
Revista de la 
Union Matematica Argentina 
Volumen 26, 1972. 

POINTWISE CONVERGENCE OF SERIES OF BESSEL FUNCTIONS 

A. Benedek and R. Panzone 

1. INTRODUCTION. The following result is proved in [5], Ch. 4. 

L~t be f(x) E L1(O,l), v > -1/2 and x E (0,1). If the Fourier se­

ries of f aonverges to 1 at the point x then the Fourier-BesseL 

series of f aonverges to the same vaZue at the same point. 

This result cannot be extended to v > -1 since, in general, a 

function in Ll has not Fourier-Bessel coefficients for 
v E (-1,-1/2). However, it is possible to prove the following re­
sult which is contained in theorem 4 of this paper. Assume 

1 . 
JJ. = (1/2 + v) /\ 0, i1 > -1, x E (0,1) and f(x)x lJ E L (0,1). Then. 

the expansions of f with respeat to the trigonometria system and 

the BesseZ system are equiaonvergent. 

To prove this result, which is crucial in the proof of the main 
resul t of this paper, we prove two theorems on equic.onvergence of 
the Fourier expansion with the expansion of the function under 
consideration with respect to the system of eigenfunctions of a 
second order differential equation. This is done following the 
line of proof of theorem 9.5 in Titchmarsh's book. 
The main result of this paper is theorem 5 which roughly states 
that any system of solutions of Bessel's equation, orthogonal with 
respect to xdx, complete in the space L2 defined by means of this 
measure, has the property that if the space LP admits convergence 
in the norm then it also admits convergence almost everywhere. 
All these systems are described and also a family of LP-spaces 

which admit convergence in the norm. 

2. AUXILIARY RESULTS AND NOTATION. 

Assume 0 < x < 1, -1 < v < 00 and {un :n=1,2, ... } defined by one 

of the following formulae: 

-v a 
n 
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with arg an E [O,w). Each system {un} is associated to a value of 

K or k. Each function un is a solution of the equation: 

(3) 

with v=O for the functions of the systems (2). 
The an's are obtained from the homogeneous boundary condition: 

(4) ((sin a)/2 + cos a)un (l) + (sin a)u~(l) = 0, a E [O,w) 

For a fixed a the set of solutions of (4), {an}' is a denumerable 

family. This set together with the value of K or k define the 
system {un}' i.e. each system is determined by two parameters: a 

and K (or k). Besides, each of them is orthogonal with respect to 

the ~eight x and complete in the space L2 determined by this 

weight, (cf. [5], Ch. 4). 

We shall denote with LP(w(x)), ~ > w(x) > G, 1 ~ p ~~, the real 
space of p-integrable functions with respect to the measure w(x)dx 

and shall say that LP(w) admits convergence in the norm with re­

spect to {un} if for f E LP , the expansion of f with respect to 

the system converges to the function in LP. That is, let be 

c u 
n n 

c = Jl u f xdx / Jl u2 xdx and f E LP(w) , 
nOn 0 n 

-- o if n --+ ~ • Observe that u 
n 

conjugated because it is always a real function. 

is not 

3. POINTWISE CONVERGENCE OF EIGENFUNCTION EXPANSIONS IN L2. 

In what follows assume the results and notation of chapters 1 and 
2 of [5]. Let q be continuous in 0 ~ x <~, ~ ~~. Consider the 
differential equation 

(5) y" + (A - q) Y = 0 

and the ~1lutions ~ and 6 such that 
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(6) If> (O,X)"'sin a , 1f>'(O,X)=-cos a ; 8(0,X)=cos a , 8'(0,X)=sin a. 

Assume that m(X) is an analytic function, holomorphic in the com­
plex plane except for simple poles at the real points Xo< X1< ... < 

< X < n 
such that meA) = ffi1A). 

Assume that for non-real X, m(X) is on the "limit circle" at X and 
such that there exist two sequences {on} and {~n} with the prope~ 

ty that for any X with Im(X) > ° it holds: 

m(X) 
8(bn) cotg~n+8'(bn) 

If> (bn) cotg ~ n + If> , (b n) 

~ n E [0, 211"), ~ n ---+ ~ . 

The residues of the function ~(x,X) 
poles of m(X) are: 

8(x,X) + m(X) If>(x,X) at the 

{~n(x)} is an orthonormat family of functions in L2 (0,6). 

