Revista de la Unión Matemática Argentina Volumen 26, 1972

A NOTE ON THE MAXIMALITY OF THE IDEAL OF COMPACT OPERATORS

by H. Porta

Let A,B be rings, and \mathcal{L} and A-B-bimodule, i.e., \mathcal{L} is a left A-module and a right B-module and moreover s(tu) = (st)u for $s \in A$, $t \in \mathcal{L}$ and $u \in B$. A subset $C \subset \mathcal{L}$ is a sub-bimodule if it is an additive subgroup and satisfies $sku \in C$ whenever $k \in C$ and $s \in A$, $u \in B$. If E,F are Banach spaces, we shall denote the space of bounded linear operators $T:E \rightarrow F$ by $\mathcal{L}(E,F)$ (and by $\mathcal{L}(E)$ when E = F). Consider the following situation: $A = \mathcal{L}(\mathcal{L}^{q})$, $B = \mathcal{L}(\mathcal{L}^{p})$, $\mathcal{L} = \mathcal{L}(\mathcal{L}^{p}, \mathcal{L}^{q})$, where \mathcal{L}^{r} , $1 \leq r < +\infty$ denotes the (real or complex) Banach space of numerical r-summable sequences. The bimodule structure is defined by composition $\mathcal{L}^{p} \xrightarrow{U} \mathcal{L}^{p} \xrightarrow{T} \mathcal{L}^{q} \xrightarrow{S} \mathcal{L}^{q}$ (we will use capital letters for operators). It is clear that the set of compact operators $C = C(\mathcal{L}^{p}, \mathcal{L}^{q})$ is a sub-bimodule of \mathcal{L} . We aim to make a few remarks on the following results:

- a) if $1 \leq q \leq p \leq +\infty$, then $C = \mathcal{L}$;
- b) if $1 , then C is a maximal sub-bimodule (= two sided ideal) of <math>\mathcal{L}$:
- c) if $1 , then all sub-bimodules <math>S \subset \mathcal{L}$ satisfying $C \subset S$ contain necessarily the identity operator $J: \ell^p \rightarrow \ell^q$.

The statements a) and b) are known; a) goes back to Pitt [3] and is in fact a particular case of Th. A2 in [4], b) coincides with Th. 5.1 in [1] and c) seems to be new.

Our goal here is to observe that a modification of known proofs of b) actually yield c) of which b) is a particular case, and that a) is a corollary of b). This last remark would shorten the proof of Th. A2 in [4] and mildly confirms our suspicion that proving c) first has some methodological advantages. We believe (but have been unable to prove) the following:

CONJECTURE: if $1 \le p \le q \le +\infty$, then C is a maximal sub-bimodule,

Proof. Define
$$\varepsilon_{n}' = \min(\varepsilon_{n}, \frac{1}{2}\delta)$$
. For $x = (x_{j})_{j=1}^{\infty} \in \ell^{s}$ and n a
positive integer denote by $P_{n}x$ the sequence $(x_{1}, x_{2}, \dots, x_{n}, 0, 0, \dots)$.
Let now n_{1} be large enough for $||x^{1} - P_{n_{1}}x^{1}||_{s} \leq \varepsilon_{1}'$ to be true and
define $z^{1} = P_{n_{1}}x^{1}$.
Since $x^{n} \longrightarrow 0$ weakly (i.e., coordinate wise) there is an integer
 n_{2} such that $||P_{n_{1}}x^{n_{2}}||_{s} \leq \frac{1}{2}\varepsilon_{2}'$. Choose N such that $||x^{n_{2}} - P_{N}x^{n_{2}}||_{s} \leq$
 $\leq \frac{1}{2}\varepsilon_{2}'$ and define $z^{2} = P_{N}x^{n_{2}} - P_{n_{1}}x^{n_{2}}$. Clearly $||x^{n_{2}} - z^{2}||_{s} \leq$
 $\leq ||x^{n_{2}} - P_{N}x^{n_{2}}||_{s} + ||P_{n_{1}}x^{n_{2}}||_{s} \leq \varepsilon_{2}'$. The procedure can be iterated
in such a way that $||x^{n_{k}} - z^{k}||_{s} \leq \varepsilon_{k}'$ and the vectors z^{k} have disjoint
support, i.e., for each n there is at most one k with $z_{n}^{k} \neq 0$.
Since we also have $||z^{k}||_{s} \geq ||x^{n_{k}}||_{s} - ||x^{n_{k}} - z^{k}||_{s} \geq \delta - \frac{1}{2}\delta =$
 $= \frac{1}{2}\delta > 0$, (i) and (ii) follow from Lemma 1 in [2].

ii) the operator $T_1 \in \mathcal{L}(\ell^s)$ determined by $T_1 e^k = \frac{z^k}{\|z^k\|_s}$ (where e^k is the kth unit vector $(0,0,\ldots,1,0,\ldots)$ in ℓ^s) is an isometry and the image $E = T_1(\ell^s)$ of T_1 is a complemented subspace of ℓ^s .

