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POINTWISE CONVERGENCE OF SERIES OF BESSEL FUNCTIONS

A. Benedek and R. Panzone

1. INTRODUCTION. The following result is proved in [5], Ch. 4.

Let be f(x) € L1(0,1), v > -1/2 and x € (0,1). If the Fourier se-
ries of f converges to 1 at the point X then the Fourier-Bessel
series of f converges to the same value at the same point.

This result cannot be extended to » > -1 since, in general, a

function in L1 has not Fourier-Bessel coefficients for
v € (-1,-1/2). However, it is possible to prove the following re-
sult which is contained in theorem 4 of this paper. Assume

w=(1/2+v) A0, »>-1, xe€ (0,1) and £x)x* € L'(0,1). Then,
the expansions of f with respect to the trigonometric system and
the Bessel system are equiconvergent.

To prove this result, which is crucial in the proof of the main
result of this paper, we prove two theorems on equiconvergence of
the Fourier expansion with the expansion of the function under
consideration with respect to the system of eigenfunctions of a
second order differential equation. This is done following the
line of proof of theorem 9.5 in Titchmarsh's book.

The main result of this paper is theorem 5 which roughly states
that ‘any system of solutions of Bessel's equation, orthogonal with
respect to xdx, complete in the space L? defined by means of this
measure, has the property that if the space LP? admits convergence
in the norm then it also admits convergence almost everywhere.
All these systems are described and also a family of Lp—spaces
which admit convergence in the norm.

2. AUXILIARY RESULTS AND NOTATION.

Assume 0 <x <1, -1 <» <o and {u :n=1,2,...} defined by one
of the following formulae:

(M u (x) = a”’

VI, (ax) + Ka J_ (a x), K€ (-o,0), K=0 if » >0
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) u_(x) = -(2/m1gka) J (ax) + Y (ax), k€ (0,

- with arg a € [0,7). Each system {un} is associated to a value of

K or k. Each function u is a solution of the equation:
] 1 2 2 -
(3) (xy)' + (a2x - »2/x)y = 0

with v=0 for the functions of the systems (2).
The a_'s are obtained from the homogeneous boundary condition:

(4) ((sin @)/2 + cos a)un(1) + (sin a)u;(1) =0, aecl0,nr)

For a fixed a the set of solu;ions of (4), {an}, is a denumerable

family. This set together with the value of K or k define the
system {un}, i.e. each system is determined by two parameters: «

and X (or k). Besides, each of them is orthogonal with respect to

the weight x and complete in the space L2 determined by this
weight, (cf. [5], Ch. 4).

We shall denote with LP(w(x)), > w(x) >0, 1 <p < o, the real
space of p-integrable functions with respect to the measure w(x)dx

and shall say that LP (w) admits convergence in the norm with re-
spect to {un} if for £ € LP, the expansion of f with respect to

the system converges to the function in LP. That is, let be

——

N 1 1
- = 2 P
SN(f) =7 cu , C = Jo u f xdx / JO u; xdx and f € L¥ (w),

then H(Snf - ) wIIp —— 0 if n — % . Observe that ué is not

conjugated because it is always a real function.
3. POINTWISE CONVERGENCE OF EIGENFUNCTION EXPANSIONS IN L2.

In what follows assume the results and notation of chapters 1 and
2 of [5]. Let q be continuous in 0 < x < A, A < o, Consider the
differential equation

(5) y*+ (AN -q)y =0

and the z»lutions ¢ and 6 such that
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(6) ¢:(0,\)=sin &« , ¢'(0,\)=-cos &« ; 6 (0,\)=cos a@ , 0'(0,\)=sin a.
Assume that m(A\) is an analytic function, holomorphic in the com-
plex plane except for simple poles at the real points X6< x1< <
< kn < ... such that m(X) = m(\).

Assume that for non-real A, m(A) is on the "limit circle" at A and

such that there exist two sequences {bn} and {ﬁn} with the proper
ty that for any X with Im(A) > 0 it holds:
G(bn) cotg Bn + 0'(bn)

m(A) = 1lim - = lim 1b Bn(k) s
bn¢ A ¢(bn) cotg ﬁn + ¢'(bn) bn1 A n’

B, €l0,2m), B — 6.

