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EIGENVECTURS AND CYCLIC VECTORS FOR BILATERAL WEIGHTED SHIFTS 

by Domingo A. Herrero* 

1. I NTRODUCT I ON 

In what follows a class of bilateral weighted shifts operators 

on Banach spaces is defined. Let B be one of these operators; 

the following results are proven to be true: 

1) There exist two vectors, f,g, such that the linear span of 

D,l ,Z, ... } is dense in the whole space; 

moreover, if B satisfies certain additional conditions, 
then the intersection of the (closed) invariant subspaces 

generated by 

{Bkf: k = D,l, ... } and {Bkg: k = D,l, ... } 

is equal to {D}, whenever f and g are suitably chosen. 

Z) If B has an eigenvector, then it also has a cyclic vector; 

3) If the adjoint B* of B has an eigenvector, then B has no 

cyclic vectors; 

4) If either B or B* has an eigenvector, then B has no alge

braically complementary invariant subspaces, no roots and 
no logari thm. 
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1. INTRODUCTION 

Let Co be the Banach space of all complex (two-sided) sequences 
{cn } (n E Z, the set of all integers) converging to zero in both 

directions, and with the sup. norm. i l is the subset of all those 

sequences in Co such that I::_oolcnl < 00 and this sum is the norm 

of that sequence in ii' 

Throughout this paper, X will denote an intermediate space between 

Co and i I ; i.e., (see 11] ,17]) 

(1) llcXCC O 

and, whenever T is a (bounded linear) operator on Co and i 1 , its 
restriction to X is also bounded there. Further, we shall assume 

that the sequence {em}(m E Z), where em {emn}(n E Z) (emn = 0, 

if m#n; e = 1) is a Sehauder basis for X in the sense that, if mm 
g = {c } E X, then n +k' 
(2) lim IIg - L c e II 0 (k,k' .... +oo). 

m=-k m m 

Using (2), g can be written as g = I c e n n 

It is well known (17, Chap.l]) that an intermediate space X can 
be re-normed with an equivalent norm so that, whenever an opera
tor T satisfies the two inequalities 

(3) IITII (C ) ~ 
o 

1, II Til (l ) ~ 1, then 
1 

II Til (X) ~ 1. 

Assume that the X-norm satisfies (3) and let W be a unitary ope~ 

ator on Co and iI' simultaneously Gi.e., W is an isometrie opera-

tor mapping each of those spaces onto itself). Th~n W is also a 
unitary operator on X; moreover, W*( = the adjoint of W acting on 

the dual space X* of X) is a unitary operator too. 

Applying these results to the operators Wand V defined (on Co 
and i l ) by 

(n E Z), 

where a is a "permutation" (i.e., a is a ~ijective map of Z), and 

where An is a complex number of modulus one, for all nEZ, we 

get 
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n 

and 
Ill: cell 

n n 

for all X-norm 11·11. 
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lie II, for all n,m E Z, 
m 

II L I c I ell, 
n n 

Hence, without loss of generality we can assume (and we shall!) 

that the X-norm satisfies (3) and, moreover, lie 11= 1, for all 
n 

n E Z. 

A bilateral weighted shift (B.W.S.) B on X is an operator defi

ned by 

(4) 

where w (n E Z) is a bounded (two-sided) sequence of non-zero 
n , 

complex numbers. Since B is clearly bounded and linear on Co and 

Ii (for every bounded sequence {wn}), then it is so on X. 

2. THE SPECTRUM OF B ACTING ON X. 

LEMMA 1 ([ 3,thm. 6] ) . The annulus (or disc) 

D = { z: R2 .;:; I z I .;:; 

where m+n 

Rl lim (sup. IT 
n++ co m j=m+l 

m+n 
R2 = lim (inf. IT 

n++ oo m j=m+l 

is contained in a(B). 

LEMMA 2 ([3, thm.l0]). If X 

a(B} = D. 

R1}, 

Iw.l)l/n 
J 

Iw.l)l/n. 
J 

and 

COROLLARY 3. a(B) = D, for every intermediate subspace X satisfy

ing (2). 