We shall prove next theorem following the pattern given by para­
graphs 1-4 of chapter 9 in Titchmarsh's book. 

THEOREM 1. Assume that at x E (0,6) the functions ~n(x) verify 

L l~n(x)12 
T2_T<). <T2+T 

n 

0(1 ) if T ---+ 00 

If f is a reat function, f E L2 (0,6), and the ordinary Fourier se-

ries of f converges at x to I, then the series 

L c ~ (x) 
n n 

atso converges to 1. 

By "the ordinary Fourier series of f" we understand the expansion of 

the restriction of f to the finite interval (0,b)3X with respect to 
the system {sin 211" nx/b, cos 211" nx/b}. Next lemma 2 asserts that 
if the ordinary Fourier series of f converges at x to 1 then this 
value is independent of b whenever ° < x < b < 6 .. 
To prove theorem 1 we need some estimations from Titchmarsh's book. 
Assume 0.;;; arg X ';;;11", s =.fA = (] + it, 0';;; arg s ';;;11"/2, 

6.> b > b > 0. 
o 

Then, (cf. [5], 1.7. (ii)) 
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I tP (X,A) sin O! cos sx + 0(1) etx/isl if sin O! " 0 
(7) 

etx/I sl 2 tP(X,A) - (sin sx)/s + 0(1) if sin O! 0 

where the 0' s are uniform in x and s whenever x E (O,b) and 
lsi> 0o(b). A careful examination of the constants in the proofs 

of 9.2.12 and 9.2.13 in [5], proves that next formulae (8) and (9) 
hold. 

1/I(x,A)=e isX /is sinO! + 0(1) e t (x-2b) /0 + O(l)e-xt /1 sl2 if t>l 

1/I(X,A) = O(l)/ot if 0 < t ~ 

where sin O! " 0, and if sin O! = 0 , 

1/I(X,A) e isx + 0(1)1 sl e t (x-2b) /0 + 0(1) e-xt/I sl if t > 1 

1/I(X,A) O(l)lsl/ot ifO<t~ 

In both formulae, the O's are uniform whenever x E (O,b) and 

lsi > 0 0 (b). (For this it is convenient to consider formula 9.2.11 

of [5] for the cases bt > 1 and bt ~ 1). 

We need also the following result on analytic functions (cf. [5], 

lemma 2.11). 

LEMMA 1. Let F(z) be hoLomorphia on -R ~ x ~ R, -r ~ y ~ r where 

z=x+iy. If in this rectangLe I FI < M/lyl then I F(z)1 ~ Mo.M 

in -r ~ y ~ r, -R/2 ~ x ~ R/2, where Mo = Mo(r,R). 

Since 1/I(x,s2) - eisx/is sin O! is regular in the square -1 ~ a ~ 1, 

T-l ~ t ~ T+l for T great enough and takes conjugate values at 

points symmetric with respect to the imaginary axis, we can apply 
the preceding lemma to obtain from (8): 

j 1/1 (x, A) 

(10) 

1/I(X,A) O(l)/ot 

if t > 1 

ifO<t~ 

for sin O! " 0 and from (9), when sin ex 0: 

j 1/l(X'A) 

(11) 

1/I(X,A) 

e isx + 0(1)1 sl e t (x-2b) /(oVl) + O(l)e-xt /1 sl 

0(1) e-xt ift> 

0(1)1 sl lot ifO<t~l 
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In formulae (10) and (11), the O's have the same properties as in 
formulae (8) and (9). 
After integration of formulae (7) we obtain: 

fX

o 

1 
rf>(y,X) dy 0(1)e tX (1+x)/1 sl if sin ex # 0 

(12) 

J: rf>(y,X) dy = 0(1) e tx (1+x)/1 sl2 if sin Q: = 0 

where the O's have same properties as in (8) and (9). 