The residues of the function ¥(x,A\) = 0 (x,\) + m(A) ¢ (x,\) at the
poles of m(\) are:

VoGS A DI, = @GN ) /I8 (A )

{wn(x)} is an orthonormal family of functions in LZ(O,A).

We shall prove next theorem following the pattern given by para-
graphs 1-4 of chapter 9 in Titchmarsh's book.

THEOREM 1. Assume that at x € (0,A) the functions wn(x) verify

Iy, xi?=001) if T —
T2-T<) <T24T
n
If £ 48 a real funetion, f € LZ(O,A), and the ordinary Fourier se-

ries of f converges at X to 1, then the series

A
[e v x) . c = jo £y) V() dy
also converges to 1.

By '"the ordinary Fourier series of f"we understand the expansion of
the restriction of f to the finite interval (0,b)3x with respect to
the system {sin 27 nx/b, cos 27 nx/b}. Next lemma 2 asserts that

if the ordinary Fourier series of f converges at x to 1 then this
value is independent of b whenever 0 < x <b < A,

To prove theorem 1 we need some estimations from Titchmarsh's book.
Assume 0 < arg A <m, s = /A =0 + it, 0 <arg s <w/2,

A>Db > b > 0.

Then, (cf. [5], 1.7. (ii))
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¢ (x,\) sin @ cos sx + 0(1) e“*/Isl if sina # 0

(7

6 (x,\) = -(sin sx)/s + 0(1) e**/Isl? if sina =0

where the 0's are uniform in x and s whenever x € (0,b) and
Isl > oo(b). A careful examination of the constants in the proofs

of 9.2.12 and 9.2.13 in [ 5], proves that next formulae (8) and (9)
hold.

V(x,\)=ei%%/is sina + 0(1) " ) g 4 0(1)e ¥ /1512 if t>1

(8)
Vv(x,\) = 0(1)/ot ifo<t<

where sin a # 0, and if sina = 0 ,

U(x,A) = % 4+ 0(1)Isl B2 /g + 0(1) e*F/Isl if t > 1

(9)
¥(x,\)

o(Mlsl/ot if 0 <t <1

In both formulae, the 0's are uniform whenever X € (0,b) and

Isl > Oo(b). (For this it is convenient to consider formula 9.2.11
of [5] for the cases bt > 1 and bt < 1).

We need also the following result on analytic functions (cf. [5],
lemma 2.11).

LEMMA 1. Let F(z) be holomorphic on -R < x <R, -1 <y < T where
z=x+iy. If in this rectangle |Fl < M/lylthen |F(z)I <M_ .M
in -r <y <7r, -R/2 <x <R/2, where M) o= Mo(r,R).

Since w(x,sz) - eisx/is sin @ is regular in the square -1 <o < 1,
T-1 < t < T+1 for T great enough and takes conjugate values at
points symmetric with respect to the imaginary axis, we can apply
the preceding lemma to obtain from (8):

YA = eP5%/is sina + 0(1)et*72) /(av1)+0(1)e ¥ /sl 2 =
(10) = 0(1) e */Isl , if t > 1
Y(x,\) = 0(1) /ot , if 0 <t <1

for sin @ # 0 and from (9), when sin a = 0:

U(x,) = % 1 0(1))sl et X2P) /vy + 0(1)e ¥ /ISl =
(an = 0(1) e™*t if t>1
v(x,\) = 0(1NIsl|/ot if 0<t<1
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In formulae (10) and (11), the O's have the same properties as in
formulae (8) and (9).

After integration of formulae (7) we obtain:

X
J ¢ (y,\) dy 0(1)etx(1+x)/|s| if sina # 0
0

(12)

X
J $(y,A) dy = 0(1) e™(1+x)/Is| % . if sin a=0
0

where the O's have same properties as in (8) and (9).
Next, we shall see that if x < b then

b
J Vv(y,\) dy 0(1)e_Xt+b'd(t)/(tA1)|sI2, for sina # 0
X

(13)

b .