-1 
Proof. Let A f/. D, then (by Lemma 2) (B - A) and (B - A) are 

bounded on Co and Ii; hence, they are bounded on every interme

diate space X. 
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It follows that 

a(B) C D. 
The converse inclusion is the Zemma 1. q.e.d. 

The dual space of Co (iI' resp.) is equal to i l (ioo' the Banach 
space of all bounded sequences under the sup. norm, resp.). Thus, 
the dual space X* of X (satisfying (1)) is intermediate between 

i l and ioo 

(1 ') i l C X* C ioo 

Moreover, if e: = {cmn} (n E Z) (though as an element of X*), 

then (en,e:) = cnm' and the set of (bounded linear) functionals 

{e;} (m E Z) is totaZ in the sense that 

(5) g E X, (g,e:) = 0 ,for all m E Z, implies g O. 

It is also clear that Ue*U* = 1, for all mE Z. 
m 

The finite linear combinations of the e*'s are not dense in X* m 
in general (e.g., if X = iI' X* = ioo); however, every element 
f E X* can be represented as 

f = \' C e* 
L n n' 

where the sum is understood as a weak* limit. 

Let B be a B.W.S. on X; as in the case when X = i2 ([ 5,prob. ?5); 

see also [3), [4)), it is not hard to check that the point spec
trum of Band B* is invariant under rotations about the origin. 

Since kernel (B) = {OJ, every eigenvalue of B has positive modu
lus; thus, if X E a (B), then X f 0 and a (B) contains the cir-

p p 

cle of radius Ixi. The eigenvalues of B are simple; to be more 
precise, the only eigenvectors of B with eigenvalue X are the 
mul tiples of 

n-l 
L (TT w.) 
n=l j=O J 

X- n e 
n 

e -n 

The analogous results are true for B* and every eigenvector of ' 

B* with eigenvalue X is a multiple of 

(6') 
n-l ' 

hx = e* + L (TT w.)-l 
o n=1 j=O J 

Xn e*. 
n 

n 
+ L CTT w.) x- n e* 

n=l j=1 -J -n 
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In the general case, 0 (B) (0 (B*)) is a (possibly empty) annulus 
p p 

about the origin containing both, one or none of the two circles 
that form the boundary; this annulus could degenerate to a (clo-
sed or open) pointed disc, or to a circle. For example, if W 

n 

= [ en + 1) I (n + 2)] 2 (n = 0,1,2, •.• ), w = [ (n + 1) In] 2 (n = 1, -n 
2,3, ... ), then 0 (B) 

p 
o(B) = o(B*) is the unit circle. 

Assume that 0 (B*) ~ ~ 
p 

without loss of generality we can assume 
that 

(7) o (B*) :> Il= {z: I Z I 1}. 
p 

Let g L c n en E- X and define 

(8) g ... g(A) = (g, hA) = L c a An 
n n 

(the series converges absolutely; to see this, use the results of 
seat.l). 

For fixed g, the function g(A) is continuous on 0 (B*) and ana
p 

lytic qn the interior of this set (to see this, use (2) and (6')); 
moreover 

(9) 

and the convergence of a sequence in X implies the convergence 
(uniformly on compact subsets of 0 (B*)) of the corresponding p 
functions (given by the map (8)). 

Let L: X ... C(Il) (the Banach algebra of all continuous functions 

on Il,under the sup. norm 11.0 • .) be the linear map defined by (8) 

when A is restricted to the unit circle. The following facts can 

be easily checked: 

(10) i) L e 
n 

-1 n a A 
n 

ii) 11111 = IIh1 " * 

therefore L(X) is dense in·C(Il); 

K*. (use (9) and the results of seat.l) 

iii) L is one-to-one (use (6'), (8) and the uniqueness 

property of the Fourier series); 

iv) (LBg)(A) = Ag(A), for all g E X. 
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3. EIGENVECTORS AND CYCLIC VECTORS. 

