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SEQUENTIAL ESTIMATION OF A TRUNCATION PARAMETER 

Eduardo Warner deWeerth 

1. INTRODUCTION. 

Let Xl be a random variable defined on a probability space 

(ll,B,P) and whose distribution belongs to the family {Pa: a E 8} 

where e is a finite or infinite interval of the real line R. We 
want to estimate the true value of the parameter a on the basis 
of a series of independent observations XI ,X 2 , ... of the varia-

ble Xl' After taking each observation we decide, on the basis 

of the observations that we have already taken, whether to take 

still another observation or to stop and estimate. We suppose 
that it costs us c units to take an observation and that if we 

estimate a by d when its true value is a we lose L(a,d). Our to
tal loss then, upon taking n observations and deciding d is 
L(a,d) + cn. 

A sequential decision procedure is a pair (8,t) where t is the 
stopping rule which tells us, for each possible sequence of obse~ 
vations x = (x I ,x2 , ... ), when to stop, and 8 = {8 n : n = 1,2, ..• } 

is a sequence of terminal decision functions. The meaning of 8 
is as follows: for each n, if we stopped after taking n observa
tions (t(x) = n) and have observed x f ,x 2 , ••• ,xn ' we must decide 

a = 8 n (xl' ... ,x
n
). If we use the procedure (8, t), our loss as "a 

function of x E ROO is given by: 

L[a,8
t

(x)(x)] + ct(x) 

if a is the true value of the parameter. The average loss is 
called the risk and is given by: 

R(8,t,e) 

The most desirable sequential procedure would be one that mini-
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mizes the risk uniformly in e. Such a procedure. however. is unat
tainable in all but trivial cases. 

In the Bayesian setup we assume that there is not one true value 
of the parameter but rather that e is a random variable with a 
distribution 'It. The variables X1 .X2 •..• are then assumed to be i!!, 

dependent and identically distributed given e. This determines the 
jo~nt distribution of e,x1,x2"~' . A procedure will be optimal in 

the Bayes sense (Bayes procedure) if it minimizes the Bayes risk: , 

fe R(6.t,e)'It(de). 

Assuming that Pe(dx1) = f(x1.e)p(dx1). where p is a a-additive 

measure. and 'It(de) = tjI(e)de, .the Bayes risk for a sample of fixed 
size n is: 

(1.1) J {J L[e,6 (x1.···.x )]f(x1.e) ... f(x .e)p(dx1)···Il(dx )}. e Rn n n n n 

• 1jJ(e)de + cn = 

J {f 1[e,6 (x1' .. ·.x )]tjI(slx1.···,x )de}Q (dx1.···.d:x: )+cn 
Rn 9 n n n n n 

is the condition 

al distribution of e given 11 •... rXn and Qn is the marginal distri 

bution of Xl'" .• Xn' 

Suppose that for each n there exists a measurable function of the 

observations, en = en(X'l •...• Xn).such that 

(1 .2) J L(e.e )tjI(elx:1.···.X )de 9 n n 
min f L(e .d)1jJ(e'\X 1 ..... X )de 

d . '9 · n 

From (1. 1) and (1. 2) it follows easily (cf.[ 1]) that the seq1,lence 
of terminal decision functions of a Bayes procedure must be: 
{e }. 

n 

The corresponding stopping rule is the one that minimizes: 

(1.3) 
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where Q is the marginal distribution of (X1'X
Z
",,) and 

f 1(1),6 (X1'''''x )].(e\x1, .. ·,x )de 8 n n n 

is called the posterior (Bayes) risk after n observations. 

Bickel and Yahav introduced in [2] the notion of asymptotically 
pointwise optimal (A.P.O.) stopping rules. A stopping rule t 

Y +Ct 
will be called pointwise optimal if Q[ t .;;; 1] = 1 for any 

Y~+ct' 

other stopping rule t'. 

Pointwise optimal rules exist only in essentially deterministic 
situations. One such case obtains when there exists a random va
riable V, 0 < V < = such that 

(1. 5) Y 
n 

V 
n ' n=1,2, .... 

In this case it is easy to see that the stopping rule: 

"stop as soon as _V-,--_.;;; c" 
n (n+ 1) 

is pointwise optimal. 