J Y(y,\) dy 0(1)e_Xt+b'd(t)/(tA1)lsl for sina = 0

X
where the O0's have the same properties as in formulae (8) and (9),
and d(t)=t if 0 <t <1, =0 if t > 1.
To prove (13), observe that ¥(x,\) satisfies the integral equation:

(14)  ¥(x,}) = ¢(b,M)cos(s(x-b)) + ¥'(b,A\)sin(s(x-b))/s +

+ Jb s™! sin(s(x-y)) aly) ¥(y,\) dy .
After integration of (14), we obtain:
Jx ¥(y,\)dy = ¥(b,\) s~} sin(s(x-b)) + ' (b,A) (1-cos(s(x-b)))s™2 +
b

X
+ fb q(y) ¥(y,\) (1-cos(s(x-y))) s~ 2 dy .

Then

X
(15) 1e**t J V(y,\dyl < 0(1)s™. sup 1eE y(y, )+
b 0<y<b

+ 21s172, |y (b,A) &P

where 0(1) has the same properties as in formula (8).
From (14) it follows that for b fixed and x < b:
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[ t(b-x)
|[LOM| bt < e T Xty + 1ePE WD) .
s | sin(s (x-b))

b .
. cos (s (-0t TR v [T SR q(y) o Wy, ayd <
X

s.et(y'x)

M e(b—x)t

< . sup 1e*F y(x,M\)|

| sin(s(b-x))| 0sx<b

where M is an absolut constant if |s| > ao(b).
In consequence,
bt (b-x)t
(16) (LM e ") <y, pin [ ————|. max |e*® ¥(x,0)| <
s ‘ 0<x<b sin(s(b-x)) 0sx<b

< M'. max |e*F y(x,\)|
0<xs<hb

where M' is an absolut constant when [s| > ao(b), as it can be

2

seen using the formula: |sin(x+iy)|2 = sin“x + sinhzy to estimate

the minimum.

(13) follows now from (15) and (16), and the estimations (10)
and (11).

QED.
It also holds (cf. 9.3.1 and 9.3.2 in [5]):

R 0(1)/o2t? , 0 <t <1
an [ e itey -
b O(1)e'2bt/02t , t>1

whenever sin @ # 0. In case sina = 0,

N o(1) Isl2/6%t? , 0 <t <1
a " oty -
b o(1) s2e”2Pt/6%t |, t > 1

In both formulae the O's are independent of b if [s| > oo(b).

Finally, we mention a familiar result on convergence of Fourier
series (cf. [6], p.242, Th. 1.3).
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LEMMA 2. Assume J [ £(y)ldy <o, J Ifl(y)[dy < % agnd f=f1 in a
) o

neighbourhood of x € (0,b). Then, the ordinary Fourier series of f

relative to the interval (0,b) converges to 1 if and only if

b . )
1im 1 J f1(y)s_1ﬁMldy=1
w o X-y

T>oo

L. PROOF OF THEOREM 1.

Let us assume that C1 is the circumference of radius T2=|k| and
that in the interval (-W,—Tzl there is no eigenvalue of the equa-

tion. If T? is not an eigenvalue and
X A

(19) 90x,0) = v0oN) [ 0,NEWIdY + 0G0 [ v EWIYy
[e] X

then (cf. [5], Th. 2.17):

el B ICR ST TR e
2mi C1 An<T2

Since ®(x,\) = ®(x,\) , if C, is the half circle in the A-plane
image of C = {s=Tel®, 0 <y < 7/2}, s=/X , we have:
L J ®(x,\)d\ = Imj ®(x,\)dA
2i C1 C2

In consequence,

(20) “ h) c, wn(x) =21y J @(x,sz) sds
An<T2 m C

Let € and n be arbitrary positive numbers.
Write f=f1+f2+f3, where f2 is a continuously differentiable func-

tion equal to zero 6n (b,A) and in a neighbourhood (x-6,x+6) of

A
the point x, fl is zero on (b,A) and such that J lflldy <7 and
' o

A
f3 is zero in (0,b) with J |f3|2dy < e?
o



Since f € L2, this can be done if b is chosen great enough and
greater than x and 8 sufficiently small. '

With this decomposition ®(x,\) = @1(x,k) + Qz(x,k) + @s(x,k),
where @i is given by (19) with fi instead of f.

