 

The imputation b a-dominates the imputation Q, if there exists a 

subset R C N so that the imputation b a-dominates the imputation 
Q with respect to R. 

Now, the extension of the concept of solution of a game in the 

sense of von Neumann-Morgenstern is immediate. This is obtained 

by replacing domination by a-domination. 

A set of imputations La is said to be an a-solution of the game r 

with (a,s)-characteristic function v and support function (a,S), 

if it satisfies the following conditions: 

(i) for each imputation Q e La there exists an imputation 

bEL which a-dominates Q. 
a 

(ii) no imputation of La a-dominates any other imputation 

of L • 
a 



232 

Now we examine all the a-solutions for the essential constant-sum 

three person game. 

For this game the possible support functions, except permutations 

and trivial differences, which satisfy the requirement of the pr~ 
vious theorem are the following: 

a 1 defined by a 1 (R) = ¢ for all R eN. 

a 2 defined by a 2 ({1.2}) 

and a 2 (R) = ¢ otherwise 

{ 1 ,2} {1,2,3} 

a 3 defined by a 3 ({1,2}) {1,2} 

"3({1,2,3}) {1,2,3} and a 3 (R) 

a 3 ({1,3}) = {1,3} 

¢ otherwise. 

Finally, a 4 defined by a 4 (R) = R for R with more than one 

element. 

THEOREM 4.1. Let v be the superadditive function defined by 

v(¢) = v({l}) = v({2}) = v({3}) = ° 
v({1,2}) = v({1,3}) = v({2,3}) = v({1,2,3}) 

Then the respective solutions are: 

L - the set of all the imputations 
a 1 

= the set of imputations (p,fzep) ,f3 (p)) 

with fz and f3 monotonically, non-increas-

ing , non-negative, continuous functions 

on the variable p E 10,1] and so that 

f Z(p)+f 3 (p)=(1-p) for each p E [0,1]. 

L the von Neumann-Morgenstern solutions. 
a 4 

Proof. Since a1(R) = ¢ for each coalition R, no imputation "1-
dominates any other imputation, so the first result is obvious. 
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Consider the support function a2' Obviously, an imputation b a 2-

dominates another imputation a if and only if 

and 

Therefore, the set of all imputations (a l ,a 2,0) with a l +a 2 = 1 

satisfies the requirements of the external and internal stabilit~ 

Moreover, L is evidently the unique solution for the support 
a2 

function a 2 , 

Now, consider the support function a3' In this case an imputation 

b a 3 -dominates another imputation a if and only if 

and or 

From this condition we see that each solution contains the imput~ 

tion (1,0,0), We now demonstrate that for each solution L there 
a 3 

exists an imputation 

for each p E [ 0,1) , 

Given any p E [0,1), consider the imputation 

l:.E. (p, 2 l:.E. 2 ) 

If a l E L , the assertion is valid, and if a l ~ L , by the de-
a3 a3 

finition of the solution L there exists an imputation 
a3 

which a 3 -dominates the imputation aI' i,e" 

and or 
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Obviously, we have P2 < ~ 
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This latter imputation determines the following set of imputations 

which is non-empty since P2 > p. 

Now, consider the imputation 

If a 3 E L the assertion is satisfied, and if a 3 ~ L ,by the 
a3 a3 

definition of the solution L there exists an imputation 
a3 

so that a 3 -dominates a 3 , i.e., 

and or 

We will prove that P2 > P4' 

inates a 2 because 

4 Suppose that P2 < P4' then a a3-do~ 

or 

which is impossible. Suppose that P2 

the set of imputations 

M 

is non-empty, and therefore there is an imputation b E M. 
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This imputation cannot be a member of the solution La3 , since in 

s.uch a case the imputation b would a 3 -dominate both imputations 

a 2 and a 4 , wh..ich is impossible. Therefore, there exists an impu-

tation e E La) which a 3 -dominates b E M. Hence, the imputation e 

a 3 -dominates at least one of the imputations a Z and a4 , which is 

absurd. 

Thus we have Pz > P4' Since a Z and a4 are members of the solution 

L we obtain a 3 

and 

Evidently we have 

p -p p-p 
P4 < Pz - _Z_ < _Z_ < .:!...::l..£ 

2 2 4 

Again, the imputation a 4 determines the non-empty set LCa4). Con 

sider the imputation 

If as E La ' 
3 

as f/:- La ' by 
3 

imputation 

p -p 
_4_) 

2 

the assertion is satisfied, and in the contrary case 

the definition of the solution La there exists an 
3 

which a 3 -dominates to as' i.e., 

and or 
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By an analogous way as before, we have P4 > P6" Moreover, 

and 

since the imputations a 6 and a4 are in L 
C!3 

Again, we evidently have 

By repeating this procedure, we obtain a sequence of imputation 

, a 4 , ... , 

of the form 

such that for all n = 1,""" 

a > a a > a 2,2n 2,2(n-l)' 3,2n 3,2(n-l) 

and 

by taking n + 00 we obtain from 

and 

the imputation 

which belongs to the set of imputations n:=l L(a 2n ) 

The imputation a is a member of the solution L 
C!3 

Suppose that 
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a ~ La ' then there exists an imputation bELa which a 3 -domi-
3 3 

nates to a, i.e., 

and or 

Suppose that the first two equalities are true, then there exists 

an n such that for all n > n 
o 0 

and 

which is absurd because a 2n E La. In an analogous way , obtain 
3 

a contradiction for the case in which the first and last inequali 

ties hold. 

Therefore, the imputation a E La ' and with this result we have 
3 

demonstrated for each solution the existence of an imputation 

for each p E [0,1). 

On the other hand, by an analogous argument to that used above 

for the case P2 = P4' one can easily see that there cannot exist 

two different imputations 

and 

for the same p E [0,1) for a given solution L 
(13 

Now, consider the imputations 

and 

in the solution L corresponding to p,q E [0,1) with p > q, then 
a3 

clearly a 2 ~ b 2 and a 3 ~ b 3 . Hence La 3 has the form 

with f2 and f3 monotonically non-increasing, non~negative func " 
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tions in the variable p E [0,1) such that 

(1 - p) 

for each p E [0,1). 

Cle,arly such functions must be continuous. The solutions for the 
last support function, as is well known, correspond to the theory 
of von Neumann-Morgenstern. Q.E.D. 

Define the core with respect to a as the set of all the imputa
tions undominated, in the sense of domination with respect to a. 

It is very easy to see that the core with respect to ai: Ca. for 
~ 

the above example with i = 1,2,3,4 are the following sets: 

<I> , {(l,C,O)} , C 
a 4 

In our case Shapley's conjecture would be formulated by: for each 
support function a the intersection of all the solutions with re~ 

spect to a. It is interesting to note that in each case above 
Shapley's conjecture is satisfied. 
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