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BOUNDED GROUPS AND A THEOREM OF GELFAND 
by G. Lumer* 

Ved~Qated to P~one~~o~ Albe~to Gonzalez Vom1nguez 

A well-known theorem of Gelfand [G] asserts the following: 

THEOREM. Let A be a complex Banach algebra with unit 1 (of norm 

1). Let a be invertible in A with II anll .,;; constant for 

n = O,±1,±2, ... , and spectrum equal to {1}. Then a = 1 

In this paper, considering a more general situation and following 

a different approach, .we obtain a quantitative result (theorem 1, 

estimate (1), below) which generalizes the preceding theorem. (1) 

Our approach involves so-cailled hermitian elements of a general 

Banach algebra (see [L]), and the fact that for such an element 

the norm equals the spectral radius ([S]). In turn the latter 

statement about hermitians can be easily recovered if one assumes 

theorem 1 to be known, which shows in particular that estimate 

(1) is sharp in some reasonable sense. 

Let us establish some notation. A shall henceforth always denote 

a complex Banach algebra with uni t denoted by 1 (always of norm 1) 

If A is commutative, M(A) denotes the Gelfand space of A, the 

points of which are homomorphisms. For a E A, sp(a) designates 

the spectrum of a, so that when A is commutative we have sp(a) = 

= {q,(a) : rj> E M(A)} Given a set S = A , we denote by lsi the 

sup {iisil : s E S} ; this applies in particular to the case A = C, 

(1) A new proof of Gelfand's original result was given recently 
by A. Browder in "States, numerical ranges, etc.", Proceed
ings of the Brown U. informal analysis seminar, Summer 1969, 
via an approach having some contact with what we do. 

* This research was supported in part by National Science 
Foundation grant GP 12548. 
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C the complex field normed by Ilzll = modulus of z for z E C. If 

F(.) is a function defined on S, F(S) denotes the set {F(s):sES}; 

again this applies in particular to A = C. However, by slight 

a-buse of notation A-I shall denote {invertibles in A}. The ex -

pression "S is commutative" of course means that "s's = ss' 

Y s,s' E S". A path in A is the continuous image of a (compact) 

interval; and given a path r in A, we shall consider its length 

Q (r) defined in the obvious way via the sup of the lengths of in

scribed polygonals (the latter computed from the norm). Finally, 

given a domain Gee, by "a determination of the logarithm in G", 

we mean a single-valued analytic function f defined in G and sat

isfying exp fez) = z for all z in G. What we obtain is as fol 

lows: 

1. THEOREM. Let G be a bounded group contained in A. Suppose 

that for a E G there is a path r of finite Zength. which is com

mutative and joins a to 1 in A-I. and that there is a determina

tion of the logarithm defined on UgEr sp(g) (i.e. defined on some 

domain containing U sp(g)). vanishing at 1. Then 
gEr 

(1 ) 

where "Zag" denotes the above mentioned determination. 

2. REMARK. That Gelfand's theorem follows from (1) above is im

mediate. In that case, a generates a bounded group G, r may be 

taken to be {t1 + (l-t)a : 0';;; t.;;; 1}, and using the usual prin

cipal determination of the logarithm for "log", Ilog sp(a) I = 0, 

so that a = 1. 

Proof of theorem 1. First of all notice that since we can always 

find a commutative subalgebra Al of A containing a, r , and r- I 

and such that the spectrum of a relative to Al is the same as reI 

ative to A, (and we can replace G by the group generated by a) , 

it is clear that we may assume without loss of generality that A 

is commutative. 

It is well-known that under our hypothesis a has a logarithm,i.e. 

can be written in the form a = e b ; but here we shall need more 
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precise quantitative information: we need to estimate the norm of 

the appropriate logarithm and know its spectrum. We proceed in 

several steps. 

Notice that since r is ~ompact, given 8 > 0 one can find on r 

points Xo 1,x1 ,x2 "",xn = a such that Ux j +1 -x j U < 8 for 

o ~ j ~ n-1; let us call such a collection of points a 8-partition 

of r. It follows from the compactness of r and the upper-semi-coB 

tinuity of spectra (see [H-Ph], p. 167) that E = UgEr sp(g) is 

compact, and hence for any s> 0 there exists a 81 (s) such that 

Ilog z - log wi < s for Iz-wl < 81 (s) and z,wE E, where "log" d~ 

notes the determination of the logarithm mentioned in the hypoth

esis. We consider now a 8-partition of r, Xo = 1 ,xl" ",xn = a , 

with a 8 > 0 satisfying (for reasons that shall become clear 

later) the following: 

of { 
7r } (2) 8 < minimum 

I r- 1 1 (1 +7r) 
, 8 1 (7r) 

2 x3 
For x E A , U xU < 1 , write Log(1+x) = x - ~ + ... (use also 

2 3 

the same notation for z E C, I z I < 1). Define 

Yo = 0 

(3) -1 ) o ~ ~ n-1 
Yj+1 y. + Log(1+x. (x.+1 -x.) 

J J J J 

Yn b 

This makes sense because of (2), and eb = a. (Verify by finite 

y. 
induction that e J x. ; the induction step is: 

J 

x.(1+x-:- i (x. I-X.)) 
J J J + J 

We have 

(4) 

U x -:-1 (x. + 1 - x . ) U Log· __ --: ______ ~ J J J 
-1 1 1- UX j (x j + 1 -x j ) U 1-llxj (x j + 1 -x j ) II 
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Hence we have 

(5) 

If we knew that b does not depend on the 6-partition used, for 
small 6 > 0, we would get from (5) the estimate we really want, 

IbO <; Ir-Ill! (r) , by letting 6 -> O. The latter estimate is in -
deed Correct (as follows easily from what we show later), but we 
shall refine our estimate later on,and for the moment (5) will do. 