In the following formulae (21),(22) and (23), the O's are inde-
pendent of b if |s| >0 (b).

tb .
20,00 = | et o 2is) ey ¢
[o]
-Xt (x-b)t
(21) soME— + L v S—" ) if t>1,
| sl | sl oVl

0(1) n e*%/ot if 0 <t < 1.

(22)  ®,(x,\) edt(1ex) 0N /IsI 2 ift>1,

0(1) (1+x)ePt/t1 s 2 ifo<ts<t.

X D)t 5(1) ¢/ovi if t>1,

(23) @, 0x,\)

0(1) ¢ e*t/ot ifo<t<1.

(21) is a direct consequence of (7) and (10) and (11). In fact,
because of these formulae:

b _islx-y| * -(x+y)t -l x-yl t
@, (x,2) = J [E—— + oM (& + € —
o 2is | si | si
e(x+y-2b)t
+ )] f1(y)dy if t > 1; and if t € (0,1],
ov1
b Xt
& (x,\) = J Lo(1) eXtt, (y)/otl dy.
[o]

To prove (22) observe that

- b
B,0) = YA [ SOME 0y + 90N [ BONE 0y -
o x+8
. x-8 b
S Sl N LA S S L R YO R S AL ea L
o x+0
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b
where ¢*(y,\) = Jy ¢ (r,\)dr , Y*(y,\) = J Y(r,\)dr .
o y

Applying to this formula the estimations (7),(10) (or 1))y, (12)
and (13), we obtain (22). Finally,

A A 2 1/2
ENCESTIENTICR V] RTORSEIS LY l¢(x,x){scjb|wcy,x)| ay)'/2.
b

After application of (7) and (17) (or (18)), (23) follows for

0 <t<1, and QS(X,X) = ¢ 0(1)(exp(x-b)t)/o for t > 1. Since
¢3(x,52) is regular in the square -1 <o < 1, T-1 <t <T+1 (if T
is great enough) and takes conjugate values at symmetric points
with respect to the imaginary axis, we can apply lemma 1, obtai-
ning so (23). “
Calling C'=C N {t > 1}, C"=C n {t < 1}, we obtain from (21):

b .
J ®, (x,s?) 2s ds = -i J ds j etsIxvl £ (y) ay +
c' c'

o

-Xt 1 e(x-b)t
-+ 5y + = Jlsllds|=
| s| | sl ov1

£ n.0(1) J &
C'

b .
= -i j ds J.elslx—y|f1(y)dy + .0+t -7+ (b-x)"2)
C

o}

where O(1) does not depend on b if |s| is great enough. Then,

b . .
(24) JC.¢1(x,s2)2sds - j (Yo T x3 )£ (y) 1 x-y1 “Tay+no(1)

o

where 0(1) is independent of b if b > b1 > bo’ | s| is great enough
and x runs .in a fixed closed interval contained in (0,b1).

Applying (22), it is obtained:

(25) J ®,(x,s%)2sds = 0(1) J vexp(—&t)ldsl/T = 0(1)/T8
C'v Cl

Applying (23), it follows,
e(x—b)t

(26) J 8, (x,5%)2sds = 0(1) e j & |slldsl= 0(1) ¢
c!' c' ov1

In (25) and (26) the O's are as in (24). From (24), (25) and (26)
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it follows that:

, b - .
(27) Im ®(x,s%)2sds = J il?ﬁlLilXLl £,(y)dy+0(1) (e+n+1/T8)
c' o x-yl

To study the analogous integral on C" we define the auxiliary func-
tion:
2y _ 2 2
Qx,s%) = ®(x,s7) - ) c, ¥V (x)/(s7-x))
T2-T<An<T2+T

1/2 1/2

This function is regular on the strip (TZ-T) <o < (T2+T)
and therefore on T-1/4 <o < T+1/4, if T is great enough. Besides,
because of (21), (22) and (23) we have for |Im sl= ¢t <1,

Qx,s?) 0(1){é+n+T_1ebt+ Ilc v, (x)}/to =

(28)

~
1}

(1) (erns T ePEu (e 1 2Ry D By

Here the sums are on the set of Xn € (T2-T,T2+T) and 0 is as in
formula (24).