tegers $n_1 < n_2 < \dots$ and elements $z^k \in \ell^s$, $k = 1, 2, \dots$ such that: i) $\|x^{n_k} - z^k\|_s \leq \epsilon_k$ for $k = 1, 2, \dots;$

$$\|\mathbf{x}\|_{s} = \left(\sum_{j=1}^{n} |\mathbf{x}_{j}|^{s}\right)^{1/s}$$

LEMMA. Let $1 \le s \le +\infty$, $\varepsilon_n \ge 0$, $n = 1, 2, ..., x^k \in \ell^s$, k = 1, 2, ...and suppose that $x^k \rightarrow 0$ weakly and $\inf \{ \|x^k\|_{\alpha}; k = 1, 2, ... \} =$

= δ > 0. Then there exists an increasing sequence of positive in-

The proof of c) above is obtained by restating meanderingly the ingredients of the proofs of Lemma 5.1 in [1] and Lemmas 1 and 2 in [2]. We denote by $\|x\|_{s}$ the s-norm of $x = (x_1, x_2, ...)$, i.e.,

from which c) follows trivially.

Proof of c). Let p^* be the conjugate of p defined by $p^* = p/(p - 1)$. First observe that if $T \in \mathcal{L}(\ell^p, \ell^q)$, $1 < p,q < + \infty$, and

 $\sum_{k=1}^{p} \|Te_{k}\|_{q}^{p^{*}} < + \infty , \text{ then T is compact.}$ This is obvious because if $P_{n} \in \mathcal{L}(\ell^{p})$ is the projector on the first n coordinates defined above, then for $x \in \ell^{p}$ we have $\|(T - TP_{n})x\|_{q} = \frac{1}{2}$

$$= \| (T - TP_n) \sum_{k=1}^{\infty} x_k e_k \|_q = \| \sum_{k>n}^{\infty} x_k Te_k \|_q \leq \sum_{k>n}^{\infty} |x_k| \| Te_k \|_q \leq \left(\sum_{k>n}^{\infty} |x_k|^p \right)^{1/p} (\sum_{k>n}^{\infty} \| Te_k \|_q^p)^{1/p*} \leq \| x \|_p (\sum_{k>n}^{\infty} \| Te_k \|_q^p)^{1/p*}$$

and therefore $TP_n \longrightarrow T$ in the operator norm.

Assume now that S is a sub-bimodule of $\mathcal{L} = \mathcal{L}(\ell^p, \ell^q), 1 such that <math>C \subset S$ and $C \neq S$, or equivalently, such that all compact operators belong to S and there is a non-compact $T' \in S$. This means that for some sequence x^1, x^2, \ldots weakly convergent to 0 in ℓ^p , we have $\|T'x^n\|_q \ge \delta_1 \ge 0$ for some δ_1 and all $n = 1, 2, \ldots$; then also $\|x^n\|_p \ge \delta \ge 0$ for some δ and all $n = 1, 2, \ldots$. For $\varepsilon \ge 0$, choose a sequence $\varepsilon_n \ge 0$ such that $\sum \varepsilon_n^{p^*} = \varepsilon^{p^*}$ and let $n_1 < n_2 < \ldots$ and z^1, z^2, \ldots be as in the lemma above, corresponding to these ε_n . It is clear that $\frac{1}{2} \delta \le \|z^k\|_p \le \Delta$ for some Δ and all k and therefore the operator T_1 in the lemma can be modified by an invertible diagonal operator $D \in \mathcal{L}(\ell^p)$ in such a way that $S_1 = T_1D : \ell^p \longrightarrow \ell^p$ satisfies $S_1e^k = z^k$ for all $k = 1, 2, \ldots$. Consider now, for $\lambda_1, \lambda_2, \ldots, \lambda_n$ arbitrary scalars, the estimate

$$\| \sum_{j=1}^{n} \lambda_{j} x^{n_{j}} \|_{p} \leq \| \sum_{j=1}^{n} \lambda_{j} (x^{n_{j}} - z^{j}) \|_{p}^{+} \| \sum_{j=1}^{n} \lambda_{j} z^{j} \|_{p} \leq$$

$$\leq \sum_{j=1}^{n} |\lambda_{j}| \|x^{n_{j}} - z^{j} \|_{p}^{+} \| \sum_{j=1}^{n} \lambda_{j}^{-} z^{j} \|_{p}^{-} \leq$$

$$\leq \sum_{j=1}^{n} |\lambda_{j}| \| \varepsilon_{j}^{-} + \| S_{1}(\sum_{j=1}^{n} \lambda_{j} e^{j}) \|_{p}^{-} \leq$$

$$\leq \| \sum_{j=1}^{n} \lambda_{j} e^{j} \|_{p}^{-} (\sum_{j=1}^{n} \varepsilon_{j}^{p^{*}})^{1/p^{*}} + \| S_{1}(\sum_{j=1}^{n} \lambda_{j} e^{j}) \|_{p}^{-} \leq$$

$$\leq \varepsilon \parallel \sum_{j=1}^{n} \lambda_{j} e^{j} \parallel_{p} + \parallel S_{1} (\sum_{j=1}^{n} \lambda_{j} e^{j}) \parallel_{p}.$$

