Revista de la Unión Matemática Argentina Volumen 27, 1975.

PRIME IDEALS AND SYMMETRIC IDEMPOTENT KERNEL FUNCTORS

S. K. Sim

INTRODUCTION.

Let R be a ring with unity element and τ a prime idempotent kernel functor on Mod-R, the category of unital right R-modules. We will denote by Ter(τ) the tertiary radical of a supporting module for τ . In the first part of this paper we give necessary and sufficient conditions for R/Ter(τ) to be τ -torsion free while in the second part we apply this result to study symmetric idempotent kernel functor. It is shown that, every symmetric prime idem potent kernel functor on Mod-R, where R is a right noetherian ring, is in fact the symmetric idempotent kernel functor associated with some ideal of R. This extends a result of [4].

Throughout, R will be an associative ring with unity element, "module" will mean unital right module. The category of R-module will be denoted by Mod-R.

1. TERTIARY IDEAL OF A PRIME IDEMPOTENT KERNEL FUNCTOR.

We first recall a number of definitions and results concerning idempotent kernel functors. Our main reference is Goldman [2], whose terminology we follow.

A subfunctor σ of the identity functor on Mod-R is called an *idem* potent kernel functor if σ is left exact and such thac $\sigma(M/\sigma(M)) = 0$ for all $M \in Mod-R$. M is said to be σ -torsion if $\sigma(M) = M$ and σ -torsion free if $\sigma(M) = 0$. To each R-module S, there is an idempotent kernel functor τ_s , on Mod-R, given by

 $\tau_{S}(M) = \{m \in M \mid f(m) = 0 \text{ for all } f: M \longrightarrow E\}$

where E is the injective hull of S. Note that S is $\tau_{\rm S}$ -torsion free and for any idempotent kernel functor σ on Mod-R such that S is σ -torsion free, we have $\sigma < \tau_{\rm S}$, in the sense that $\sigma(M) \subseteq$ $\subseteq \tau_{\rm S}(M)$ for all $M \in$ Mod-R. In case S = R/K for some right ideal K of R, we will write $\mu_{\rm K}$ for $\tau_{\rm S}$. An idempotent kernel functor σ on Mod-R is called a prime if $\sigma = \tau_S$, where S is a supporting module for σ i.e., S is σ -torsion free and S/S' is σ -torsion for each non-zero submodule S' of S.

Let M be an R-module. The two-sided ideal of R consisting of all elements which annihilate a large submodule of M is called the *tertiary radical* of M and is denoted by Ter(M). It is well-known that Ter(N) = Ter(M) for any essential extension N of M. For a prime idempotent kernel functor σ on Mod-R, we define the *tertiary ideal* Ter(σ) of σ by Ter(σ) = Ter(S), where S is a supporting module for σ . Ter(σ) is well-defined because all σ -injective supporting modules for σ are isomorphic (see [2], Theorem 6.4).

EXAMPLE 1.1. Let R be a commutative or right noetherian ring and P a prime ideal of R. Then μ_p is a prime idempotent kernel functor on Mod-R and Ter(μ_p) = P.

Let M be an R-module. We will denote the two-sided ideal of R consisting of all elements which annihilate M by Ann(M). Note that if M is σ -torsion free for some idempotent kernel functor σ , then so is R/Ann(M) as we can always embed R/Ann(M) into the direct product of cyclic submodules of M.

PROPOSITION 1.2. Let σ be a prime idempotent kernel functor on **Mod-R.** Then $\text{Ter}(\sigma) = \sum_{I, where } \Phi$ is the family of all two-sided ideals I of R such that I \neq R and R/I is σ -torsion free.

Proof. Let S be a supporting module for σ . Then for each $I \in \Phi$ there is a non-zero R-homomorphism f: $R/I \longrightarrow E$, where E is the injective hull of S. Let $M = f(R/I) \cap S$. Since M is also a supporting module for σ , we have $I \subseteq Ann(M) \subseteq Ter(M) = Ter(\sigma)$. Hence $\sum_{i \in \Phi} I \subseteq Ter(\sigma)$. On the other hand, if $x \in Ter(\sigma)$, then $x \in Ann(M)$ is some large submodule M of S. Since $Ann(M) \in \Phi$, we have

 $x \in \sum_{I \in \Phi} I$. It follows that $Ter(\sigma) = \sum_{I \in \Phi} I$.

A non-zero R-module M is called a *prime* R-module if Ann(M) = = Ann(M') for every non-zero submodule M' of M.

THEOREM 1.3. Let σ be a prime idempotent kernel functor on Mod-R. Then the following are equivalent:

(1) $R/Ter(\sigma)$ is σ -torsion free.

- (2) Every supporting module for σ contains a prime submodule.
- (3) $\sigma = \tau_{M}$ for some prime R-module M.
- (4) $Ter(\sigma) = Ann(U)$ for some prime supporting module U for σ .

