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NORM LIMITS OF NILPOTENT OPERATORS AND WEIGHTED SPECTRA 

IN NON-SEPARABLE HILBERT SPACES 

Domingo A. Herrero 

In his survey article "Ten Problems in Hilbert Space", P.R.Halmos 
has raised the. following questions: Is every quasinilpotent oper~ 
tor in an infinite dimensional separable Hilbert space the norm 
limit of nilpotent ones? What is the closure (in the norm) of ~he 
set of nilpotent operators in a separable Hilpert space? ([ 111 , 
Problem 7, p.915). The first question has been affirmatively ans
wered independently by C.Apostol and D.Voiculescu ([ 31) and by the 
author ([ 151). The complete characterization of the set of norm 
limits of nilpotent operators in a separable Hilbert space was fi
nally obtained by C.Apostol, C.Foias and D.Voiculescu in [ 21, in 
terms of the different parts of the spectra of the approximable 
operators. 

The purpose of this paper is to give a complete characterization 
of the norm closure of the set of all nilpotent operators in a 
Hilbert space of arbitrary dimension, in terms of the different 
parts of the spectra and the weighted spectra of the approximable 
operators. The literature about this problem contains several ne£ 

essary (and easy to verify!) conditions for an operator to be a 
norm limit of nilpotent ones (see [21 ;[ 121 ;1131 ;[ 1?1 ;[ 201). Theo
rem 1 below says that those conditions are also sUfficient CRough 
ly speaking: The set of norm limits of nilpotents is as large as 
one could expect). 

The first part of. the paper is devoted to an analysis of the 
weighted spectra of an operator A acting on a non-separable 
Hilbert space; it has some interest in itself. This analysis may 
be considered as a continuation of the article [6) by G.Edgar, J. 
Ernest and S.G.Lee. A decomposition of A related to its weighted 
spectra is given. 

The second part is devoted to the proof of the characterization 
theorem (Theorem 1) and several related results on approximation 
of operators. In particular, it follows from these results that 
the first question of Halmos has an affirmative answer in any 
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Hilbert space. 

1. I NTRODUCT ION AND STATEMENT OF THE MA I N RESULT. 

Throughout this paper ~ will denote a non-separable Hilbert space 
of (topological) dimension h. The closed bilateral ideals of the 
algebra L(X) of all (bounded linear) operators acting on X have 
been completely characterized by several authors (see [5] ;[ 7] ; 

[17]): to each cardinal a, ~o ~ a ~ h, there corresponds a unique 
ideal] = (T E L(X): dim (Ran T)- < a}-(the upper bar denotes 

a 
norm closure in both cases) and these are the only non-trivial 
(i. e. ,different: from {O} and L (~)) closed bilateral ideals of 
((~). Clearly, these ideals are well-ordered by inclusion. 

Let n : L(~) -+ L(X)I] denote the canonical projection onto the 
a a 

quotient algebra. The spectrum of weight a, Aa(T) = 

= spectrum [n (T)] in L(X)I] , as well as each of its parts has 
a a 

been analyzed in [6] and we shall use those iesults without fur-
ther quotation. Given T E L(~) and E > 0, there exists a (closed) 
subspace X of~, containing the kernel of T, such that 

E 

nTxn < EnXn for all x E XE' X ~ 0, and nTxn > EnXn for all x 1 ~E' 

Let 6 E(T) = dim XE; then the approximate nullity 6(T) of T is d~ 
fined by 6 (T) = minCE > 0) 6 E(T). ITa(T) = {A:6 (A-T) > a} is the 
approximate point spectrum of T. of weight a.and it coincides 
with the Zeft spectrum of na(T). Let T* be the adjoint of T; then 
A (T*) = {X": A E A (T)} ( = A (T)*) and A (T) = IT (T) U IT (T*)*. a a a a a a 
Hence, to every A E C (the complex plane) we can associate a po-

sitive real number E(A) and a subspace ~A such that: 
(1) n (A-T)xn < dA) nxn for all x E XA and 1\ (A-T)xn ~ dA) IIxn for 
all x 1 XA; (2) dim ~A = 6 (A-T); (3) If 6 (A-T) < h, then d A) is 
the largest possible number such that either (1) or (2) is false 
whenever E(A) is replaced by 2E(A); (4) If 6(A-T) = h then 
E(A) = 1. It readily follows that, if 6(A-T) < a, then E(A) < 
< 1/2 dist [A,Aa(T)]. Finally, E*(A) and~A* are defined by: 
E*(A)[T] = dX")[T*] and ~A*[T] = X5;[T*]. 