In what follows we will call a function from the interval (0,=) 

to the set T of all possible stopping rules for the sequence 
{Yn } also a stopping rule. Then, a stopping rule t(c) is call~d 

A.P.O. if 

Yt(c)+ ct(c) 
lim ----~-~-~------
c+O inf{~ +cn: n=1,2, ..• } n . 

In their paper [3] Bickel and Yahav proved. 

THEOREM 1.1. If 

(1.6) Yn> 0 a.s. Q fo~ all. n 

a.s. Q 

(1.7). nBYn -- V a.B. Q. whe~e B > 0 and 0 < V <. a.s. Q 

then the stopping ~uZ.e t(c):stop fo~ the fi~stn ' suoh that 

(1.8) Y [1 - (~)B] ~ c 
n n+1 
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is A.P.O. 

REMARK. The theorem as stated in [3J is somewhat more general. 

It is not hard to see that any rule s(c) such that 

tltl_ 
iCc) 

a.s. Q 

is also A.P.O. In particular, the rule t'(c) defined by: "stop 

for the first n such that Y __ 13_" c" is A.P.O. The rule t' (c) 
n n+l 

is obtained when we replace in (l.a) the expression 1 - (-1!.....)t3 

. by its firs t order approximation _13_ • 
n+l 

n+l 

The relation between the deterministic case (1.5) and (1.7) is 
clear. 

Bickel and Yahav proved furthermore (cf. also [4J) that the rela
tion (1.7) was fulfilled (in the case of quadratic loss" for 13=1) 

under very general conditions that may be described roughly as 
those insuring the existence and asymptotic normality of maximun 
likelihood estimators. 
It is the purpose of this work to extend the results of Bickel and 
Yahav to a case that clearly does not satisfy the above conditions, 
the case of the estimation of a truncation parameter. The model we 
consider is as follows. 
Let h be a strictly positive and continuous function on the open 
interval a = (a o '=)' Here ao can be finite or -=. For each a E a 
we assume that 

c(a) = f: h(x)dx < = 
o 

Then, for each a E e" the function ~, 0 " x " a, is the den· 
C (a) 

sity function of a probability distribution Pa concentrated on 
the interval (eo,a), and we seek to estimate the truncation point 

a sequentially. 

In section 2 we prove that (1.7) (with 13 = 2) holds in this model 

for loss functions of the type L(a,d) = B(a)(a-d)2 where B(e) is 
a positive, continuous function of e such that 

Je(1+e2)B(e)~(e)de < =. It then follows from the results uf Bickel 
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and Yahav that the stopping rules: 

are A.P.O. 

t(c): stop for the first n such that 

t' (c): stop for the first n such that 

Y _2_,.;; c 
n n+1 

In section 3 we show, using a theorem of Bickel and Yahav [3], 
that the rules t(c) and t'(c) are also asymptotically optimal in 
the sense of Kiefer and Sacks [5] . 

It is interesting to remark that in our development the function 

~ plays a role analogous to that played by the Fisher informa
C (e) 

tion (or information matrix) in the work of Bickel and Yahav. 

It is clear, furthermore, that if eo is finite we can always as

sume that eo = O. 

Finally, we wish to remark that all our results, obtained for a 
distribution truncated above, can easily be translated into the 
corresponding result for a distribution truncated below. 

2. A LIMIT THEOREM. 

We turn now to the truncation parameter model described in sec
tion 1 and use the same notation as there". We assume that the 
loss function is 

(2.1) L(e ,d) = B(e) (e-d)2 

where B(e) is a positive and continuous function of e. The prior 
density ~(e) is a positive continuous and bounded function of 9 

and we assume that B(e) and ~(e) are such that 

(2.2) I~B(e)(1+e2)~(e)de < ~ and 
o 

[ "e2~(e)de < .. 
. e 

o 
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We 4enote by an the Bayes estimator based on n observations an~ 

we will now show that it exists and compute its value. The c;ondi

tional distribution of a given X1""'Xn has the density 

(2.3) (w(e)c-n(e)I[a~en]);f; ,(A)C-n(A)dA 
n 

where Ia denotes the indicator of the set A and 

~n = max(x1,···,xn ) is as before the M.L.E. based on n observa

tions. It follows from C1.1) that the Bayes .estimator is the one 
that attains the minimun in the expression 