Proof. (1) \Rightarrow (2). Let S be a supporting module for σ . Since R/Ter(σ) is σ -torsion free the injective hull of S contains a non-zero homomorphic image of R/Ter(σ), say M. Then M \cap S is a prime submodule of S because for any non-zero R-submodule U of M \cap S we have Ann(U) \subseteq Ter(U) = Ter(σ) \subseteq Ann(M \cap S) \subseteq Ann(U).

(2) \Rightarrow (3) is clear.

 $(3) \Rightarrow (4)$ follows from the fact that M contains a supporting module for σ .

(4) \Rightarrow (1) is clear.

REMARK 1.4. Let σ be a prime idempotent kernel functor on Mod-R. If the conditions of 1.3 hold, then Ter(σ) is a prime ideal.

REMARK 1.5. Let σ be a prime idempotent kernel functor on Mod-R. If R satisfies the maximum condition on two-sided ideals I for which I \neq R and R/I is σ -torsion free, then the conditions of 1.3 hold.

Indeed, let S be a supporting module for σ and U be a non-zero submodule of S such that Ann(U) is a maximal element in the set $\{Ann(M) \mid M \text{ is a non-zero submodule of S}\}$. Then U is a prime submodule of S. Hence condition (2) of 1.3 holds.

The following example, which is essentially due to Fisher ([1],Example 1), shows that there exists a prime idempotent kernel functor whose tertiary ideal is not a prime. Thus the conditions of 1.3 are not always satisfied.

EXAMPLE 1.6. Let $_{F}V$ be a countably infinite dimensional vector space over a field F and let $\{e_{1}, e_{2}, e_{3}, \ldots\}$ be a basis for $_{F}V$. For each $i \in N$, let V_{i} be the subspace of V generated by $\{e_{i}, e_{i+1}, e_{i+2}, \ldots\}$.

Consider the subset H of $\text{Hom}_{F}(V,V)$ consisting of all linear transformations h satisfying the conditions:

- (1) $(V_i)h \subseteq V_i$ for all $i \in N$
- (2) $(V_j)h = 0$ for some $j \in N$

For each $n \in Z$, let λ_n be the linear transformation given by $(e_i)\lambda_n = ne_i$ for all $i \in N$. Also, let t be the linear transformation given by

$$(e_{i})t = \begin{cases} e_{i+1}, & \text{if i is odd} \\ 0, & \text{if i is even} \end{cases}$$

61

for all $i \in N$. Then $R = \{h + t\lambda_n + \lambda_m \mid h \in H, m, n \in Z\}$ is a subring of $\operatorname{Hom}_F(V,V)$. One can show that $\{V_i \mid i \in N\}$ is the family of all non-zero R-submodules of V and then deduce that V is a supporting module for $\sigma = \tau_V$. As we have $(t\lambda_1)R(t\lambda_1) \subseteq H \subseteq \operatorname{Ter}(V) =$ = $\operatorname{Ter}(\sigma)$ and $t\lambda_1 \notin \operatorname{Ter}(V) = \operatorname{Ter}(\sigma)$, $\operatorname{Ter}(\sigma)$ cannot be a prime ideal.

2. SYMMETRIC IDEMPOTENT KERNEL FUNCTORS.

For an idempotent kernel functor σ on Mod-R, let $F(\sigma)$ be the idempotent topologizing filter associated with σ i.e., $F(\sigma)$ is the family of all right ideals K of R such that R/K is σ -torsion.

Following [4], an idempotent kernel functor σ on Mod-R is called *symmetric* if every right ideal in F(σ) contains a two-sided ideal in F(σ). It is shown in [4] that if R is a right noetherian ring, then for every prime ideal P of R there is an associated symmetric idempotent kernel functor σ_{R-P} , defined on Mod-R by

 $\sigma_{\mathbf{p}-\mathbf{p}}(\mathbf{M}) = \{ \mathbf{m} \in \mathbf{M} \mid \mathbf{mRs} = 0 \text{ for some } \mathbf{s} \in \mathbf{R}-\mathbf{P} \}$

PROPOSITION 2.1. Let R be a right noetherian ring and σ a prime idempotent kernel functor with Ter(σ) = P. Then $\sigma_{R-P} \leq \sigma$.

Proof. Since R is right noetherian, conditions of 1.3 hold and so P = Ann(M) for some prime supporting module M for σ . Let $m \in \sigma_{R-P}(M)$. Then mRs = 0 for some $s \in R-P$ If $m \neq 0$, we would have $s \in Ann(mR) = Ann(M) = P$ which is a contradiction. Thus M is σ_{R-P} - torsion free and hence $\sigma_{R-P} \leq \sigma$.

PROPOSITION 2.2. Let R be a right noetherian ring, P a prime ideal of R and σ a symmetric idempotent kernel functor on Mod-R. Then $\sigma \leq \sigma_{R-P}$ if and only if R/P is σ -torsion free.