If 6 (T) and 6 (T*) are finite, then ind(T) = 6 (T) - 6(T*) is pre
cisely the Fredholm index of T ([ 16]). For arbitrary values of 
the approximate nullities, we shall define ind(T) as follows: 
(1) If 6 (T)" = 6 (T*), then ind(T) = 0; (2) If 6 (T) > 6 (T*), then 
ind(T) = 6(T) - 6(T*) (= 6(T), if 6(T) is an infinite tardinal); 
(3) If 6 (T) < 6 (T*), then ind(T) = -ind(T*). The "extended index" 
ind(T) is not invariant under small (norm) changes and not inva
riant under h-compact perturbations. However, if 6(T) ~ a and 
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6(T*) = P. then 6 (T+K) = a and 6 (T*+K*) = P for all K EJ • prov! 
n 

ded n < min[a.p] (a.p ~ ~ ). o 

The spectrum and the essential spectrum (~o(T)) playa special 
role here. They will be denoted by A(T) and E(T). respectively. 
to simplify the notation. Similarly. we shall denote J~ (compact 

o 
operators) by H(~. 

The main result of this paper is the following 

THEOREM 1. Let ~(X) and A(X) be the subsets of L(X) aonsisting 

of aZZ niZpotent and aZZ aZgeb~aic operators. respectiveZy. 
Then: (i) T E A(X)- if and onZy if for every ~ in C. ind(~-T)=O. 

(ii) T E ~(~- if and onZy if T E A(X) and A(T) and Aa(T). 
~o < a < h. are connected sets oontaining the origin. 

2. THE ANALYSIS AND THE STRUCTURE OF THE WEIGHTED SPECTRA. THE 
DECOMPOSITION THEOREM. 

OUr first result shows that the family of weighted spectra of a 
given operator cannot be "too arbitrary". 

THEO~EM 2. With the above notation. Zet T E L(X) and Zet A(T). 
Aa(T). ~o < a < h. be the speotrum and the weighted speatra of T. 
Then: (i) {Aa(T): ~o <a < h} is a weZZ-ordered (by incZusion) 
deareasing family of compaot subsets of A(T) with a Zast member 

~(T) , 0 (the heavy speotrum of T). 
(ii) There are onZy countabZy many different weighted spea-

tra. 

(iii) Let F = {A =A(T). Al=A (T) •..•• A (T)=A (T) •.•. } be o a l w a w 
the famiZy of aZZ different spectra of T weZZ-ordered by inoZusion. 

If \I is a limit ordinaZ (We shaZ'L neoessarily have \I < y < n. 
where Ay = ~(T) and n is the first uncountabZe ordinaZ). then 

All = n {Av: v < \I}. 

(iv) Given Av E F. there exists a unique oardinaZ Pv suoh 

that AD (T) = A and A (T) is striatZy oontained in A for every 
.. va· v v . 

a > Pv ' 

Proof. (i) and (ii) follow immediately from the fact that the ca!, 
dinals .re well-ordered and the definition of A (T). The details . a 
are left to the reader. 
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(Hi)~, Let llbe a limit ordinal corre'spondingto the segment of the 

ordinals in the index set of F. For each ~< 1l.~leta~ b~~ cardi-

nalsuch thatAa (T),= Av an,d define ~Jil7SUP (~,<\l) a. X IX,,' 
v ' v V<ll 

CLAIM: n . A = A = A (T) 
.V<ll v II all '. , ., . 

In fact, we clearly have A (T) C n A . Assume that}.. belongs to 
all V<ll v 

the latter intersect~on;this means that,fqr every 'V<1l1 either 

6 (}.. -T) ;> a v ' or 6 (5.: -T*) ;> a v ' Since all = sup (v < ll) (Xv' it read

ily {ollowsthat either 6(>.. -T) ;> all' or 6(5.: -T*) ~(Xll ' and' there

fore}.. E Aa (T) = Ax' . for some Ax E F. On the other hand, since 
II 

An A", a~d F is well-ordered by inclusion, it is obvious 
X V<ll v 

that X = ll. 

(iv) Let J v = {a: Aa (T) = Av} and let (3v = sup {a E J v } = 

= L {a E J v }. Obviously, AS (T) en {Aa(T): a E J v } = Av. Thein 
v 

verse inclusion follows exactly as in (iii). 

The cardinals all of the proof of (iii) are Ho-irreguZ~r (as defi

ned in [ 71) because F is countable. This is not necessarily the 

cas! of th~ ~~'~ of (~v) .. 

