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SOME ISOTHERMAL PROPERTIES OF CARTOGRAMS T 

AND DENSITV TRANSFORMATIONS T* 

John DeCicco and Robert V. Anderson 

1. ABSOLUTE OERIVATIVES ANO NATURAL FAMILIES UNOER A CON FORMAL 

CARTOGRAM T. 

Consider a conformal cartogram T between two Riemannian spaces 

V and V , each of dimension n ~ 2, for which the scale p = e~ n n 

= ds/ds > O, where ~ = ~(x) is a point function. Under the con
formal cartogram T two corresponding unit contravariant vectors 

Ai and ¡i of V and V respectively transform according to the law 
n n 

(1 .1) I i = e -~ Ai 

--i 
Under T the arc length absolute derivative ~ of a contravariant 

ds 

vector ¡i of V 
n 

D¡i 
is expressed in terms of -- when it is considered 

ds 

as a vector of Vn , by the set of relations 

(1 • 2) 
ds ds 

[ d~ 
ds 

In particular if Ai and ¡i are two corresponding unit contravari

ant vectors then 

(1 .3) 

Co~sider two curves C:xi 

pond under the conformal cartogram T between V and V . Their two 
n n 

unit contravariant tangent vectors satisfy the relations dxi/ds 

= e-~(dxi/ds) and the two corresponding contravariant geodesi¿ 

curvature vector s Ki and Ki obey the law of transformation [1] 



(1 .4) 
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e-2lJ Ki + e-2lJ [dlJ dx i 

ds ds 

. [ 2] 2n 2 A natural family Q of ~ - curves C of Riemannian space Vn is 

such that every curve C of Q corresponds under a conformal carto
gram T on V onto a Riemannian space V to a geodesic e of V . n n n 

In particular, the set of oo2n-2 geodesics C of a Riemannian space 

Vn is a natural family. 

THEOREM 1.1. A natural family Q of a Riemannian space Vn is com

posed of all the oo2n-2 integral solutions of the set of n second 

order ordínary differential equations 

(1 . S) 

-i This is obtained from (1.4) by setting K = o. 

It is evident that under a conformal cartogram T that a natural 

family Q of Vn corresponds to a natural family Q of Vn . 

i 2. THE SYMBOLS Ajk ANO Bjk OF A CONFORMAL SPACE r n . 

Consider a Riemannian space Vn of dimension n ~ 2. The totality 

of all Riemannian spaces V such that there exists a conformal 
n 

cartogram T between Vn and 'in is termed a conformal space f n . 

If V and V belong to the same conformal space r then their af-n n n 
fine connections are related by the law 

(2.1) -i i o~ alJ oi -ª.l!. giCl ~ r j k r jk + + - gjk J axk k ax j ax Cl 

where lJ is the scale of the conformal cartogram T relating V and n 
V n 
It is an immediate consequence of these relations that 

(2.2) 
n 

j 1,2, ... ,no 

i Consider a fixed Riemannian space Vn , for n ~ 2. The symbols Ajk 



65 

and Bjk are defined by the expressions 

(2.3) 

(2.4) 

THEOREM 2.1. Two Riemannian spaaes Vn and Vn , for n ~ 2, are aon

formaZZy equivaZent if and onZy if the two sets of symboZs A~k and 

Bjk are the same in every admissibZe aoordinate system (x), pro-

- 21l (x ) () 
vided that the set of initiaZ aonditions gij(xO) = e O gij Xo 

is satisfied for i,j = 1,2, ... ,n at some fixed point PO' where 

ll(x O) is a fixed reaZ aonstant. 

-i 
For, by means of (2.1) and (2.2) it is found that Ajk 

i 
Ajk and 

Bjk = Bjk for two conformally equivalent Riemannian spaces Vn and 

V • n 

Conversely, suppose that 

Riemannian spaces V and 
n 

i 
Ajk and Bjk = Bjk for two 

The second set represent integra-

bility conditions for the equations (2.2). Thus, let 1l = ll(x) rep
resent a solution of (2.2). There exists one and only one solu
tion satisfying the prescribed set of initial conditions at the 

fixed point Po' By use of the conditions A~k = A~k the law of 

transformation (2.1) is found. It then is easily deduced that 

g .. = e 21l (x) g .. where 1l = ll(x) is the unique solution discussed 
l.J l.J 

aboye. Consequently V and Vare conformally equivalent. 
n n 

It isn.oted that the symbols A~k are symmetric in the lower indi-
i O. However the Ajk do not form a tensor. 

The symbols Bjk are skew symmetric, that is Bjk = -Bkj , and form 

a skew symmetric covariant tensor of'second order. 
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3. COVARIANT ~IFFERENTIATION IN A CONfORMAL SPACE r . 
n 

In a Riemannian space Vn the covariant derivatives Ai 
,k 

of a contravariant vector Ai and a covariant vector L l. 
given by 

Ai aA i 
+ Ai Aa + Ai r a + ó i r a 

~k n n ,k ak ak k aa 

- gia 
gkb re Ab , 

n ae 

(3. 1) 
aA . l. a r a r a . Ai , k axk Aik A - L - - Ak a n l. ak n al. 