THEOREM 4. If a (B*) I ¢. then B has no ayaZia veotors. 
p 

Proof. Without loss of generality we can assume that (7) holds. As 

sume that the statement is false; then there exists g E X such that 

X = V:=o Bkg (where the sign "V" means "the closed linear span 

of"). Since (by (10), i)) L(X) is dense in c(n), it follows from 

((10),ii)) that the finite linear combinations 

N 
L Akg(A) 

k=O 

are dense in C(n); in other words, g(A) is a cyclic vector for 

S = "multiplication by A" on C(n). To prove the theorem we only 

have to observe that S cannot have a cyclic vector; in fact. 

if g(A) E C(n) and M = V:=o Sk g(A), then, 

a) If g(AO) = 0, for some AO E n, then M is contained in the 

maximal proper ideal {f E C(n): f(Ao) = O}; or else, 

b) If g(A) never vanishes on n , then 

M = {fg: f ranges over A(n)} = gA(n), 

where A(n) is the closure in C(n) of the analytic trigonometric 

polynomials; then A(n) = g-l M. 

In either case, M ~ C(n). 

THEOREM 5. If a (B) # ¢, then B has a ayaZia veator. 
p 

Proof. Without loss of generality we can assume that 

(7' ) a (B) :J n 
p 

Let {An}:=l be a dense subset of n such that every An has a ra

tional argument; then AhAn is a primitive root of the identity of 

order k, where k = 0 if and only if h = n. Fix hand n; for large 

values of m, we shall certainly have 

( 11 ) 

moreover, the absolute value of the first member of (11) is less 

than or equal to one for all values of m. 
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gA be the eigenvector of B given by (6) and set 
n 

where {c}oo is any summable sequence of positive reals. By (11) 
n n=l 

we have 

where h < M + 00, as m + 00 This expression shows that 

gh E V 00 Bkg, for all values of h = 1,2,3, ... 
k=O 

Let f E X* be an element of the annihilator of V OO Bkg; by the 
k=O 

previous result, (gh,f) = 0, for all h. 

Since a (B) ~ IT we can repeat the above construction defining a 
p 

continuous linear map L': X* + C(IT) by means of 

(8' ) h + h(A) = (g>.,h), hE X* 

(in fact, (2) and (6) show that the map A + gA is continuous). 

This map is well defined and it enjoys all the properties (10) 

(with the obvious changes); in particular, we have: 

(10') iii) L' is one-to-one 

Applying this result to the continuous function f(A), which 

(s ince (gh' f) 0, h = 1,2, ... ) has a zero at every point of the 

dense subset {A}oo of IT, we conclude that f = 0 and therefore 
n n=l 

x V OO 

k=O 

k B g. 

q.e .d. 

The unequal behavior of B according to a (B*) # ¢ or a (B) # ¢ 
p p 

yields the following result: 

COROLLARY 6. Let B be a B.W.S. on X and let B* be its adjoint 

(acting on X*);then either a (B) = ¢ or a (B*) = ¢. p p . 

If X* c CO' . then the (unweighted) bilateral shift U (defined by 

Uen en+1) provides an example of a B.W.S. for which both a (U) 
. p 
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and a (U*) are empty sets. On the other hand, as it is well known 
p 

(see, e.g., [6]) U and U* acting on i2 have (the same!) cyclic 
vectors. This example suggests the following question: is it true, 
for an arbitrary B.W.S. B acting on a spaCe X such that X* is 
sepapabZe, that either B has a cyclic vector, or B* has a cyclic 
vector? 

If we consider the same operator U* acting on i~ (= it), then 

a (U*) = TI and the eigenvectors of U* with eigenvalue A are the 
p 

n 
multiples of hA = l ~ e~ ; a short analysis of these eigen-

vectors shows that 

I.e., the map A + hA (defined by (5')) is continuous at no point 
of TI!. 