It is convenient to observe that the same results hold for the 

family of all approximate point spectra of T, considered as sub

sets 'of the appr6xinlate point spectrlim. II (T). In fact , the p~o'~\f . 

of 'the a:nald'guesofCir ind _Cii) fOllows by using ex~ct1y ,the sa

me arguments ;th'e proof of the analogues of (iii) arid (iv) is 

even'easter, s'irice'we only have to consider 6 (}..-T). The d~tai1s 
are left to the reader. 

Our next step will be the proof of the decomposition theorem. 

ToXhis .end, we. shall need some auxiliary results. 

LEMMA 1. Let {T n }ri=l'" be a denumerabZe famiZy of operators in 

L (Je). Thenthep.e exist:s a separabZe (dosed) subspace Jeo of Je 

such th~t Jeo reduces aZZ the operators Tn and A(Tn1JeoJ = A(Tn) , 

A(T lJe )C E (T ) ,Jor aZ Z n, where T 1M denotes the restriction n':,o .,,' ,n 
of the operator T to the subspace M. 

Proof. Let {}.. } 1'" be a sequence with values in ACT) and nm m= n 
having A(T ) as its cluster set. Since A(T ) = neT ) u neT *)*, n n n n 
for· every pair (n,m) there exists a sequence {xk (n;m}}k=r'" of 

unitary vectors such that lim(k+"'l min {II (}..nm~Tn)xk(n,m)ll, 

H(r -T *)xk(n,m)H} = O. nm n ' 
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Each of the sets A(T )\E(T ) consists of countably many components 
n n 

which are bounded open subsets of C. Let{~nk} be a subset of 
A(Tn)\E(Tn) having exactly one point in common with every compo
nent. It is well known (see [ 16)) that for every positive j. 
ker(~nk-Tn)j and ker(~nk-T*) are finite dimensional subspaces. 
Define Xo to be the minimal subspace of X containing all the vec
tors xk(n.m~ (n,m.k=1.2 •.•. ) and all the subspaces ker(~nk-Tn)j. 
kerC~nk-T*)J (n.k.j=1.2 •••• ) which reduces every Tn' A straight
forwarq verification shows that Xo has all the desired properties. 

COROLLARY 1. Let T E L(X). dim X = h > ~o and assume that A(T) = 
= Ah (T). Then 1: .. k~r Tk , whe:roe t(r) = h, Tk aats on a eepa:roabz.e 

infinite dimensional. 8ubspaae Xk :roeduaing T and A(Tk) = E(Tk) = 
= A(T) fo:ro az.z. k E r. Fu:rothe:romo:roe. the :roesuz.t :roemains vaz.id if 
the ope:roato:ro T is :roepl.aaed by a denume:roabl.e famil.y in L(X). 

P:rooof. The proof will be given for the case of a single operator. 
The general case follows by a formal modification of the same ar
guments. 

It is immediate that E(T) = A(T) = AhCT). By Lemma 1, the family 
tR of all separable reducing subspaces Xo such that A(T IXo) = A(T) 
is \1onempty. Let {Xj '} be a maximal orthogonal family of sub
spaces in tR and let K' = .er,K.', T' = TIK' = .er,T.' and 

J e: J J e: J 

T" = T I (K,)l; then A(T. ') = A(T') " A(T) and A(T") C A(T) . 
J 

Suppose that A(T") = A(T); then Lemma 1 can be used to obtain a 
new separable reducing subspace K 1 X', such that A(TIK ) = A(T), o 0 

contradicting the maximali ty of the family {K.'}. Hence, A(T") 
J 

is a proper subset of A(T). 

Let A E A(T)\ A(T"). Since A E Ah (T), either 6 (A -T) = h or 
000 

Il(A -T*) = h. On the other hand, CA -Til) is invertible and there-
o 0, 

fore there exists an n > 0 such that mini II (A -T)xll, II eA -T*)xll} ;;;. o 0 

;;;. nllxll for all xl K'. Let 0 < e: < n/2 and assume that Il(Ao-T)=h. 
Then there exists a subspace K of dimension h such that e: 
II (A -T)~II < e:llxll for all x E K , x~o, and II (A -T)xll ;;;. e:llxll for 

o e: 0.L 
all xl K . It is completely apparent that K n (K') = {OJ, e: e: 
therefore K must be a subspace of K', whence we conclude that e: 
6(A -T') =.h. Hence, A E nh(T'). The case when 6(A -T*) = h can 
0' 0 0 

be similarly analyzed in order to obtain that 6(Ao-T'*) = hand 
'therefore Ao E nh (T' *)*. 