Y 

F,rom 

n 
inf 

d 

Yn i:f f; Bce)ca-d)2.ce)c-ncalde/l; .CA)C-n(A)dA -
n n 

= i:f f; ca-d)2(B(a).ca)Cn ce) I r; BCA)wCA)C-nCA)dA)Ii~. 
n n 

f; BCA),CA)C-nCA)dA 
n 

J; .cA)CnCA)dA 
n 

it is clear that 

(2.4) a 
n 

and therefore 

(2. S) 

We now prove 

f;a CB(9).(e)C-nca)/J; BCA)~CA)C-nCA)dA)da 
n n 

Y 
n J

'" Bce)(e-e )2.ca lx1 ... ·,x )de e n n 
o 

LEMMA 2.1. en -+ e a.B. Pe for every a e e. 
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But 

Since the term on the right goes to Oas N -+- co the lemma is pro
ved. 

In what follows we assume throughout that 9 is fixed and that we 

are dealing with a fixed sequence of observations for which 
9 -+-9. 

n 

,.. -1,.. n 
THEOREM 2.2. Let "n(s) = (C(9 n )/C(sn +9 n)) . T hen 

h (9) 

(2.6) J"'(1+s 2)IB(Sn- 1+e )~(sn-l+a )" (s)_B(9)~(9)e-C(9)slds + 0 o n n n 

a s n -+ 00. 

Proof. We can write the integral in (2.6) as the sum of the fol
lowing two integrals, where 8 is a positive number to be determi 
ned later. 

no _h(9)s 

J 
(1+s2) IB(sn-1+e )Hsn-1+e )" (s)-B(9)H9)e C(9) Ids o n n n 

(2.7) 

(2.8) 

We first consider (2.7) 

(2.9) 

where e < ~ < sn- 1+ 6 
n n 

If 0 ~ s ~ n8 and n > N(8), we get 

9 - 8 < ~n < ~ < ~n + 8 < 9 + 8 

Therefore 

(2.10) " (s) .;;; e-W8 where w = inf {h....(& : Ix-al < 6} 
n C (x) 

It is clear, furthermore. that we can assume 6 sufficiently small 
and N sufficiently large so that, in addition 
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(2.11) 
-1 A B(sn +e

n
) < 1 + B(e) for 0 ~ 5 < n6 $nd p > N . 

It then follows that if K is the upper bound of 1/1, 

~(e) 

(1+5 2 ) I B(sn- 1+8
n
H (sn- 1 +8

n
)"n (5) -B(e)l/l(e)e- c(e)"1 I( O(:u~6) 

(2.12) _hills 
.;;; (1+5 2 )[ (l+B(e))Ke-ws + B(e)1/I(e)e c(e) ]1 [ ou] 

Since it is clear from (2.9) that 

"n(s) 

it follows from (2.12) and the dominated convergence theorem that 
the integral (2.7) goes to 0 as n --+ m . 

We now consider integr~l (2.8). From (2.9) it is clear that 

~here w is as before. 

Therefore, putting s = nee-a ) 
n 

h(e) 
(2.1~) Jm (1 +5 2) I B(sn- 1+a n) 1jJ (sn- 1+e n)"n (5) -B (e)1/I (e)e -c(e) S Ids .;;; 

nil 

+ B(e)1jJ(e) Jm 
n5 

ne-nowfm A 

5+9 
n 

+ 

Due to (2.2) this last expression goes to 0 as n --+ m and ~he 
proof of the theorem is thus concluded. 

We state for later use 
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COROI.LARY 2.3. 

(2.14) 

(2.15) 

Proof. Immediate. 

THEOREM .2. 4. Pe as n - a>. 

Proof. It follows from (2.4) that 

n(e -~ ) = Ja> nee-a )B(e)f(e)C-n(e)de/Ja> B(l)f(l)C-n(l)dl 
n n ~ n ~ 

n n 

and making the substitution s = nee-an) We get 

n(e -e ) n n 

The theorem now fOllows from a direct application of 
Corollary 2.3. 