Proof. Assume that R/P is σ -torsion free. Let $K \in F(\sigma)$. Then there exists a two-sided ideal I of R such that $I \in F(\sigma)$ and $I \subseteq K$. Since R/P is σ -torsion free, I $\not\subseteq$ P and so $I \cap (R-P) \neq \emptyset$ which implies RsR $\subseteq I \subseteq K$ for some $s \in R-P$. If follows that $K \in F(\sigma_{R-P})$. Hence $\sigma \leqslant \sigma_{R-P}$. The converse is clear because R/P is σ_{R-P} -torsion free.

The following result extends Proposition 14 of [4] where much stronger condition is imposed.

THEOREM 2.3. Let R be a right noetherian ring and o a symmetric

prime idempotent kernel functor on Mod-R. Then $\sigma = \sigma_{R-P}$, where $P = Ter(\sigma)$.

Proof. 2.1 implies $\sigma_{R-P} \leq \sigma$ while 2.2 implies $\sigma \leq \sigma_{R-P}$. Let Λ be a family of idempotent kernel functors on Mod-R. For any $M \in Mod-R$, let $\sigma(M) = \bigcap_{\rho \in \Lambda} \rho(M)$. Then σ is also an idempotent kernel functor and we will call it the *infinimum* of Λ and denote it by Inf $\{\rho \mid \rho \in \Lambda\}$. In case $\Lambda = \emptyset$, Inf $\{\rho \mid \rho \in \Lambda\} = \infty$, the idempotent kernel functor for which every R-module is torsion.

If R is a right noetherian ring, then every idempotent kernel functor $\sigma \neq \infty$ has a supporting module. Furthermore, if S is a supporting module for σ then Ter(S) = Ter(τ_{c}) is a prime ideal of R.

THEOREM 2.4. Let R be a right noetherian ring, σ an idempotent kernel functor on Mod-R and π be the family of all Ter(S), where S is a supporting module for σ . Then σ is symmetric if and only if $\sigma = \text{Inf} \{\sigma_{\text{R}-\text{P}} \mid \text{P} \in \pi\}.$

Proof. In case $\sigma = \infty$ there is nothing to prove. Thus we may assume $\sigma \neq \infty$ and so $\pi \neq \emptyset$. Since R is right noetherian R/P is σ -torsion free for each $P \in \pi$.

Assume that σ is symmetric. Then, by 2.2, we have $\sigma \leq \inf \{\sigma_{R-P} \mid P \in \pi\}$. On the other hand, if $K \notin F(\sigma)$, then there is a right ideal L of R such that $K \subseteq L$ and R/L is a supporting module for σ . Let P = Ter(R/L). Then, by (2.1), $\sigma_{R-P} \leq \mu_L$. As $K \notin F(\mu_L)$, K cannot be in $F(\sigma_{R-P})$. It follows that K is not a member of the idempotent topologizing filter associated with Inf $\{\sigma_{R-P} \mid P \in \pi\}$. Hence $\sigma = \inf \{\sigma_{R-P} \mid P \in \pi\}$. The converse is clear.

REMARK 2.5. A different version of 2.4 can be found in ([4], Proposition 10). One can deduce from 2.4 that if R is a right noetherian ring and σ an idempotent kernel functor on Mod-R, then $\sigma = \sigma_{R-P}$ for some prime ideal P of R if and only if σ is symmetric and P is the largest member in the family of all two-sided ideals I of R such that I \neq R and R/I is σ -torsion free.

We conclude this note by presenting an example which shows that for a prime ideal P of a right noetherian ring R, the symmetric idempotent kernel functor $\sigma_{_{\rm R-P}}$ needs not be a prime.

EXAMPLE 2.6. Let F be a field of characteristic zero, and let S be

63

the ring F[y][x], where xy-yx = 1. It is shown in ([3],Example 4.5) that R = F + xS is a right noetherian domain where xS is the only non-zero two-sided ideal and that R/xS and S/R are two non-isomorphic simple R-modules. Since $\sigma_{R-xS} = 0$, it cannot be a prime.

REFERENCES

- J.W. FISCHER, Decomposition Theories for Modules, Trans. Amer. Math. Soc. 10 (1969) 201-220.
- [2] O. GOLDMAN, Rings and Modules of Quotients, J. Algebra 13 (1969) 10-47.
- [3] A.G. HEINICKE, On the Ring of Quotients at a Prime Ideal of a Right Noetherian Ring, Can. J. Math. 24 (1972) 703 - 712.
- [4] D.G. MURDOCH and F. VAN OYSTAEYEN, Noncommutative Localization for Symmetric Kernel Functors, (to appear).

Departamento de Matemáticas Facultad de Ciencias Universidad de Los Andes Mérida, Venezuela.

Recibido en abril de 1974