Since f € LZ(O,A), 2lcn|2 converges. In consequence, Y ci in
formula (28) is o(1) for T » . By hypothesis, II¥_(x)I % = 0(1).
Therefore, from (28) we obtain next formula (29) where o(1) is in-

dependent of b:
(29) Q(x,s2) = 0(1) (n+e+o(1))/tT

From (29) and lemma 1 we obtain that on c':

Q(x,s%) = 0(1) (n+e+o(1))/T

Therefore,

(30) J Q(x,s2)2sds = 0(1) (e+n) + o(1)
C"
On the other hand we have: |Im J 225 ds|=|var.Im 1g(52-kn)|< T,
C" s _x
n

Then

Cn wn
(31)  |Im quz Y 2s ds| <7 Jlc wn(x)| = o(1)

In formula (31) the sum is on the set of XnE(TZ-T,T2+T); From (30)
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and (31), it follows,

(32) Im J ®(x,s%) 25 ds = 0(1) (e+n) + o(1)
CII

Taking e=n, from (20), (27) and (32) we obtain:

b _. .
(3 1 e 0o = L[ snO&Y) ¢ yay s o0 (rs) 0 (1)
s

A <T2 o X-y
n

Since f1(y)=f(y) in a neighbourhood of x, from lemma 2 it follows
that the integral in formula (33) converges to 1 when T + oo,

Therefore , TIim | 7§ c, Vv, (x) - 1] <Ce
T->o An<T2

“where C is a constant which does not depend on b neither on x, if
X belongs to a fixed closed interval contained in (O,bl). Since ¢

is arbitrarily small, we obtain Z c v (x) = 1.
nn QED.

From Carleson's theorem (cf. [3] or [4]), it immediately follows
next corollary.

COROLLARY. Under the hypothesis of theorvem 1, ) cnwn(x) converges
to f(x) for a.e. x.

5. APPLICATION TO BESSEL'S EQUATION.

In this section we apply the results of the preceding section to
the case of Bessel's second order differential equation:

2 _
(34) Y'(x) + (A - -"—‘;—/—4) Y(x) =0, 0<x<1,
X

Y(1) cos @ + Y'(1) sina = 0.

In this case A=0. In [5], Ch.4, §8, Weyl's theory is applied to
this equation. There it is obtained that the functions satisfying
the equation and the boundary conditions (6) with a=0 are:

(35)  s(x,\) = T f {3, (x8)Y, (s) - Y, (xs)J, (s)}
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0 (x,\) =

"“’Z S (3, (xs) Y} (s)-Y, (xs)I} ()} + ¢ (x,A)/2

and also that for 0 <v <1, v # 1/2 (limit-circle case):

c.s'VJ;(s) + sVij(s) 1
m@) = -s - v -
c.s Jv(s) + s J_v(s) 2

, ~®<c<x<®™

The same formula holds for »=1/2, as it can be easily verified.
In this case the equation has no singularity at x=0.
For v=0 (limit-circle case):

2J'(s) 1g(sc) - 7Y'(s) 1
m(A) = -s —=2 o 21
2 Jo(s) lg(sc) - wYo(s) 2

, 0 <c<e

and for » > 1 (limit-point case):

J, (s)

mQ\) = -s -1
Ju(s) 2
where m(A) is limit of 1(A) = -(0cotg6+0')/(¢cotgﬁ+¢').'The corre-
sponding functions in the case of sin @ # 0 are, as it is easy to
see:
;(x,k) =¢ cos a + 0 sin «
(36) ~
6(x,\) = -¢ sina + 0 cos «

and therefore, E(k) is the limit of the circles (b — 0):
T = -@(b,\) cotgh + 8'(b,N))/(8(b,\) cotgh + ' (b,N\).