Since A E A(T. ') and therefore 6 (A -T.') > 0 or 6 (X -T.' *) > 0 
o J 0 J 0 J 

(for each j), it follows that either Il(A -T. ') > 0 for h different 
o J 
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indices j or 6(A -T. '*) > 0 for h different indices j. We conclude 
. 0 J 

that T' = j~r' Tj " where i(r') = h. Moreover, since h > ~o' we 
can write r' as a union of pairwise disjoint denumerable subsets: 
r' = k~r J k . Let Bk = e{Tj':j E J k}. It is immediate that A(Bk) = 

• E(Bk) = A(T) for all k E r. 
Let T" = l~r" Tl" be any decomposition of T" corresponding to an 

orthogonal direct sum ~, l~r" '3Cl " into separable reducing sub-

spaces. Clearly, i(r") <; h and therefore there exists an injective 
map 'P: r" -- r. Define Tk = Bk , if k E r\'P(r"), and Tk = BkeTl", 
if k = 'P(l) for some l in r". 
It readily follows that T 
= ~(T), for all k E r. 
With minor modifications of the same proof, we can obtain the fo1-
lowing results 

COROLLARY 2. Let T E L('3C), dim '3C = h > ~o and assume that ACT) 

= nhCT) (ACT) = fihCT*)*; ACT) = fihCT) = nhCT*)*). Then T k~r Tk , 
where t(r) = h, Tk acts on a separabZe reducing subspace and 

A(T k) = ECT k) n (Tk) = n~ (T k) = ACT) C ACTk) = E(T k) = n (Tk *) * 
o 

n~ (T k*)* 
o 

A(T); A(T k) = E(T k) = nCT k) = n(T k*)* = fi~ (T k) = 
o 

ACT), respectiveZy.). Furthermore, the same resuZts nK (T k*)* 
o 

remain vaZid if the operator T is repZaced by a denumerabZe fami 

Zyin L ('3C) • 

LEMMA 2. Let T E L('3C) and Zet Av = ASv (T), Av+1 = ASV+1 (T) E F, 

where F, Pv ' Pv+1 have the meaning of Theorem 2. Then there exists 

a reducing subspace '3C of dimension P such that, if T = B $C , v 1 v v v 
B = T! '3C and C = T! (X) , then A(C ) = A 1 = AQ (C) , v v v v v v+ p v 
ACBv) = A(T) and ASv (Bv) = Av' v+1 

Proof. Let}.. E A \A +1' then 6 (}..-T) ..; P , 6 (1\-T*) ..; P and at v v v v 
least one of these two cardinals must be equaZ to Pv ' Hence, if 
e:(}..}, '3C)., e:*(}..) and'3C).* are defined as in the Introduction, then 
dim['3C).+'3C). *]- = Pv ' 

Let D(}..) = {z:!z-}..! <min[e:(}..),e:*(}..)]}; 
}.. E A"\A +1} and this covering admits a 

'" v v 

then Av\Av+1 C U{D(}..): 
denumerable subcovering 

m~1 D(}..m)· Define '3Cv ' to be the minimal reducing subspace of T 

containing {'3C). +'3C). *}m=1"'. It is clear from the above construc-
m m 
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tion that dim Xv' = Pv ' 

Let x 1 Xv I and let X E A....' Av+1' Assume that A E D (Am); then it 
is easy to see that II (A-T)xll ;;. II (A -T)xll - IA-A 1.lIxll ;;. n CAl .lIxll m m 
and, similarly, II (r-T*)xll ;;. neAl . II xII , for somen(A) > 0, whence 
we conclude that A ~ A(C 'l, where C I = TI (X I)l.It is completely v v v 
apparent that Ao (C ') = Ao (C ') A +1' On the other hand, if 

~v v ~v+l v v 
B I = T I X I, then A(B ') ::> Ao (B ') ::> A \ A +1' v v v ~ v v v v 

By considering the complex numbers A E A(T)\Av and by a formal 
repeti tion of the above arguments, we can find a second subspace 
Xv" c (Xv,)l such that dim Xv" E;;; Pv and the decomposition 
T = B "EilC II with respect to the orthogonal direct sum 

v v 1 
X = (X 'EIlX ")EIl (X 'EIlX ") satisfies the properties: A(B ") ::> v v v v v 
::> A(T)\A A(C ") = A (C ") = A • v+l' v 8v+1 v v+l 