Next, we shall see that if x < b then 

1 
r I/I(y,X) dy = 0(1)e-xt+b • d (t)/(tIl1)1 s12, for 

x 
(13) r I/I(y,X) dy = 0(1)e-xt+b • d (t) I(U1)1 sl for 

x 

sin ex 

sin ex 

# 0 

= 0 

wher'e the 0' s have the same properties as in formulae (8) and (9), 

and d(t)=t if 0 < t ~ 1, =0 if t> 1. 
To prove (13), observe that I/I(x,X) satisfies the integral equation: 

(14) I/I(x,X) = I/I(b,X)cos(s(x-b)) + I/I'(b,X)sin(s(x-b))/s + 

+ JX s-l sin(s(x-y)) q(y) I/I(y,X) dy . 
b • 

After integration of (14), we obtain: 

I: l/I(y,X)dy = I/I(b,X) s-l sin(s(x-b)) + 1/1' (b,X)(1-cos(s(x-b)))s-2 + 

+ f: q(y) I/I(y,X) (1-cos(s(x-y))) s-2 dy . 

Then 

(15) lext fb I/I(y,X)dYI ~0(1)s-1. sup leyt l/I(y,X) I + 
Qsys;b 

+ 21 s I - 2. I 1/1' (b, X ) e btl 

where 0(1) has the same properties as in formula (8). 

From (14) it follows that for b fixed and x < b: 



172 

11/1' (b ,X) 1 
t(b-x) 

ebt oe;;;; e{l ext 1/I(x,X)1 + I ebt 1/I(b,X) . 
s I sin(s(x-b))1 

cos(s(x-b))et(x-b)1 + Jbx I sin(s(x-y)) q(y) e ty 1/I(y,X)i dy} oe;;;; 
s.et(y-x) 

M e(b-x)t 
oe;;;; 

Isin(s(b-x))1 
sup I ext 1/I(x,X)1 

O.:ox.:ob 

where M is an absolut constant if lsi> uo(b). 
In consequence, 

( 1 6) 11/1' (b. X) . e btl 

s 

(b-x)t 
oe;;;; M. min 1 e I. max Jext 1/I(x,X)1 oe;;;; 

O.:ox.:ob sin(s(b-x)) O.:ox.:ob 

oe;;;; M'. max 1 ext 1/I(x,X) 1 
O$x$b 

where M' is an absolut constant when lsi> uo(b), as it can be 

seen using the formula: I sin(x+iY)1 2 = sin2x + sinh2y to estimate 
the minimum. 

(13) follows now from (15) and (16), and the estimations (10) 
and (11). 

QED. 
It also holds (cf. 9.3.1 and 9.3.2 in [5]): 

(17) 

, t > 1 

whenever sin a '" o. In case sin a = 0. 

(18) 

In both formulae the 0' s are independent of b if lsi > u 0 (b) . 

Finally, we mention a familiar result on convergence of Fourier 
series ecf. [6]. p.242, Th. 1.3). 
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LEMMA 2. Assume fb I f(Y)1 dy < 00 , fb I f 1 (y)1 dy < 00 and f=f 1 in a 
o 0 

neighbourhood of x E (O,b). Then, the ordinary Fourier series of f 

relative to the interval (O,b) converges to 1 if and only if 

lim 
T+oo 

fb
O

· f, (y) sin(T(x-y)) dy = 1 
x-y 

4. PROOF OF THEOREM 1. 

Let us assume that C1 is the circumference of radius T2=1 AI and 

that in the interval (_00,_T 2] there is no eigenvalue of the equa­

tion. If T2 is not an eigenvalue and 

(1 9) 4> (x, A) 1/I(X,A) I: <{l(y;A)f(y)dy + <fJ(x,X) f: 1/I(y,X)f(y)dy 

then (cf. [5], Th. 2.(7): 

_1_ f 4>(X,A)dA = L c 1/1 (x) 
2~i C1 2 n n 

A <T 
n 

Since 4>(X,A) 4>(x,X) if C2 is the half circle in the X-plane 

image of C = {s=Tei'P, O";''P'';' ~/2}, s=lA, we have: 

2i 

In consequence, 

(20) 

f 4>(x,X)dX 
C 1 

1m f 4>(x,X)dX 
C2 

Let £ and ~ be arbitrary positive numbers. 
Write f=f 1+f 2+f 3 , where f2 is a continuously differentiable func-

tion equal to zero on (b,A) and in a neighbourhood (x-6,x+6) of 

the point x, f1 is zero on (b,~) and such that fA I f11dy < ~ and 
o 

f3 is zero in (O,b) with r I f3 1 2dy < £2 
o 



Since f E L2, this can be done if b is chosen great enough and 
greater than x and 6 sufficiently small. 