+ ab e 
ñ gik g rae Ab . 

The two corresponding absolute differentials are DA i 

d DA A dxk . an i = i,k 

and Ai,k 

may be 

Aa -

+ 

i In a conformal space r n , n ~ 2, with invariant symbols Ajk and 

B. k' the conformal covariant derivatives L\Ai and .6.kAi of any con
.J 

travariant vector Ai ~nd any covariant vector Ai are defined by 

(3.2) 

The corresponding conformal absolute differentials are 

.6.Ai .6.kAidxk and .6.A i .6.kAidxk 

THEOREM 3.1. The four sets of quantities, .6.kAi, .6.kAi ' .6.Ai , .6.A i are 

aZZ invariant under the aonformaZ group G of the aonformaZ group 

G of r n • If Vn is an eZement of r n then the reZationships between 

these aonformaZ aovariant derivatives and the aovariant deriva

tives reZative to Vare found by substituting the reZations (3.2) 
n 

into the equations (3.1). 

It is observed that the differential d(~,~) of the inner product 

(~,~) = ~i~. of any contravariant vector ~i and any covariant l. 

vector ~i is 
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(3.3) d(I/l,I/I) = D(I/l,I/I) 

=6(1/l,1/I). 

THEOREM 3.2. If two Riemannian spaaes Vn and Vn , for n ~ 2, beZong 

to the same aonformaZ spaae r n and aorrespond by a aonformaZ aar

togram T for whiah the saaZe is p = e~ = ds/ds > 0, then for every 

geometria veator A = Ai = Ai with I Al > ° of Vn there exists a 

point funation r r(x) depending on A suah that by T the images 

two aovariant derivatives Ai and A. k obey the Zaws of transfor-,k 1, 

mation 

(3.4) 

A. k 1, 

This result is a consequence of the previous discussion. 

It is noted that when r = 0, we obtain the laws of transformation 
for unit vectors. 

4. SOME CONFORMAL PROPERTIES OF THE LAME OIFFERENTIAL PARAMETERS 

6 1 (U,V) ANO 6 2 (V)[3 1• 

In a Riemannian space Vn ' for n ~ 2, the Lamé differentiaZ para

meter 6 1 (U,V) of order one, of two scalars U = U(x) and V = V(x) 

is the scalar 

(4.1) (grad U, grad V), 

In particular, if U = V, then 6 1 (V) = 6 1 (V,V) = I grad VI 2. 

The Lamé differentiaZ parameter of seaond order 6 2 (V) = ~2 (U) is 
the Laplacean and is defined by the scalar 



(4.2) /:::"2 (V) = 'í12 (V) 

where g = 1 g, ,1 > O. 
~J 
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'k 
gJ V 'k 

, J 

If two Riemannian spaces correspond by a conformal cartogram T 

and if V = V(x) is a scalar then 

(4.3) v, 
, J 

V , 
,J V 'k , J 

The three laws of transformation for the Lamé differential para

meters are 

(4.4) 

/:::"2 (V) 

Theseare obtained by means of Theorem 3.2, where the scalar 

r = r(x) is replaced by -~(x). 

If a scalar V = V(x) with /:::"1 (V) > O, is a harmonic function in a 

Riemannian space Vn ' then the equation V = V(x) = constant defines 

an isothermaZ famiZy of ~l surfaces L l' each of deficiency one, 
n-

in V • 
n 

It may be proved that a simple family of ~l surfaces Ln - l , each 

of deficiency one in a Riemannian sp~ce Vn , for n ~ 2, is an iso

thermal family V = V(x) = e = constant if and only if V = V(x) 

obeys a partial differential equation of second order of the form 

(4.5) 
'k 

gJ V,jk 

'k 
gJ V ,V k 

,J , 

F (V) , 

where F = F(V) is a scalar depending onZy on V = V(x). 

[ 4] 
THEOREM 4.1. If two Riemannian spaaes Vn and Vn ' for n ~ 2, aor-

respond by a aonformaZ aartogram T then every isothermaZ famiZy 

in V is aonverted into an isothermaZ famiZy in V if and onZy if n n 

either n 2 or eZse if n ~ 3, T is a homothetia aartogram for 

whiah ~ is a reaZ aonstant. 

This proposition is established by means of the conditions (4.4) 

and (4.5). 
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5. OENSITY TRANSFORMATIONS BETWEEN TWO RIEMANNIAN SPACES V ANO V 
n n 

Let two Riemannian spaces V and V , for n ~ 2, correspond by a 
n n 

cartogram T, conformal or not, for which the differential ds and 
ds of arc length along corresponding curves e and e of V and V 

n n 

are defined by ds 2 = g .. dx i dx j and ds2 = g dx i dx j 
1J ij . 