Now, by an easy adaptation of the arguments of the proof of Corol 
lary 1, it is not difficult to see that CV" can be written as 

CV" = k~r CVk"' where ¢Cr ) = h, Cvk" acts on a separable reducing 

subspace for every k E rand A(C vk") = Av+l for exactly (J v+1 

different indices k. Let rv be a subset of r such that ¢(rv) = Pv 
and A(C ") = A for all k E r ; let X k be the separable redu-vk v+l v v 
cing subspace on which C II acts and define B = B IIEIl[ Ell C II] E vk v v ker v vk 

E LeX), where Xv = Xv II Ell [ k~r v Xvk] , and Cv CV" I k~ (r\ r....> Cvk"' 

It readily follows that the decomposition T = BvEllCv' X " XvEll (X).\. 
satisfies all our requirements. 

Now we are in a position to prove the main result of this section. 

THEOREM 3. Let T E L(X) and let F be the well-ordered decreasing 

family of all different spectra of T. Then X admits a decomposi 

tion X = Ell X into pairwise orthogonal reducing subspaces of Osvsy v 

t with respect to whioh T = Ell T and the following properties 
OSVSY v 

are satisfied: 

(i) Unless PI > ~ and A = AI' X is a separable infinite dimen 
o 0 0 1 -

sional subspace such that ACT) = A(T) and A(TIX) AI' If o 0 

iJ l > ~o and Ao A!, then Xo = {a} and To = O. 

(ii) If lJ > 0 is not a limit ordinal. then dim X 
Ao (T ) = Ao (0 Ell T) = A and A(TI[ 0 Ell X ]1) 

~lJ lJ ~lJ SVSlJ v v SVSlJ v 

A8 (TI[o <~<lJ X )1) A"+I0 
lJ+l - - .. 

P , A(T ) '" 
lJ ·lJ 
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(iii) If ~ is a Limit ordinaL and P = sup(" < ~) P , then K {a} 
~ ,,~ 

and T = O. If P > sup(" <~) P , then dim K = P and A(T ) 
~ ~ " ~ ~ ~ 

= AQ (T ) = A . In either ease, Ao (0 e T) A and 
~~ . ~ ~ P u $"$~" ~ 

A(T I [ o~~~~K) J.) = Ae~+l (T I [ o~~'.'!~K) 1) = \+1' 

(iv) If " > 0 and Ty ~ 0, then T" k~r" T"k' where t(r,,) = P" 
and T"k is an operator on a separabLe infinite dimensionaL redu

aing subspaae suah that ACT "k) = E (T vk) = A" for aU k E r". MoX'e£ 
ver, the anaLogue r-esuZts are aZso true if A(T"k), E(T"k) and A" 
are repZaawd by n(T"k)' nH (T"k) a~d ne (T) (or by n(T"k*)*' 

o " nH (T vk*)* and ~e (T*)*) respeativeLy. In partiauLar, 
o v 

(v) If. ,in addition. it is assumed that ind(X-T) = 0 for an aom

pLex x, then A(To) = n(To) • n(To*)* and A(T"k) = n(T"k) 
= n(T"k*)* for aZ& v and k as in (iv). 

(vi) Th~ representation is not unique, unLess eithe~ K is separ

abZe or A(T) = ~n(T). 

Proof. PreZiminary deaomposition. If Ao ~ Al = E(T) = Ae (T), then 
1 

we can use Lemma 1 to obtain a reducing subspace K ' such that, if 
T ' = TIK' and C ' "'.TI(K ,)1, then A(T ') = A(T)oand A(C ') c o 0 o· 0 0 0 

c A,. Moreover, if PI> H , then we set K = K ',T = T ',C = 
• 000 000 

= C ' and it follows that ACC ) • AQ (C ) = AI; then we continue o 0 p 0 
our analysis with C • 1 

o 

If PI .. Ho ' then we can use Lemma 2 to obtain a (possibly larger) 
separable reducing subspace Kl ~ Ko' such that if Tl = TIKI' ther 
ACT 1) .. Ao ' E(T l ) = Al and ACC 1) = A~ (C I ) = A2 , where C1 = TIKl . 

2 
In this case we set K .. {O}, T = 0 and continue our analysis o 0 

wi th C1. 