With this decomposition ~(X,A) = ~1 (X,A) + ~2(X,A) + ~3(X,A), 

where ~i is given by (19) with fi instead of f. 

In the following formulae (21),(22) and (23), the O's are inde­

pendent of b if lsi> uo(b). 

(21) 

(22) 

(23) 

~1 (x,A) 'r e isl x-yl fl (y) (2is)-ldy + 
o 

-xt e(x-b)t 
+ 0 ( 1 ) (_e _ + _1_ + ) .1) 

lsi Isl 2 UVl 

ifO<t.,;;l. 

e-6t (l+x) 0(1)/1 sl 2 

o (1 ) (1 +x) e btl tis I 2 

~(x-b)t 0(1) gluvl 

if t > 1 

ifO<t.,;;l. 

if t > 1, 

ifO<t";;l. 

ift>l, 

(21) is a direct consequence of (7) and (10) and (11). In fact, 
because of these formulae: 

Jb [eisl x-yl +;l! -(x+y)t 
o (1) (-=-e ---

o 2is lsi 

-I x-yl t 
+ .. .=.e_----:,--- + 

I sl 2 

e(x+y-2b)t 
+ )1 fl (y)dy if t > 1; and if t E (0,11, 

uvl 

~l(x,A) = r [0(1) extfl(y)lut1 dy. 
o 

To prove (22) observe that 

~(X,A) JX
-
6 ~(y,A)f2(y)dy + ~(X,A) Jb ~(y,A)f2(y)dy 

o x+6 

J
X - 6 Jb - ~(X,A) ~*(y,A)fi(y)dy + ~(X,A) ~*(y,A)fi(y)dy 
o x+6 
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where tf>*(y,A) r tf>(r,A)dr ~*(y,A) = Jb ~(r,A)dr . 
y o 

Applying to this formula the estimations (7), (10) (or (11)), (12) 
and (13), we obtain (22). Finally, 

In In 2 1/2 ItlJ3 (x,A) I = 1tf>(X,A) /(y,A)f(Y)dYI .;;; Itf>(X,A) Ie:( bIHy,A) I dy) .. 

After application of (7) and (17) (or (18)), (23) follows for 
° < t .;;; 1, and 413 (X,A) E O(l)(exp(x-b)t)/o for t> 1. Since 

t1J3 (x,s2) is regular in th& square -1 < 0 < 1, T-l < t < T+l (if T 

is great enough) and takes conjugate values at symmetric points 
with respect to the imaginary axis, we can apply lemma 1, obtai­
ning so (23). 
Calling C'=C n {t > 1}, C"=C n {t .;;; 1}, we obtain from (21): 

J 411 (x,s2) 2s ds = -i J ds Jb e isl x-yl fl (y) dy + 
c' C' 0 

+ 17.0(1) J (e-xt + 1 
c' lsi ~2 

e(x-b)t 
+ )Islldsl= 

ovl 

where 0(1) does not depend on b if I sl is great enough. Then, 

where 0(1) is independent of b if b > b1 > bo ' I sl is great enough 

and x runs in a fixed closed interval contained in (0,b 1). 

Applying (22), it is obtained: 

(25) J t1J2(x,s2)2sdS = 0(1) J exp(-llt)1 dsl IT 
c' c' 

O(l)ITIl 

Applying (23), it follows, 

J J 
(x-b)t 

(26) c,tIJ3 (X,S2)2SdS = 0(1) E e I sll dsl = 0(1) E 

c' ovl 

In (25) and (26) the O's are as in (24). From (24), (25) and (26) 
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it follows that: 

(27) 1m J' ~(x,s2)2sds = fb sin(Tlx':yl) f 1 (y)dy+0(1)(e+'1+1/T/j) 
e' 0 I x-yl 

To study the analogous integral on CIt we define the auxiliary func­
tion: 

n(x,~2) = ~(x,s2) - I 
T2_T<A <T2+T 

n ' 

This function is regular on the strip (T2_T) 1 /2 < a < (T 2+T)1/2 

and.therefore on T-l/4 < a < T+l/4, it T is great enough. Besides, 
because of (21), (22) and (23) we have for 11m sl = I tl <; 1 , 

(28) 

Here'the sums are on the set of ~ E (T2_T,T2+T) and 0 is as in 
n 

formula (24). 