4. THE MULTIPLICITY OF A B.W.S. - INVARIANT SUBSPACES. 

Let P+(P-, resp.) denote the projection of X onto X+ 

= V {e : n ;;> O} (X 
n 

P+l c e n n 

and let T+, T be the 

T+g = Bg 

V {en: n < O}, resp.) defined by 

= l~ c e (P I - p+), 
h=O 

,n n 

operators defined on X+, X , resp. , 

(g E X+), T-g P-Bg (g X - ) = E 

by 

+ * + * It is clear that (up to an isometric isomorphism) (X) = P X 
+* -+ * +* -* * and T = P B (on·X ); similarly we can write T = B restri-

cted to X -* 
= * P - X 

Following R. Gellar ([ 4] ) , we shall define 

1+ 
n-l 

) 1 In Q+ 
n-l lIn 

= lim inf (IT lim sup (TT wj ) 
, n + +~ j=O 

Wj , 
n + +00 j=O 

n lIn n' lIn 
I lim sup (IT w .) Q lim inf (IT w .) 

n + +00 j=l -J n + +00 j=l -J 

We have R2 .;;; 1+ .;;; Q+ .;;; Rl , R2 ';;;Q .;;; I .;;; Rl · 
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Even in the case when cr (B*) 
p 

~, to every g E X we can associate 
a formal Laurent series 

(8" ) g (A) = L 

(i.e., g(A) is defined in such a way that if A E cr (B*), then p g(A) coincides with the expression (8)); the correspondence 
g + g(A) is clearly injective and (Bg)(A) = Ag(A). 

THEOREM 7 ([4, thm. 111). If f E X then 

i) f+(A) = (P+f)(A) converges to an analytic function in the 

region Izl < r+. 

ii) f-(A) (P-f) (A) converges to an analytic function in the 

region Izl > r-. 

iii) If r- < r+, then convergence in X implies uniform conver
gence of the associated analytic functions on compact subsets 

of the region r < Izl < r+. 

The region r- < Izl < r+ is preCisely the interior of cr (B*). 
P 

Similarly, the regions Izl < r+ and Izl < Q coincide with the 
interior of cr (T+*) and a (T-), respectively. p p 

We recall that an operator R is called unicellular if its lat
tice of invariant subspaces is linearly ordered by inclusion 
([ 51). rt is not hard to conclude from the above definition that 
a B.W.S. B on X is unicellular if and only if its lattice of in
variant subspaces consists of exactly the following elements: 

(12) {a} ,X X = V {e : n;;;' m} = V 00 Bke (m E Z). 'm n k=O m 

No example of such operator is known. Here we shall establish a 
necessary condition for the unicellularity of a B.W.S. 

COROLLARY 8. If B is a unicellular B.W.S., then 

r+ = Q- = O. 
In particular, an invertible B.W.S. cannot be unicellular. 

+* is a non-zero eigenvector of T 
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with eigenvalue Ao ' then 

+ . + 
MA = {g EX; (g,hA ) = O} = {g E X :g(A o) = O} 

o 0 

+ is an invariant subspace for T ; hence MA is an invariant sub-
o 

space for B and it is not hard to check that if Ao ~ 0, then M 
can not be of the form (12). 

Similarly, if go # 0 is an eigenvector of T with eigenvalue 

AO # 0, then 

Cg V k 
B go 

0 k=O 

is an invariant subsp~ce of B; not of the form (12). In fact, 

p C = V go is a one-dimensionat subspace of X 
go 

since AO ~ 0, 

go cannot be a multiple of e_ 1 ;therefore Cgo i,5 a non-trivial 

invariant subspace and C ~ Xm , for all m E Z. 
go 

Therefore,if B is unicellular, cr (T+*) . . p 
cr (T -) = {O}; now, by 

p 

the observations following thm.7, this is equivalent to: r+ 

= Q = O. 
q.e.d. 

Cor. 8 also shows that if r+ > 0 or Q > 0, then B has "many" 
invariant subspaces (the lattice of invariant subspaces of B has 
the power of the continuUm!). Now we want to show that some of , . 

these' subspaces have an invariant topo~ogiaa~ complement (h~wev

er, as we shall see in the next section, an invariant subspace 
of B has no invariant a~gebraia complement, in general). The 
next ~emma has some interest in itself: it says (in the terminol 
ogy of [8]) that the muitiplicity of a B.W.S. cannot be greater 
than 2. 