Finally, if Ao = AI (- A(T) = E(T) = Ae 1 {T» and PI > Ho' then we 

use Lemma 2 to obtain a decomposition K = K1eKl l with respect to 
which T = Tlecl, ACT l ) = E(T l ) = Ae (T l ) = AI' A(C l ) = Ae (C l ) = 

1 2 
= A2 and (as above) we define Ko = {O}, To = 0 and continue our 
analysis with Ct , 

Now we proceed by transfinite induction. Assume that T ,K have 
" " been defined for every" < ~ ~ y so that the properties (i), (ii) 

and (ii'i'):If" is a 'limit ordinaZ. then either T". K" satisfy 
(iii) Or P" = sup(a < ,,) Pa, A(TI[ a~v KarL) is striatZyZarger 

than A,,+l' dim K" P", a~'v Aa = A" ~ A(T) = Ae" (T) ~ A,,+1 and 
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A(TI[e~_v JCa]l) "A" (TI[e~ JCe]l) "A +1' hold fol' these indiaes. 
~v+l v v 

(a) If 0: "sup(v < 1l) (3 < fJ , then dim! $ JC] "0: < fJ and the II v 111 V<II \' II II 
restriction C ' " Til e JC] satisfies A(C') " A" (C') = A , so II V<II v II ~ II II 
we can apply Lemma 2 to obtain a decomposition [ ell JC ]1 = JC eJC ' V<II v II II 
such that dim JC P, the restriction T "c'IJC has the proper-II II II II II 
ties ACT) " Aa (T) A and the restriction C C 'IJC I has 

II II II II II II II 
the properties A(C) Aa (C) = A +1' This case includes, in 

II "11+1 II II 
particular, the one where II = v+1 for some ordinal v. 

(b) If 0:= P , then II is necessarily a limit ordinal and P is 
II II 1 II 

an ~o-irregular cardinal. Let All' = All (TI[v~1I JCvl ); it is imme
II 

aiate that A +1 C A ' c A and very simple examples show that both II II II 
inclusions could be proper. If A ' = A +1' we simply set JC = {a} 

II II 111 
and T = 0 and continue our analysis with C = TI! $< JC 1 ) and II II v II v 
II +1 (Roughly speaking, we "forget" II). If AII +1 is a proper subset 
of A " then we proceed as in (a) in order to obtain a decompo-

II " 
sition of the usual type (via Lemma 2), which defines T and JC , II II 
such that dim JC = P , A(T) Aa (T ) = A ' and A(C ) = 

II II II II II II II 
= AD (C) = ~'+1' where C" TI! e JC]l. "11+1 II.. .. VSII v 

Now Tv and JCv can be defined for all v, 0 .;;; v .;;; y, and it is 
clear from the above construction that the properties (i), (ii) 
and (iii') are fulfilled. 

Final deaomposition. Let T os~sy Tv' 
position obtained in the first part of 
is a limit ordinal such thatT and JC II II 

JC = e JC be the decom Osvsy v 
the proof. Assume that II 
satisfy (iii'), but not 

(iii). Then P = dim JC is ~ -irregular, so we can write 
00 II ].! 0 

P = I P (II) for a sui table increasing sequence of cardinals 
II n=1 Vn 

{P v (1I)}n:l corresponding to a decreasing sequence of different 
n 00 

spectra {A (II)} such that A " n1 A (II). By replacing, if 
"vn II n= vn 
necessary, vn by vn + 1 we can directly assume that NONE OF THE 
vn's IS A LIMIT ORDINAL. Moreover, according to this decomposi
tion of P we can also write JC as a denumerable orthogonal di-

II II 
rect sum JCII n~1 JClln , where dim JClln = PVn (II). 

We sha,ll say that a \.I in the above conditions is "irregular". 

Let II be an irregular ordinal and let JC = e 1 JC be as above. II n= lin 
Without loss of generality, we can assume that JC reduces T lin ].! 

for every ~=1,2, .•.• Let T = e T be the corresponding decom II n lin 
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separable (then the Theorem is trivial) or ~(T) = A(T) (then the 
family F is trivial!), this Corollary can be used to change the 
defini tion on a large family of separable reducing subspaces. 
The proof is complete now. 

We shall give two examples to illustrate the need of a redefined 
decomposition in the case when F is "large". 