Since f E L2 (O,6), Lie 12 converges. In consequence, I c 2 in 
n n 

formula (28) is 0(1) for T + ~. By hypothesis, II ~ (x)1 2 = 0(1). 
n 

Therefore, from (28) we obtain next formula (29) where 0(1) is in­

dependent of b: 

(29) n(x,S2) = 0(1) ('1+e+o(l))/tT 

From (29) and lemma 1 we obtain that .on CIt: 

Therefore, 

(30) 

n(x,S2) = O(l)('1+e+o(l))/T 

f n(x,s2)2sds = 0(1) (e+'1) + 0(1) 
e" 

On the other hand we ha~e: 11m f ~ dsl=lvar.Im 19(s2_~ )1< w. 
e" s _~ n 

n 

Then 

(31) 2sdsl <;w Ilc ~ (x)1 = 0(1) 
n n 

In formul·a (31) the sum is on the set of ~ E(T 2-T,T 2+T). From (30) , n 



and (31), it follows, 

(32) 1m J. ~(x,s2) 2s ds 
e" 
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o ( 1 ) (e: +11) + 0 ( 1 ) 

Taking e:=lI, from (20), (27) and (32) we obtain: 

Jb 

7r 0 

sin(T(x-y)) f 1 (y)dy + O(1)[e:+(T6)-l]+~(l) 
x-y 

Since f 1 (y)=f(y) in a neighbourhood of x, from lemma 2 it follows 
that the integral in formula (33) converges to 1 when T ~ 00. 

Therefore , L c ~ (x) - 11 ~ C e: 2 n n 
A <T n 

where C is a constant which does not depend on b neither on x, if 
x belongs to a fixed closed interval contained in (O,b 1). Since e: 
is arbitrarily small, we obtain L c ~ (x) = 1. n n 

QED. 
From Carleson's theorem (cf. [3] or [4]), it immediately follows 
next corollary. 

COROLLARY. Under the hypothesis of theorem 1, L c ~ (x) converges n n to f(x) for a.e. x. 

5. APPLICATION TO BESSEL'S EQUATION. 

In this section we apply the results of the preceding section to 
the case of Bessel's second order differential equation: 

(34 ) 
2 

Y"(x) + (X - II -1/4) Y(x) = 0, 0 <x <1, 
x 2 

Y(l) cos a + Y'(l) sin a = O. 

In this case t.=0. In [5], Ch.4, §8,Weyl's theory is applied to 
this equation. There it is obtained that the functions satisfying 
the equation and the boundary conditions (6) with a=O are: 

(35) 
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and also that for 0 < v < 1, v ~ 1/2 (limit-circle case): 

meA) -s 
c.s-vJ;(s) + SVJ~v(s) 

-v v 
c.S Jv(s) + s J_v(s) 

_00 < c ';;;.00 

2 

The same formula holds for v=1/2, as it can be easily verified. 
In this case the equation has no singularity at x=O. 
For v=O (limit-circle case): 

meAl 
2J~(s) 19(sc) - lTY~(s) 

- s -~--------"~-
2 J (s) 19 (sc) - lTY (s) 2 o 0 

and for v ~ 1 (limit-point case): 

m (A) 
J; (s) 

-s ---
J v (s) 2 

where meA) is limit of 1(A) = -(Ocotg(3+0')/(l/1cotg(3+I/1'). The corre­
sponding functions in the case of sin a ~ 0 are, as it is easy to 
s·ee: 

~ 

(36) 1 
1/1 (x,A) 

8(x,A) 

1/1 cos a + 0 sin a 

-1/1 sin a + 0 cos a 

and therefore, ;(A) is the limit of the circles (b -+ 0): 

From (36) we obtain: 

'1 (A) = 
sina - (cosa)[ (Ocotg(3 + o ')1 (l/1cotg(3 + 1/1')] 

cosa + (sina)[ (0 cotg(3 + 0') I (l/1cotg(3 + 1/1')] 

sina + 1 (A) cosa 
cosa - l(A) sina 

and since meA) is the limit of the circles l(A), we have: 

(37) . meA) cosa + sina 
-meA) sina + coso: 

Using (36) and (37), we obtain for any a: 
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(38 ) ~(X,A) '8 + ;(A);; = (II + m.rp)/ (cosO/ - m.sinO/) . 