LEMMA 9. If B is a B.W.S. on X • then there exists a veator 

g E X suah that 

X k k V {B eO' B g} • 
k-O . 

Proof. A simple modification of the argument gi.ven in [5; prob. 

126] shows that a "backward" unilateral weighted shift operator 
always ba; a cyclic vector; since T- (acting on X-) belongs to 
this class of operators, it follows that there exists g E X 
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such that 

x v - k 
(T ) g. 

k=O 

Assume that g satisfies the above condition; since X+ 

we have that 

k 
V B eO' 

k=O 

belongs to the subspace spanned by 

all n = 0,1,2, ... , and therefore 

_ p+Bng 

k k 
{B eO' B g:k= 0,1,2, ... } for 

x - + X Ell X X- V X+ c V {Bkeo,Bkg} eX. 
k=O 

q.e.d. 

THEOREM 10. Let B be a B.W.S. such that a (B*) ~ n and let 
p 

Cf = V Bkf be the cyclic invariant subspace generated by 
k=O 

an element f of X. 

Then 

(13) 

Assume that f,g E X satisfy the conditions: 

1) The continuous functions f(A), g(A) (A E n) neVer vanish; 

2) f(A) g-l(A) are not the radial limits. (a.e. with respect 

to the Lebesgue measure) of d function meromorphic on 

I <: I < 1. 

Proof. The modulus maximum theorem, inequality (9) and 1) imply 
that if h E Cf then 

h(A) f(A)h 1 (A) (A E n) 

where h1(A) = lim h1(rA) (0 < r < 1, r + 1), h1(z) being a func 

tion analytic on Izl < 1. 

Let 0 f h E Cf n C . the above result shows that 
g' 

h(A) = f(A)h1(A) = g(A)h 2 (A) ~ 0, 

where h1(z) and h 2 (z) are two bounded and non-identically zero 
functions analytic on Izl< 1. Thus (see, e.g. [6]), the radial 

limits 

are well-defined almost everywhere on n; but the function 

h2(z)h~1(z) is meromorphic on Izl < 1, contradicting 2). This 
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contradiction proves that h(A) - 0 and therefore, by (10), iii), 

h = 0, which proves (13). 
q.e.d. 

COROLLARY 11. Let B be a B.W.S. on X such that a (B*) ~ IT and let 
p 

g E X be a vector satisfyi~g the conditions: 

1) P-g is a cyclic vector for T (acting on X-); 

2) g(A) never vanishes (A E IT) and 

3) g(A) are not the radial limits (a.e.) of a function meromor

phic on JzJ < 1, or 

3') g(A) is the res~riction to IT of a function analytic on some 

neighborhood of the unit circle. 

Then 

Cg n Xm = {O}, CgVXm = X, 

for every m E Z.However, the algebraic direct sum C ffi Xm is g 
never closed. 

Proof. To see that C V X X we only have to repeat the proof 
g m 

of lemma 9 with minor changes (use 1). 

Condition 2) implies (as in the proof of thm.l0), that if 
C n X # {O}, then 

g m 

m -1 g(A}=A h1 (A)hz (A}, 

where h 1 (z} arid hz(z} are two bounded and non-identically zero 

functions, analytic on JzJ < 1. If g satisfies 3'}, the above ex· 
pression shows that there exist a polynomial p(z) such that 

p(z) g(z) is analytic on JzJ < 1 ; but this implies that the di

mension of the subspace 

P C = V 00 (T-)k g-
g k=O 

of X cannot be larger than degree (p) < 00, contradicting 1). 

We concluded that 1), 2), and 3') imply 3}; now, if g satisfies 1), 

2) and 3), then C n X must be equal to {a} by thm. 10. 
g m 

Finally, observe that if Cg ffi Xm is closed, then 

X C ffi X = C ffi X . 
g m g m-l' 

hence em_1 = f + h, where f E Cg ' h E Xm' and therefore em_1 has 

two different expressions as an element of the direct sum 
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C ex· this contradiction shows that C e X cannot be closed g m-l' g m 

in X. q.e.d. 