Proof. Putting s n(e-a ) 
n 

f
a> - 2 

. A B(e)(e-e ) Helxl, ... ,x )de e n n 
n 

J
a> A - A 2 

.. B (e)[ n(e-e ) -nee -e )] He Ix l , •.• ,x )de e n n n n 
n 

fa>B(Sn-l+e )[s-n(e -e )]2f (sn- l +e )v (s)ds o n n n n n 
11: . j 

J:f(Vn- l +9 n)Vn (V)dV 

By Theorem 2.4. for n > N sufficiently large 
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Therefore 
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nee -0 ) < £1iL + 1 
n n h(8) 

[ (ill.l+ 1) 2 + 2]B( -1 A ) ( -1 A) () < h(8) s sn +8 n ~ sn +en vn S. 

and it follows from Theorem 2.2, the dominated convergence theo
rem (see Loeve [6] p.162) and (2.15) (with B = 1), that 

as was to be proved. 

It follows from Theorem 2.5 and Theorem 1.1 that the stopping ru
les t(c) and t'(c) defined in section 1 are A.P.O. in our trunca
tion parameter model with loss functions of the type L(e,d) = 

= B(e)(e-d)2 and subject to the stated conditions on • an~ B. 

3. ASYMPTOTIC OPTIMALITY. 

Following Kiefer and Sacks [5] , we say that a stopping rule tec) 
is asymptotically optimal if 

(3.1) lim sup[E(Yt(c)+ct(c))/in£{E(Ys(c)+cs(c)):s(c) ET}] < 1 
c .... O 

where T is the set of all stopping rules. 

Then we have 

THEOREM 3.1. (Bickel and Yahav (31) •. Under the oondiHons of 
Theorem 1.1 and if 

(3.2) sup nBE(Y ) < • 
n n 
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then the stopping rules t(c) and t'(c) are asymptotically optimal. 

The following corollary is an immediate consequence of Theorem 
3.1, upon applying (1.1) and the definition of Bayes risk (1.4). 

COROLLARY 3.2. (Bickel anq Yahav [3]). If the conditions of Theo 

rem 1.1 hold and if there exists a sequence of estimates 8 such n 
that 

then the ru les t (c) and t I (c) are asymptotically optimal. 

We now apply this corollary to our truncation parameter model 
and prove 

THEOREM 3.3. In the truncation parameter model hlith loss func

tion L(e,d) = B(e)(e-d)2, if the conditions of section 2 are sa

tisfied and furthermore 

(3.3) hiil > a > 0 for every e c(e) 

then the rules t(c) and t'(c) are asymptotically optimal. 

Proof. Integrating by parts, 

(3.4) lim 
A+e 

o 

-1 Making the substitution: x = ~+sn , we get 

q.S) 

zJe (e-x)(~)ndx 
e Cf8T 

o 



because by (3.3) 

-1 
(C (Han») n 

C(e) 
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-1 en[log c(e+sn )-log c(e)] 

for every n(eo-e) < s < Q (e+sn- 1 < ~ < e). 

From (3.4) and (3.5) it fo1~ows that 

where K is a constant. 

Then 

n2J: B(e)Ee[ (e-s n )2]1/J(6)d6 ..;; KJ: B(e)1jJ(e)de < CD 

o 0 

by (2.2). 

The theorem now follows from Co~ollary 3.2. 

4. REMARK. 

An important corollary can be obtained from Theorem 2.2. Puttin~ 

B_1 in (2.Q) and disregarding the s2 we obtain: 

(4.1) 
_hills 

J
" IHsn- 1+& )v (s) - Ha)e C(e) Ids -+ 0 as n -+ .. 
o n n 

If we now divide by 

(4.2) 

we get 

(4.3) ds '" 

-+ 0 a,s n -+ • 



Furthermore 

(4.4) 

2S 

_.hills 
- ~ e c(e) Ids -+ 0 

c(e) 

because of (4.3) and (2.15). 

as n -+ co 

The limit theorem for the posterior distribution embodied in 
(4.4) is an analogue of the Bernstein-Von Mises theorem (cf. 
Bickel and Yahav [4] , Theorem 2.2). 
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