EXAMPLE 1. Let En be the ellipse of vertices 
Nn be the normal operator "multiplication by 
dlzl) (dlzl denotes the "arc length" measure 

00 

{±(1+1/n);±i/n}; let 
zIt acting on L2(E , 

n 
on En) and let 

A = n~l (Nn0 In) '. where In is the identity map on a Hilbert space 

IR of dimension l':n' acting in the obvious way on 'JC = :1 (L2( ,~IR ). n n= n; n 

(Since L2 (n) is separable, it is clear that dim(L 2 (n)0IRn) = l':n)' 

It is easy to see that: (1) h = dim'JC = l':w = s~p l':n; (2) Ao 

= A = A .. (A) = A .. (A) = {U E} - = {U E} U [-1 +1]' (3) For 1 -~ -~ n=l n n=l n ,. 
a 1 <Xl co 

every m> 1, Am = ~ (A) = {n~m En}-; (4) Aw(A) = nQ1 An = ~(A)= 
m 

= [-1,1]; (5) Let A = f},. dE(},.) be the spectral decomposition of 
A; then E([ -1,1]) = 0; (6) In the notation of Theorem 3, 'JCo = {O}, 

'JCm n~m L2 (n)0IRn (m), where IRn(m) is a subspace of dimension l':m 
n 

of IRn' and IRn m~l IRn(m); therefore, Aw' = QJ!. 

EXAMPLE 2. Let A and 'JC be as above and define B E L(~'JC) by 

B(x.y) = (Ax,Cy), where C is a normal operator such that A(e) 
= Ah(C) = [0,1]. Then B has the properties (1) - (4) of Example 
1, and (5') If B = ! },. dF(},.) is the spectral decomposition of B, 
then F ([ -1 ,11) = F ( 0,11) is an orthogonal proj ection of rank 
and co rank h; (6') 'JC j 'JC can be chosen as in (6) or 'JC can be 

o m 00 m, 
replaced by 'JCm' = 'JCm $'JCm", where {'JCm"} m= 1 is a sui tably chosen f a-
mily of subspaces of 'JC such that dim 'JCm" = l':m (m= 1 ,2 •... ) and 

'JC = m~ 1 'JC'~ • In the fi rs t cas e we have Aw' = [0,1] (properly contained 
in ~(B)) and the decomposition must be modified. In the second 
one we have the desired kind of decomposition. 

REMARK. Theorem 3 remains true if the single operator A is repla

ced by a denumerable family of operators. 

The next corollary affirmatively answers a question raised in [6] 

for the case of an l':o-regular cardinal. 

COROLLARY 3. Let A E L('JC) and Zet l':o ~ a ~ h. Then: 
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position of T . Now we are going to modify the preliminary decom-\I 
position to obtain the final one. Recall that there are only cou~ 
tably many different spectra of T and, a fortiori, there are only 

aountably many irregular ordinals. Furthermore, each irregular 
ordinal is associated with a denumerable family of subspaaes. 

Hence, the family of all subspaces {~ :\1 is irregular; n=1,2, ... } 
lin 

is countable. 

The final decomposition is then defined as follows: 
T = e L ~ = e M L E L (M ) 

Osv~y v O~vSy v' v v 
where M = ~ e[e{~ : P (\I) = v}], whenever v is a non-irregular v v \In vn 
ordinal for th~ first decomposition, and Mv = {O} if v is an irre 
gular ordinal, and Lv T e[e{T : i3 (\I) v}], if v is not irre 

v \In vn 
gular, and Lv = 0, if v is irregular. 

It is straightforward to check that the final decomposition has 
the properties (i), (ii) and (iii). 

The first part of (iv) follows by applying Corollary 1 to Lv ac
ting on Mv ' for v > 0, v a regular ordinal. The remaining state
ments of (iv) can be proved by proved by using Corollary 2. We 
shall give here the proof for the case considered in (v) and the 
other cases are left to the reader. Assume that ind(X-T) = 0 for 
all complex X. It readily follows that indeX-Lv) = 0 for all 
X e Av+1 ' If X E Av\Av+l' then ind(X-Lv+l) = 0 and, by Corollary 

2, Lv+l = k~r L(v+l)k' where X e n(L(v+l)k) n n(L*(v+l)k)* 
v+l 

= ITM (L(V+l)k) n n~ (L(V+l)k*)* for all k E r v+1 ' and ¢(rv+1) = 
o 0 

= i3 v+1 > Pv ' Thus, we can separate a subset of cardinal i3 v of 

the index set r v+1 and use the corresponding L(v+l)k's to re

define Lv so that ind(~-L) .. 0 .for all X E Av+2 ' By a double 

process of transfinite induction we 
position of T so that ind(X-L ) = 0 v 

can redefine the final decom
for all complex X and for 

all v, 0 < v < y. (As in the re-4efinition of the preliminary 
decomposition to obtain the final decomposition, there are only 
countably many subspaces of dimension not greater than i3 v which 
contribute to the modification of ~ ; dim ~ = i3 ~ ~ unless v v v 0 

v = 0 or v an irregular ordinal and ~v .. {OJ, but in these cases 
the original and the modified ~ are both equal to {OJ, because 

v 
it is trivially true that ind(X-L ) = 0 for all complex X in 

v 
these cases ). 