The hypothesis a (B*) # • is sufficient but not necessary for the 
p 

existence of two topologically, but not algebraically, complemen
tary invariant subspaces. 

EXAMPLE. If U is the (unweighted) bilateral shift acting on i 2 , 

then U is unitarily equivalent to multiplication by 1 on 

L2(IT, dm) (where dm denotes the normalized Lebesgue measure on the 

unit circle); if f(l) is a function of modulus one (a.e., dm) and 

g(l) is the characteristic function of a measurable set E C IT 

such that 0 < m(E) < 1, then 
2 Cf -n Cg = {OJ CfV Cg = L , 

but Cf e Cg is not closed in L2 (the proof follows from the re

sults contained in [6]). 

CONJECTURE. If B is a B.W.S. such that I+ > 0, then B has two to

pologically, but not algebraically, invariant subspaces. 

We are going to close this section with a more precise relation 
between (8) and (8"). 

LEMMA 12. Assume that for every g E X the series (8") is Cesaro 

summable to a finite limit for 1 = 1 0 ; then 10 E 0p(B*). 

Proof· The operators CN defined by 

have finite dimensional range and therefore they are bounded on ·X 

(moreover, II CNII = 1, for all N). It follows that the linear func
tionals 

are also bounded. 

By hypothesis, jN(g) = gN(A O) converges to a finite limit; hence 

for every g E X there is a constant K such that 
g 

From this and the uniform boundedness principle, we conclude that 
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II j Nil .;; K , 

for some positive constant K, indep~ndent of N. 

Hence 

and therefore 

Ig(lO) I .;; K II gil , for all g E X. 

Let h~ E X* be the bounded linear functional defined by g + g(lO); 
o 

then g(lO) 

therefore 

(g,h~ ), for all gE X (it is clear that h* ~ 0), and 
o 10 

= (Bg,h~) = (g,B*h~) ; 
o 0 

i. e. , 10h~ and therefore 10 E 0p(B*) 
o 

q.e.d. 

It is not difficult to conclude (using the results of seats.l and 

2) that, if g(lO) (given by (8")) is Cesaro summable for a11 
g E X and for some 10 E n, then n C 0p(B*) and gel) E C(n). 

5. OPERATORS COMMUTING WITH B. 

Assume that 0p(B) :> n and let R E ~~, the commutant of B; 
then 

o (BR 

Since every 1 E ° (B) is a simp~e eigenvalue, the above equality 
p 

implies 

(14) 

for some complex number c(R,l). An elementary analysis of the 
results of seats.2-3 shows that 

THEOREM 13. If ° (B) :> n. to every operator R aommuting with B 
p 

aorresponds a funation c(R,l) E C(n);the map~ing 'Y: ~ + C(n) 
defined by 'Y(R) = c(R,l) is an a~gebra isomorphism (of ~~ into 

C (n)) and 

II c (R, 1) II co .;; KII RII , 



38 

Proof. The existence of C(R,A) is clear from the previous obser

vations. The continuity of C(R,A) is a consequence of (2), (6) 
and the fact that R itself is continuous. 

That 7 is an algebra homomorphism is also clear. If C(R,A) = 0, 

then Rg A = 0, for all A E IT, and this implies (since the set {gA' 
A E IT} is complete in X, as we saw in the proof of thm.5) that 

R = 0; hence, 7 is one-to-one. 

Finally, the inequality IIc(R,A)lI oo ';;; KIIRII follows immediately from 

(14), and the results of sect.l. 

COROLLARY 14. If a (B) ~ IT, then: 
p 

q.e .d. 

i) B has no non-trivial complementary invariant subspaces; 

ii) If I z I < 1, (B - z) is rootless; 

iii) If I z I .;;; 1, (B - z) is logarithmless. 