Using (35) and the corresponding values of meA), we have in the 
different cases: 

(39) ~(X,A) = 

-v v -v v ' [ (s i nO/ ) / 2 + co so/ I (c s J v (s) + S J _ v (s) ) + (s i nO/ ) s (c s J ~ (s) + s J ~ v (s) ) 

o < v < 1 , c E (_00, +00] ; 

(40) ~(X,A) = 

IX [(2/7r)J (xs)lg(sc)-Y (xs)] 
o 0 

[(sina)/2+cosO/][~J (s)lg(sc)-Y (s)]+(sinO/)s[~J' (s)lg(sc)-Y' (s)]' 
'/To 0 '/To 0 

v = 0, c E (0, 00] 

(41) 
/x J v (xs) 

v ~ 1 . 1/I(X,A) 
[ (sinO/) /2+cosO/] J v (s) +sJ~ (s). sinO/ 

Then, the orthogonal systems which correspond to the different func 

tions meA) are given by: {I/!n(x) = IX un(x)/II/-:- un (.)1I 2} where un 

is defined by (1) or (2) and satisfies (4). Using the asymptotic 
formulae for Bessel's functions, it follows that I/!n(x) = 0(1) if 

x is fixed and A - n 2'/T 2 . Therefore, L II/! 12 = 0(1) for T2_T < 
n n 

< A < T2+T, and the hypotheses of theorem 
n 

these cases, In consequence, we have: 

THEOREM 2. Assume v > -1 and f E L2. Then S f 
n 

tofa.e .. 

are verified for 

c.l/!. converges 
J J 

6. POINTWISE CONVERGENCE OF EIGENFUNCTION EXPANSIONS IN LP. 

Let be 1 .;;; p .;;; 00 and 0 < u(x) < 00 a.e., 0 < x < 1:::.. We have de­

fined as LP(u) the space of "functions" f such that uf E LP. 
We shaH write: lIufll = IIfll . Let {I/!} be the system defined at P p,U n 

the beginning of paragraph 3. With the same notation of that sec­
tion and the same hypotheses on meA), it holds: 
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THEOREM 3. Assume f E LP (u) n L 1 ,1 .s;;; p < co, and that the fol.­

l.owing hypotheses are satisfied: 

3) If 1/p + 1/q = 1, the foHowing equal.ities hol.d with the D's 

independent of b whenever I~I > uo(b): 

0(1)/ut if o < t .s;;; (J:I1/J(X,S2)/U(X) Iqdx) 1/q 

1 
sin IX " 0 , 

0(1) e -bt /u if t ~ 

0(1)1 sl /ut if 0 <t .s;;; 1 

1 
sin ex 

0(1)1 sl e-bt/u if t ~ 1 

(If q=co, the l.eft hand side of 3) shoul.d be repl.aaed by 

ess.sup·l1/JCx,s2)/u(x) I). 
xE (b,L'.) 

o . 

Then ~ c.1/J. and the ordinary Fourier series of f (in the senae 
> L J J 

of theorem 1) are equiaonvergent: if the l.ast one aonverges to 

the number 1 then al.so L Cj1/Jj = 1. 

Proof. From 1) it follows that the function: 

<I>(x,~) = 1/J(x,~) f I/>(x,~)f(y)dy +I/>Cx,~) r 1/J(y,~)f(y)dy 
o . x 

is, for x fixed, an analytic function in the complex plane with 

simple poles at the points ~n and residues c n1/Jn(x). In fact, it 

. is sufficient to prov,e that F (~) = r 1/J(y ,~)f (y)dy has at ~n a 
x 

IL'. 
simple pole with residue I/>Cy '~n)f (y)dy/IlI/>C. '~n)1I ~. Consider 

x 
b . 

Fb(~) = I 1/J(y,~)f(y)dy, b < 6. Then, from section 3, we have: 
. x . 
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where Gb is regular in a neighbourhood of An. For b -+ lJ., it fol­

lows that 

F(A) = G(A) + (A-A n)-1 r t/l(y,An)f(y)dY/Iit/lIl; , 
x 

A E {A.} 
J 

Here, F and G are uniform limits on compact sets. In consequence, 

G is regular in a neighbourhood of An and F has the desired prop­
erties. 