This clearly shows that there is a well defined bounded operator $S: \ell^p \longrightarrow \ell^p$ satisfying $Se^k = x^{n_k}$ for k = 1, 2, ..., and in fact $\|(S - S_1)e^k\|_p = \|x^{n_k} - z^k\|_p \le \varepsilon_k$. Let now T'' = T'S $\in S$. Setting $y^k = T''e^k = Tx^{n_k} \in \ell^q$ we have $||y^k||_q \ge \delta > 0$ for k = 1, 2, ... and since $e^k \longrightarrow 0$ weakly we also have $y^k \longrightarrow 0$ weakly in ℓ^q . Hence the lemma above applies again: let $\{y^{\mathbf{m}k}\}$ be a sub-sequence of $\{y^k\}$ and $\{w^k\}$ satisfy $\|y^m k - w^k\|_{\sigma} \le \varepsilon^k$ with $\{w^k\}$ equivalent to the unit basis of ℓ^q . If S' $\in \mathfrak{L}(\ell^p)$ is defined by S'e^k = e^mk we obviously have T = T"S' \in S and Te^k = y^mk. Let us denote by U $\in \mathcal{L}(\mathcal{L}^q)$ the operator (corresponding to T_1 in the lemma) determined by U e^k = w^k and by J: $\ell^p \longrightarrow \ell^q$ the identity map. We have $\| U Je^{k} - Te^{k} \|_{a} = \| w^{k} - Te^{k} \|_{a} \leq \epsilon_{k}$ so that $U J - T \in \mathcal{L}$ is com pact by the first part of this proof. Therefore U J = (U J - T) ++ T \in S. But the subspace generated by {w^k} being complemented in ℓ^q (see lemma) and isomorphic to ℓ^q , there is a U' $\in \mathfrak{L}(\ell^q)$ such that U' U $\in \mathcal{L}(\mathcal{L}^q)$ is the identity operator. Then J = (U' U) J = = U'(U J) \in S, as claimed.

Proof of a). First let us observe that b) implies that every oper ator $W \in \mathcal{L}(\ell^q)$ of the form $W = W_1 W_2$, $W_1 \in \mathcal{L}(\ell^p, \ell^q)$, $W_2 \in \mathcal{L}(\ell^q, \ell^p)$ for some $p \neq q$, must necessarily be compact. In fact, the family M of such operators is a two sided ideal in $\mathcal{L}(\ell^q)$ wich contains all operators of finite rank. Thus, the closure of M contains $C(\ell^q)$. But the closure of M is different from $\mathcal{L}(\ell^q)$ because the identity in $\mathcal{L}(\ell^q)$ is at distance one from any proper ideal such as M. But C being maximal by b), it follows that $M \subset$ closure M = C. Assume now that $1 < q < p < + \infty$ and $T \in \mathcal{L}(\ell^p, \ell^q)$ is not compact. Then there is a sequence $\{x^n\}$ in ℓ^p such that $x^n \longrightarrow 0$ weakly and $\|Tx^n\|_q \ge \delta > 0$ for some δ . It follows that $\|x^n\|_p \ge \delta' > 0$ also for an appropiate δ' . Now we apply the lemma again to produce a sequence $\{z^k\}$ in ℓ^p such that: i) there is an operator $T_1 \in \mathcal{L}(\ell^p)$ satisfying $Te^k = z^k$ and ii) z^k is near x^{n_k} , so that also $\|Tz^k\|_q \ge \delta/2$ for all k = 1, 2, ... Consider now the operator $W = W_1W_2$ where $W_1 = T$ and $W_2 = T_1J$ for $J:\ell^q \longrightarrow \ell^p$ the identity. From the first remark, W must be compact, and in particular $\|We^k\|_q \longrightarrow 0$. But this contradicts $We^k = TT_1Je^k = TT_1e^k = Tz^k \longrightarrow 0$. Then T is compact, and the proof of a) is complete.

REFERENCES

- FELDMAN, I.A., I.C. GOHBERG and A.S. MARKUS, Normally solvable operators, and ideals associated with them. Izv. Moldavsk Fil. Akad. Nauk SSSR 10, no.76(1960) 51-69 (Russian). English translation in A.M.S. Transl., Ser.2,61(1967) 63-84.
- [2] PELCZYŃSKI, A., Projections in certain Banach spaces, Studia Math. 19(1960) 209-228.
- [3] PITT, H.R., A note on bilinear forms, J. Lond. Math. Soc. 11(1936) 174-180.
- [4] ROSENTHAL, H.R., On quasi-complemented Subspaces of Banach spaces, with an appendix on compactness of operators from- $L^{P}(\mu)$ to $L^{r}(\nu)$. J. Funct. Anal., 4(1969) 176-214.

University of Illinois at Urbana Champaign. E.E.U.U.

Recibido en noviembre de 1971.