From (36) we obtain:

iy - sina - (cosa)[ (BcotgB + 6')/(dcotgh + ¢')]
cosa + (sina)[ (BcotgB + 0')/(¢cotgh + ¢')]

_ sina + 1(A) cosa

cosa - 1(A) sina

and since m(A\) is the limit of the circles 1(A), we have:

(37)" E(k) _ m(\) cosa + sina
: -m(\) sina + cosa

Using (36) and (37), we obtain for any a:
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~

(38) Vx,N) =0 + m(A)$ = (0 + m.¢)/(cosa - m.sina)

Using (35) and the corresponding values of m(A), we have in the
different cases:

(39) V(x,\) =

/i(cs'VJV(xs)+sVJ_v(xs))

[(sina)/2+cosa](cs_pJV(s)+st_V(s))+(sina)s(cs_VJ;(s)+syJ:v(s)),

0<v <1, ce€ (-00,+9] ;
(40)  V(x,\) =

VX [(Z/W)Jo(xs)lg(sc)-Yo(xs)]

) [(sina)/2+cosa][%Jo(s)lg(sc)-Yo(s)]+(sina)s[%J;(s)1g(sc)-Yé(s)]’

v=0, c € (0,%] ;

~ 23 J, (xs)
(41) V(x,A) = s v
[(sina)/2+cosa]JV(s)+sJ;(s).sina

vV

Then, the orthogonal systems which correspond to the different func
tions m(\) are given by: {wn(x) = Vx un(x)/H/T un(.)Hz} where u_

is defined by (1) or (2) and satisfies (4). Using the asymptotic
formulae for Bessel's functions, it follows that wn(x) = 0(1) if

x is fixed and A_ ~ n’r%. Therefore, ] [¥_|? = 0(1) for T2-T <

< Rn < T2+T, and the hypotheses of theorem 1 are verified for
these cases. In consequence, we have: -

THEOREM 2. Assume v > -1 and £ € L2. Then s,f= 1 cjwj converges

jsn
to f a.e..

6. POINTWISE CONVERGENCE OF EIGENFUNCTION EXPANSIONS IN LP.

Let be 1 < p<eand 0 <u(x) <*a.e., 0 <x <A, We have de-
fined as LP(u) the space of "functions'" f such that uf € LP.
We shall write: IlufllP = Hf"p o Let {y_} be the system defined at

the beginning of paragraph 3. With the same notation of that sec-
tion and the same hypotheses on m(A), it holds:
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THEOREM 3. Assume £ € LP(u) N L'

lowing hypotheses are satisfied:

, 1 <p <>, and that the fol-

1) There exist the Fourier coefficients of f with respect to 1,

A A
c, = Jofwndx, and JOIW(x,k)I.If(x)ldx is locally bounded in Rz-{knL
2) ] {c v T2-T <A < T24T} = o(1) in a given x € (0,A) for T—=,

3) If 1/p + 1/q = 1, the following equalities hold with the O's
independent of b whenever |A| > ao(b):

, .
(J lw(x,sz)/u(x)lqu)”q = 0(N)/ot if0<t<1
b sina # 0 ,

0(1) e ®t/6  if t > 1

o(1)Isl /et if 0 <t <1
sina = 0 .

o()sle P - if t > 1

(If q=°, the left hand side of 3) should be replaced by

ess.sup. |y (x,s2)/u(x)]).
x€ (b,A)

Then, | Cjwj and the ordinary Fourier series of £ (in the sence

of theorem 1) are equiconvergént: if the last one converges to

the number 1 then also ) Cjwj =1.

Proof. From 1) it follows that the function:

X A
®(x,N\) = ¥(x,7) Jo ¢ (x,\)E(y)dy + ¢(x,7) J vy, f(y)dy

X

is, for x fixed, an analytic function in the complex plane with
simple poles at the points hn and residues cnwn(x). In fact, it

A
_is sufficient to prove that F(A) = J v(y,\)f(y)dy has at Rn a
. . X

R .
simple pole with residue j ¢(y,kn)f(y)dy/"¢(.,kn)Hé. Consider
X

b .
Fb(h) = J Vv(y,\)f(y)dy, b <A. Then, from section 3, we have:
X
' ‘ -1 (P b 2
B0 - 600 ¢ AT [ e Emays [ e eon) %

X
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where Gy is regular in a neighbourhood of ln. For b — A, it fol-
lows that

N A
FO) =6+ ) [T e Emay/men) . A E oy

X

Here, F and G are uniform limits on compact sets. In consequence,
G is regular in a neighbourhood of kn and F has the desired prop-
erties.