Following the proof of theorem 1, we see that (20) holds. Now, we 

decompose f as in that theorem, f = f1 + f2 + f3' with the same 

requirements on f1 and f2 and the support of f3' but requiring in 

this case: IIf311 < E. 
p,ll 

Then (21) and (22) hold. Using in the proof of (23) that 

IIf311 (J'\J;(y,A)/U(Y) Iqdy) 1/q 
p,ll b 

and the hypothesis 3) instead of (17) or (18), we obtain (27). 
(32) also holds if we take into account (cf. formulae (28) and 

(31)) hypothesis 2). Therefore, (33) holds and the theorem follows. 
QED. 

7. APPLICATION TO SERIES OF BESSEL FUNCTIONS. 

In this section we apply last theorem to Bessel and Dini series. 

The function 

(42) "'(X,A) 
./X J v (xs) 

------
[ co sex + (s i nex) / 21 J v (s) + (s i nex ) s J; (s) 

corresponds to (39) if c=o and -1 < v < 0, also to (39) if c=~ 
and 0 < v < 1, to (40) if C=~ and v=O and to (41) if v;;;. 1. 

The system associated to this function is: 

( 43) 
Ix J v (xs n ) 

II IX J v (xs n )1I 2 

where {s } is the set of zeros of the denominator in (42) and 
n 

such that 0 < arg sn < ~/2. 

THEOREM 4. Assume v > -1, M 
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Then, the expansion of f with respect to the system (43) is equi­

convergent with the ordinary Fourier expansion in the sense aZ­

ready defined for x E (0,1). 

Proof. Let us verify the hypotheses of theorem 3 with p=1. Since 

~ and ~ are O(x~), 1) follows. (As before, for this application 
n 

~=o and 1 instead of 0). Using the asymptotic expansions in the 

denominator of (42) we know that An- n2~2. Since ~n(x)=0(1), to 

prove 2) it is enough to see that cn=0(1). From (43) it follows 

that: 

(44 ) ~n(x) ! X~0(1) if ° <x < 1, 

= C cos(xs -V~/2-~/4) + 0(1)/xs n n n if xs > 1 . 
n 

Here, the O's do not depend neither on x nor on n, and Cn is 

bounded above independently of n. Assume that h=s-1/2 ; applying 
n 

(44) we obtain: 

1 
Icnl = IJ ~ (x)f(x)dxl o n 

1 
+ s-1/2 J If(y) Idy = 0(1) 

n 0 

as it easily follows from the hypoteses and Riemann-Lebesgue's 

lemma. 

Let us prove 3). Since in this case the singular extreme is 0, 

the norm to be bounded is calculated on (0,1-b), b -+ 1. Because 

of the asymptotic formula for J v 

( 45) if ° < t , I xs I > 1 

Because of the behaviour of J v at the origin, the same formula 

holds for Ixsl ~ 1. Then 

(46) sup 
xe (0, 1-b) 

2 
~ (x, s ) I 

x~ lArs J v (s) + BR J~ (s) I 
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A = (sina)/2 + cosa B = sina 

Again, because of the symptotic formulae for Bessel functions and 
their derivatives: 

with M > 0, independent of s if s is great enough. From (46) and 
(47),.3) follows. QED. 

LEMMA 3. 1 ~ r ~ p ~~. If 1 and ~ ape peat numbeps vepifying 

~ + l/p < 1 + l/r then LP(x a) c Lr(xY). 

Ppoof. Assume p <~. From Holder's inequality: 

• IIx(y-a)rll 
(p/r)* 

Since (p/r)*=p/(p-r), last norm is finite whenever r < p and 
(l-~)rp/(p-r) > -1, or whenever r=p and ~ <1, i.e. if the hypoth-

esis is verified. Therefore, IIfxall C > IIfxYIl • This proves in part 
p r 

the lemma. The case p=~ follows in the same way . QED. 

COROLLARY TO THEOREM 4. Assume that p and ~.peaZ. vepify 

(48) l/p < 1 + /l - ~ p > 1 , 

and that f e LP(x a) on the intepvaZ (0,1). Then the expansion of 

f with pespeat to the system (43) aonvepges a.e. to f. 

Ppoof. /l ~ ° implies the existence of a number r > 1 such that 

lip + ~ < l/r < 1 + /l. From lemma 3: f e Lr C L1 (xP ). The corol­
lary follows from the theorem of Carles on and Hunt on convergence 
of ordinary Fourier series, (cf. [31 and (41). 