A density transformation T* between Vn and Vn is such that their 

respective points correspond by a cartogram T, either conformal 
or not, and a scalar V = V(x), which is evaluated at a point P of 
V is converted into the scalar 

n 

(5.1) V V(x) = F (V;x) 

for which av aF ~ O, whose value is associated with the corres
av av 

ponding point ~ of Vn ' A scalar V = V(x) calculated at P in Vn is 

called a density V of P. 

THEOREM 5.1. Under a density transformation T* between two Rie

mannian spaaes V and V, for n ~ 2, the Lamé differentiaZ para-
n n 

meters 6 1 (V) and 6 2 (V) of a density transform aaaording to the 

Zaws 

Xl (V) (2L) 2 Xl (V) + 2 2L X (V,F) + Xl (F) 
av av 1 

6 1 (V) (2L)2 6 1 (V) + 2 2L 6 (V,F) + 6 1 (F) 
av av 1 

(5.2) 

2L X (V) 2 X (2L 
2 . 

X2 (V) + X2 (F) + , V) + U X (V) 
av 2 1 av av2 ,1 

6 2 (V) 2L 6 (V) + 62 (F) 2 6 (aF , V) a2F + + -261 (V). 
av 2 1 aV av 

A aonformaZ density transformation T* is Qne for which the asso
ciated cartogram T is conformal. Under a conformal density trans
formation T* the preceding result yields 

THEOREM 5.2. Under a aonformaZ density transformation T* for whiah 

the saaZe of the as.soaiated aonformaZ aartogram T is p = e lJ = 
= ds/ds > O, the Lamé differentiaZ parameters transform aaaording 
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to the ruZea 

(!!.) 2 8 (V) + 2 !!. 8 (V, F) + 8 1 (F) 
av 1 av 1 

(5.3) 
2 

!!. 8 (V) + 8 (F) + 2 8 (!!. , V) + U 8 (V) + 
av 2 2 1 avav2 1 

This is established by means of equations (4.4) and Theorem 5.1. 

If a conformal density transformation T* between two Riemannian 
spaces is such that the scale of the associated cartogram T is 
p = eP ds/ds > O and the law of change for the density V is 

(5.4) G V G(x) V(x) = V(x) = V 

where G ~ G(x) is a fixed positive scalar, then from Theorem 5.2 
the Lamé differential parameters transform as follows 

(S. S) 

G4e 2p Xl (V) 

G2e 2p X2 (V) 

2 
G IV 8 1 (G) - G 8 1 (V,G)). 

The following proposition is an extension to Riemannian space Vn ' 

for n ~ 2, of the Kelvin transformation T*I 5) of a Euclidean 

space En' 

THEOREM 5.3. The aonformaZ denaity tranaformation T* whoae density 

transforms aaaording to the Zaw (5.4) ia suah that the Lamé dif

ferentiaZ parameter of seaond order obeya 

(5.6) 

if and onZy if. exaept for a reaZ poaitive muZtipZiaative aonstant. 

the aaaZe of the asaooiated oartogram T and the Zaw for the ohange 

of density are 

(5.7) 1/R2 = ds/ds > O V = Rn - 2 V 

where R R(x) is a reaZ poaitive aoaZar. The ruZes for the ohange 
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of the Lamé differentiaZ parameters .are 

6 1 (V) = R2n [~ (V) 1 
2VRn-2~1(V , 1/Rn- 2) + 

(5.8) + V2 R2n- 4 ~l (1/Rn- 2)) , 

X2 (V) Rn+2 ~2 (V) -.V R2n ~2(1/Rn-2) 

For, the given conformal density transformation T* possesses the 
stated property if and only if 

(5.9) 

is an identity. If p = e~ = 1/R2, where R = R(x) is a real posi
tive scalar, then the preceding identity is valid if and only if 

1 
G = e"2 (n-2)~ = 1 /Rn-2, except for a real positive multiplica-

tive constant. Upon .substituting this value for G in equations 
(5.3) theresult follows. 

In terms of cartesian coordinates of a point P in a Euclidean 
space En' for n ~ 2, an inversion T with respect to a sphere Ln-l 

of dimension n-l ~ 1, with center at a fixed point Pogiven by 

( i) (1 n xo = xo, •.. ,Xo) and radius a> O is given by the set of n e-

quations 

Xi xi 
2 

(xi i (5.10) a i 1,2, ... ,n O ;2 
xO) , 

where R2 i x~) (x j x j ) > O. The scale of this inversion 6 .. (x 
1J O 

T is p = di/ds = a 2/R.2 > O. 

Therefore, every such T is a conformal cartogram T of the Euclid
ean space En onto its~lf, except for the center (x~) of the 

sphere Ln-l 

Since 1/Rn- 2 > O, is a harmonic function in E it is found that 
n· 

(5.11) 

The system of equations (5.10) and CS.ll) forms the Kelvin trans
formation T* forthe Euclidean space E • The importance of such a 

n 
transformati.on is that i t converts everyisothermal fami1y O of 
~1 surfaces L 1 into another family ñ of ~l surfaces in E n- n 
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