Following the prcof of theorem 1, we see that (20) holds. Now, we
decompose f as in that theorem, f = f1 + f2 + f3, with the same

requirements on f, and f, and the support of f but requiring in
1 2 PP

3,
this case: IIf I < e.
3"p,u

Then (21) and (22) hold. Using in the proof of (23) that

A A q 1/4q
[ vomemaert < e, ([Tvo a1t
b ’ b

and the hypothesis 3) instead of (17) or (18), we obtain (27).

(32) also holds if we take into account (cf. formulae (28) and

(31)) hypothesis 2). Therefore, (33) holds and the theorem follows.
QED.

7. APPLICATION TO SERIES OF BESSEL FUNCTIONS.

In this section we apply last theorem to Bessel and Dini series.
The function
VX J, (xs)
(42) Y(x,\) = : , -1 <v <o
[ cosa+(sina)/2] Jv(s)+(sina)sJ;(S)

corresponds to (39) if c=0 and -1 <v < 0, also to (39) if c=%
and 0 <v <1, to (40) if c=o and v=0 and to (41) ifv > 1.
The system associated to this function is:

VX Jy(xsn)

(43) v (x) = ——2— ~ Vxs_ J, (xs.)
o TR J,(xs ), m Y om

where {sn} is the set of zeros of the denominator in (42) and
such that 0 < arg s <m/2.

THEOREM 4. Assume v > -1, p = (1/2 + ») A 0 and £ € L' x*)(c L1).
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Then, the expansion of f with respect to the system (43) Zs equi-
convergent with the ordinary Fourier expansion in the sense al-
ready defined for X € (0,1).

Proof. Let us verify the hypotheses of theorem 3 with p=1. Since
Y and wn are 0(x"),1) follows. (As before, for this application

A=0 and 1 instead of 0). Using the asymptotic expansions in the

denominator of (42) we know that Xn~ n?r2. Since wn(x)=0(1), to

prove 2) it is enough to see that cn=o(1j. From (43) it follows
that:

xfo(1) if 0 <x <1,
(44) ¥y (x) = .

Cncos(xsn-Vﬂ/Z-W/4) + 0(1)/xsn if xs_ > 1

Here, the O's do not depend neither on x nor on n, and Cn is

bounded above independently of n. Assume that h=sl;1/2 ; applying
(44) we obtain:
1 h 1 -
lc_| = IJ v (x)f(x)dx]| = 0(1)([ x“|f|dx+|J cos (ys_-ve=--)f(y)dy| +
n o B 0 h n 24

1

h
Tow
. cos(xsn-vf—zjf(x)dx] +

1
+ = 1 +
Jhlf(y)l/ysndy) 0(1)(J xM | £ax 1J0

ol
R N IEERI

as it easily follows from the hypoteses and Riemann-Lebesgue's
lemma.

Let us prove 3). Since in this case the singular extreme is 0,
the norm to be bounded is calculated on (0,1-b), b — 1. Because
of the asymptotic formula for J, ‘

(45) /xs J, (xs)x ¥ = 0(e™™) if0o<t, |xs|>1

Because of the behaviour of J, at the origin, the same formula
holds for |xs| < 1. Then
2 t(1-b)
(46) sup | v(x,s7) - 0(e )
x€ (0,1-b) x* |A/S 3, (s) + B/ST J)(s)]
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A = (sina)/2 + cosa , B = sina

Again, because of the symptotic formulae for Bessel functions and
their derivatives:

(47)  |AYS 3, (s) + BY/ST 33(s)| >M(1at)e" ([A]+|Bs|)

with M > 0, independent of s if s is great enough. From (46) and

(47), 3) follows. QED.

LEMMA 3. 1 <t <p <. If v and B are real numbers verifying

B+ 1/p <y + 1/r then LP(xP) c LT (xY).

Proof. Assume p < . From Holder's inequality:

1 1 1
J (|£]x¥)%dx = j (| £]xByTx (r-B)rgy s[J (1£]xByPax) /P
0 0 0

(y-8) r"

Al (p/r)*

Since (p/r)*=p/(p-r), last norm is finite whenever r < p and
(v-B)rp/(p-r) > -1, or whenever r=p and 8 <7, i.e. if the hypoth-

esis is verified. Therefore, foBHpC > foYHr. This proves in part

the lemma. The case p== follows in the same way . QED

COROLLARY TO THEOREM 4. Assume that p and B,real, verify
(48) /p<1+w-8 , p>1,

and that f € Lp(xs) on the interval (0,1). Then the expansion of
f with respect to the system (43) converges a.e. to f.