QED. 

REMARK. We could now obtain the analogous result for the systems 
described in §2. To avoid calculations, which for these systems 
are slightly more complicated, we give an alternative proof in 
next paragraph. 
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8. CONVERGENCE A.E. OF ORTHOGONAL SERIES OF BESSEL FUNCTION~. 

The aim of this section is to prove the following result. 

THEOREM 5. Let {un} be a system of solutions of Bessel's equation 

of opdep v, v any peal numbep, satisfying a peal homogeneous bound­

apy aondition at x=l, opthogonal and aomplete in L2(1X). Then 

v > -1, and if p, P and v satisfy 

(49) <p {(v + 1/2)AO} + 3/2 - P > lip, 

then fop any f E LP(x~) its expansion with pespeat to the system 

{un} (in the sense of papagraph 2) aonverg€:s to f a.e .. 

This result is a consequence of the following theorem (which is 

proved in [2]) and theorem 7. 

THEOREM 6. Assume -1 < v and {un} given by (1) op (2), and 

O<x<1. 

a) If 1 .,;; p .,;; 00 , _00 < P < 00, then LP (x~) admits aonvepgenae in 

the nopm with pespeet to the system {un} if and only if (49) and 

(50) hold: 

(50) p<oo lip> 1/2 - P - {(v + 1/2)AO}. 

b) Any system of solutions of Bessel's equation of opdep 

v E (_00,00), {wn }, satisfying a peal homogeneous boundapy eondition 

(4), opthogonal with pespeet to xdx, eom-elete in L 2Cx1/2), is 

equivalent to one of the systems (1) or (21) in the sense that fop 

eaah n thepe exists a numbep h # 0 sueh that w =h u . n n n n 

a) For eaeh system, {an} is real if n ~ no' whepe no depends on 

the system. Moreovep, a n-+ 00 if n -+ 00 . So, we shall suppose that 

n ~ no implies an < a n+1• If an is not peal then it is pupely 

imaginapy. 

d) Let {u } be a system obtained fpom (1) with K#O and v E (-1,0). 
n 

We assoeiate to it anothep system {~ }, and ppeeisely that obtain­
n 

ed from (1) with the same boundapy eondition and K=O. If {un} i8 

obtained fpom fopmula (2) then {un} will be that obtained (with 

the same boundapy eondition) fpom fopmula (1) fop the ease v=O 

(and thepefore K=O). 
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For eaah system and its assoaiate there exist a number m and a fn. 

G(x) suah that if S f(S f) designates the nth partiaZ sum of the 
n n 

expansion of f with respeat to the system {u } ({~ }) then. if 
n n 

(49) and (50) hoZd then for any f E tP(x~) it also hoZds: 

(51) Is f(x) - S + f(x) I < C G(x)"f.xa" n n m n P 'If n • 

where Cn = n 21' if -1 < I' < 0, Cn = l/lg n if 1'=0, and G(x) is 

finite everywhere and depends onZy on I',~ and p. 

THEOREM 7. Assume I' > -1 and I',~ and p satifying (49). Then. if 

{u } is one of the systems defined by (1) or (2) then LP(x a) 
n 

admits aonvergenae a.e. with respeat to it. 

Proof. Assume that the system under consideration is defined by 
(1) with K=O. This system after multiplication by Ix , coincides 

except for normalization with the system {~n} of paragraph 7. 

The corollary to theorem 4 implies that if F E LP(xo) and 

l/p < 1 A (1+~-6), then the expansion of F with respect to the 
system {!Xu (x)] converges to F a.e .. 

n . 

Definig f and ~ by F=f Ix ,~ 6 + 1/2, we have: f E LP (x a) , 
and in consequence, theorem 7 for K=O follows. 
From theorem 6,d), it follows that theorem 7 holds whenever the 
following inequalities hold: 

(52) l<p<oo 1/2 - ~ < ~ + l/p < 3/2 + ~. 

,A~S,U!Jl;~,,.r~::,L~'CJ,CYI,,:~~d~' + l/s < 1/2 - ~. In this situation, 
there exist p and ~ verifying (52) and such that p < s. From 

lemma 3, we obtain LP(xa) ~ LS(xY). 

QED. 
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