Proof· 

i) Assume that P E ~~ satisfies the equation p2 = P; then, by 

thm.13, C2 (P,A) = C(P,A) E C(IT) and therefoTe C(P,A) = ° (and p=o) 
or C(P,A) = 1 (and P = I). Therefore ~~ contains no non-trivial 

idempotents and this condition is equivalent (see [2; exerc.3,p. 

701) to the non-existence of two non-trivial complementary inva
riant subspaces for B. 

ii) If Rk = (B - z), then it is clear that R E ~~ and, by thm.13, 

ck(R,A) = c(B -Z,A) = (A - z); since Izl < 1, the equation ck(R,A)= 

= (A - z) has no solutions in C(IT), for any k> 1. Therefore (B-z) 
is rootless. 

iii) Similarly, if eR L (1/n!) Rn = (B - z), then R E ~~ and 
n=O 

C(R,A) = log (A - z); but this equation has no solutions in C(IT), 

unless Izl is strictly larger than 1. 
q.e.d. 

COROLLARY 15. The conclusions of thm.13 and cor.14 remain true 

when the hypothesis "a (B) ~ IT" is replaced by "a (B*) ~ II." 
P P 

Proof. Let REA" then R* E ~B'* and we conclude as in (14) that 
- B' 

(14 ') R*hA = c(R*, A)hA, (A E IT). 
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However (as it is shown by the example at the end of seat.3), the 
mapping A + hA is highly discontinuous in general, and we cannot 
apply the arguments of thm.13. The solution arrives by using the 
duality between X and X*; in fact, (8)-(10) and the equalities 

c(R*, A) 

show that c(R*, A) E c(rr). 

The remaining statements are clear now. 
q.e.d. 

6. COMPLEMENTARY REMARKS. 

The results contained in [3],[4] and those of this paper show that, 

if B is a B.W.S. in a Banach space X satisfying our conditions and, 
moreover, 

1) B has two non-trivial complementary invariant subspaces, or 

2) B has a kth root for some integer k> 1, or 

3) B has a logarithm, then 

cr(B) is a circle and cr (B) = cr (B*) = ~ 
p p 

CONJECTURE. If both X and X* satisfy our conditions, X is reflex
ive and B is a B.W.S. on X, then each of the three above condi
tions is equivalent to 

4) B is similar to a positive multiple of U, i.e., there ex
ists an invf:,rtible operator V on X and a positive r such that 
B = rVUV- 1 . 

All the results of this paper can be easily extended to a larger 
class of B.W.S., and even to a class of operators related with 
them. 

For example, if Y is a Banach space satisfying (1) and (2), and 
the Y-norm satisfies all the conditions that we asked for the 
X-norm of the intermediate subspaces and if the B.W.S. B is well 
defined and continuous on Y, then all the results can be extended 
to B acting on Y. This is true, in particular, for all B.W.S. B 
such that 

(15) 

EXAMPLE 1. Let {Xk} be a finite (or denumerable) family of dif-
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ferent intermediate spaces between Co and II in the conditions of 

sect.l, and let Z = Uk 2k be a partition of Z (where k ranges over 

the same set of indices as for the Xk's). Let Pk be the projection 

defined by 

c e n n L c e n n 
n € Zk 

and let Y be the completion of <3)k Pk Xk under some "suitable" norm 

(e.g., IIglly = L IIPkgll x ). Observe that, in general, the W's of 
k k 

sect.l are not unitary operators in Y, even if Y is re-norm~d with 

an equivalent norm. However, Y satisfies our requirements and, if 

B is a B.W.S. whose restriction to Y maps Y continuously into it

self, then the results of the paper apply to B restricted to Y, 

except perhaps cor.3. 

If, e.g., Y = P+C o <3) P-l 1 , then every B.W.S. defines an operator 

po. I pe , then the only B.W.S. that we can "interpolate" in 

this Yare those satisfying the'condition (15) (for each of these 

operators, a(B) = {O}). 

EXAMPLE 2. The results also apply to Y = C(n), though as the space 

of all sequences of Fourier coefficients of continuous functions 

on n , even when the projections p+ and P are not bounded here 

and, moreover, (2) is not satisfied in this space (see [9; Chap.II 

and VIII]). 
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