Next we show that 

(6) sp(b) = log sp(a) 

For this purpose we proceed by finite induction to show that for 
0<; j <; n, we have V ~ E M(A) , ~(Yj) = log ~(Xj). The latter is 
obvious for j = 0; assume it is true for a j < n, then for any 
~ E M(A), we have 

= log ~(Xj) + Log( ... ) = log Hxj +l ) + 2.k1ri 

where k is an integer. 

yields, 

(7) 

< 

This together with ~(y.) 
J 

+ 7r < 27r 

log ~ (x.) 
J 

since 1~(xj+I)-.(xj)1 <; Uxj+l-x j n < 61 (7r), by (2), and since also 

by (2) the other summand is < 7r. Hence k 0, and the induction 
step is proved. Hence ~(b) = log ~(a) V ~ E M(A) which is what 
we wanted to show. 

Now for any t real, write t k+r where k is an integer , 
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1 o .;; IT I .;; "2 ' then 

til bII 
e 

(8) 

Next we want to make use of what is known about hermitian elements 

in general Banach algebras. For this purpose let us first simplify 

notation by calling the last quantity in (8) K ,i.e. writing 

uetbu .;; K for all t real: The bounded group {e tb } induces a re

norming on A considered as a Banach space, by defining the new 

norm II II' as follows: 

v x E A , Ux U' = sup {UetbxU < t < +oo} 

Clearly one has r1Uxll';; Uxll'';; KUxU. Call the renormed space A'. 

Now renorm A as an algebra by giving to x E A, the operator norm 

as muitiplication operator on A'. Call that norm U U" and the re 
normed algebra A". We have 

(9) v x E A 

and spectra are unaffected by this equivalent renorming of A. For 

any t real, uetbxu' = U e (t+s)bxU = UxU', so that U etbU" =1. 

The latter implies that ib is hermitian as an element of A" (see 

[L-Ph] ,[LI lemma 12, or [B-DI), and consequently by Sinclair's re 

sult IS], and (6), UbU" = Isp(b)1 = Ilog sp(a)l. 

On the other hand 

Ua-1II" = uf besbdsU" .;; UbU" fueSbu II ds UbU" 
o 0 

hence by (9), and what precedes, 
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Finally, notice that the previous inequality holds for any a > 0 

satisfying (2), hence by letting a + 0 in that inequality, we ob-

tain inequality (1) and the proof comes to an end. (2) 

3. REMARK. The fact that for any hermitian element h of a Ba -

nach algebra A, 

(10) Ilhll = jsp(h) j 

(which was used in the proof of (1)) can in turn be recovered in 

its general form from the previous theorem. 

Proof of remark 3. Given h hermitian in A, let 

G = {e ith : -00 < t < +oo} , then G is a bounded group with jGj = 1. 

Let a = e ih and let r = {e ith : 0 < t < 1}. If nhn is small enough 

we can use Log z as our determination of the 

jlog sp(a)j = jsp(h)j. 

logarithm and 

R f: 2 heishdsn 
1 

< jt2 - t11~hl, we have 2 (r) < ~h~. We apply now these observa -

tions replacing the given h by th, 0 < t small, and using estimate 

(1) we obtain 

jje ith _ 111 < tetnhlljsp(h) j 

Hence, 

ith 
nhn=limlle -1 11 <jsp(h)j<nhn 

t+O t 

which is what we wanted to prove. 

(2) For our proof of theorem 1 we do not have to know that b is 
independent of the a-partition used (a small enough). On the 
other hand it is easy to check the independence of b, using 
what we establish during the proof of theorem 1. Indeed, as 
sume we have two partitions for 0, 6' both satisfying ine -
quality (2), and giving rise to band b'. From our proof we 
see that IICPEM(A)"Hb')=logcp(a)=cp(b), so sp(b-b') = {a}. 

b-b' But e =1, so that with the notations of our proof,i(b-b') 
is hermitian in the corresponding A" and hence = O,i.e. b'=b. 



245 

REFERENCES 

[B-D] F.F. BONSALL and J. DUNCAN, Nume~~cal Range, to appear in 

Lecture Notes of the London Mat. Society. 

[G] I.M. GELFAND, Zu~ Theo~~e de~ Cha~akze~e de~ abel~chen Zo
polog~~chen G~uppen, Rec. Math. N. S. (Mat. Sbornik) 9(51) 

1941, p. 49-50. 

[H-PH] E. HILLE and R.S. PHILLIPS, Funcz~onal analy~~~ and ~em~
g~oup~, A.M.S. Colloquium Publications, Vol. 31, rev. ed. 

1957. 

[L] G. LUMER, Sem~-~nne~-p~oducz ~pace~, T.A.M.S. 100 (1961), 

p. 29-43. 

[L-PH] G. LUMER and R.S. PHILLIPS, V~~~~paz~ve ope~azo~~ on a Ba
nach ~pace, Pacific J. Math., 11 (1961) p. 679-698. 

[S] A.M. SINCLAIR, The no~m 06 a he~m~z~an elemenz ~n a Banach 

algeb~a, to appear. 

University of Washington. 
Seattle, Washington. 

Recibido en agosto de 1970. 