Proof. M < 0 implies the existence of a number r > 1 such that

1/p +B <1/r <1 + pu. From lemma 3: f € LY C L1(x”). The corol-
lary follows from the théorem of Carleson and Hunt on convergence
of ordinary Fourier series, (cf. [3] and [4]).

QED.

REMARK. We could now obtain the analogous result for the systems
described in 82. To avoid calculations, which for these systems
are slightly more complicated, we give an alternative proof in
next paragraph.
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8. CONVERGENCE A.E. OF ORTHOGONAL SERIES OF BESSEL FUNCTIONS.

The aim of this section is to prove the following result.

THEOREM 5. Let {un} be a system of solutions of Bessel's equation
of order v, v any real number, satisfying a real homogeneous bound-
ary condition at x=1, orthogonal and complete in LZ(/E). Then

v > -1, and <f p, B and v satisfy

(49) 1 <p ; {(@ + 1/2)A0}.+ 3/2 -8 > 1/p,

then for any f € Lp(xs) its expansion with respect to the system
{un} (in the sense of paragraph 2) converges to f a.e..

This result is a consequence of the following theorem (which is
proved in [2]) and theorem 7.

THEOREM 6. Assume -1 <V and {un} given by (1) or (2), and
0 <x<1.

a) If 1 <K p<®, -2 f <=, then Lp(xs) admits convergence in
the morm with respect to the system {un} if and only <f (49) and
(50) hold:

(50) p<e 3 1/p>1/2-8 - {( + 1/2)A0}.
b) Any system of solutions of Bessel's equation of order

v € (-%o,%), {wn}, satisfying a real homogeneous boundary condition

1/2

(8), orthogonal with respect to xdx, complete in Lz(x ), ¢s

equivalent to one of the systems (1) or (2) in the sense that for
each n there exists a number h_ # 0 such that w_=h u_.

n n nn
e) For each system, {an} is real if n > n_, where n depends on
the system. Moreover, a — if n — © . So, we shall suppose that
n=>n implies a < a_.q. If a is not real then it is purely
imaginary.
d) Let {u } be a system obtained from (1) with K#0 and v € (-1,0).
We associate to it another system {Gn}, and precisely that obtain-
ed from (1) with the same boundary condition and K=0. If {un} i8
obtained from formula (2) then {Gn} will be that obtained (with

the same boundary condition) from formula (1) for the case v=0
(and therefore K=0).
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For each system and its associate there exist a number m and a fn.
G(x) such that if Snf(ggf) designates the nth partial sum of the
expansion of f with respect to the system {un} ({En}) then, if

(49) and (50) hold then for any f € LP(XB) it also holds:

. g [
(51) . |Snf(x) Sn+mf(x)| <C, G(x)If.x Hp , ¥n,

where C_ = n®” if -1 <» <o, C, = 1/1g n <f »=0, and G(x) is

finite everywhere and depends only on v,B and p.

THEOREM 7. Assume v > -1 and v,B and p satifying (49). Then, if
{un} is one of the systems defined by (1) or (2) then Lp(xs)

admits convergence a.e. with respect to it.

Proof. Assume that the system under consideration is defined by
(1) with K=0. This system after multiplication by VX , coincides
except for normalization with the system {wn} of paragraph 7.

The corollary to theorem 4 implies that if F € Lp(xa) and
1/p <1 A (1+p-8), then the expansion of F with respect to the
system {/fun(x)} converges to F a.e..

Definig f and B by F=f vx , B =8 + 1/2, we have: f € Lp(xs),
and in consequence, theorem 7 for K=0 follows.

From theorem 6,d), it follows that theorem 7 holds whenever the
following inequalities hold:

(52) 1T<p<e ;3 1/2-p<B +1/p<3/2+up.

;Aésumé‘f#é«Ls(ij,:éna'§1+ 1/s < 1/2 - #. In this situation,
there exist p and f verifying (52) and such that p < s. From
lemma 3, we obtain LP(XB) > L8 (xY).

QED.
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