Finally, (vi) follows immediately from Corollary 1: unless ~ is 

'. ' 
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(i) If a is I'll -regul.ar. there ea:ists K eJ such that A(A+K) .. o a 
.. Aa (A). 

(ii) If a is No-irregul.ar. given t > 0 there ea:ists Kt e J a such 

that A(A+Kt ) C (Aa (A)) t' where (Aa (A)) e: = {).: distl). ,Aa (A)] C;;; e:} . 

(iii) In either case. Aa(A) = n {A(A+K):K e J a }. 

Proof. (i) Let A = O'~'Y Av be the .decompo.sition of A given by 
Theorem 3 and define K = [e{Av:~v < a}]eo. Clearly, K e J a because 
Rank K < sup (~ < a) < a and A(A+K) A A (A), where p is the v p a· 
smaller index such that a C;;; I1p • 

(ii) In the case when a is No-irregular but sup(P v < a) < a, we 
still can find aK e J a such that A(A+K) = Aa(A). 

Assume that sup ~ v < a) = a :. P p' Then Theorem 3 shows that 
Aa (A) = n {Av: v <p}. Since {Av} is a decreas ing family of compact 
sets, it follows that Av C (Aa(A))e: for .all v;;;;. v(e:). Defining 
K = [e{A :v < v(e:)}]eo, it follows as in (i) that A(A+K) 
tV. e: 

'" Av(e:) C (Aa(A))e:' 

(jii) This is an immediate consequence of (i) and (ii). 

In ([6] ,Theorem 4.6) it is claimed that the result of Corollary 
3(i) remains true for ~ -irregular, provided A is a normal. opera-

. 0 

tor; however, our Examples 1 and 2 seem to contradict the proof 
given there. Anyway, the result is actually true. In fact, we 
have: 

~OROLLARY 4. Let A be a normal. operator on a Hilbert spaoe of 

infinite dimension h. Let a be a oardinal. ~o ~ a ~ h. Then there 

ea:ists a normal. operator K e la suoh that K oommutes with A and 
A(A+K) 

Proof. Let A = J )'dE().} be the spectral decomposition of A. If 

IX is not equal to the supremum of the cardinals Pv such that 
pv < a, then the answer is given by Corollary 3. On the other 
hand, if a=p is the supremum of those cardinals, then A (A) = 

p . a 
:. n {Av:v < pl. Hence, if n is a Borel set such that 
A (A) n n- = 0, then E(n) is an orthogonal projection of rank 

a 
strictly smaller thana and therefore E(n) e la' 

Let A = Aa tgA I 'EBA2 " where Aa = d A (A»). dE ().)] IE (Aa (A)), 

AI' = [fo). dE().)]IE(n) and n = [C\ Aa(A)] n {).:I).I ~ IIAII}. 
a> 

Decompose 0 as a denumerable union n~l An of pairwise disjoint 

Borel sets such that Aa(A) n An 0, diameter (An) -- 0 and 
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dist[~ ,~ ] -+ 0, as n ~ ~, for a suitable sequence {~n} with v~ 
n n 

lues in Aa(A) (The construction of {~n} and {~n} follows by stan-
dard arguments). 

Define B = Aa$[ n;l ~nE(~n)] . Then A(B) Aa (B) = Aa (A) and K = 

A-B = 0 $[ e J (~-~) dE0)] belongs to la' It is clear that n=l ~ n 
n 

A commutes with K. 

3. CONSEQUENCES OF THE DECOMPOSITION THEOREM. 

Theorem 3 is a very useful tool to obtain non-separable versions 
of well-known separable results. Namely, we can obtain the follo
wing extension of a result due to C.Pearcy and N.Salinas. 

COROLLARY 5. Let T E L(~) be a hyponormaZ operator and let 

N E L(~) be any normaZ operator suah that A(N) = E(N) and Aa(N) C 

C ITa(T) for aZZ a, Ho < a < h. Then, given e > 0, there exists 

an operator K. II KII < e:, 8uch that T+K "" T$N (the symboZ "" means 
that the two operators are unitariZy equivaZent). Moreover, if h 

is Ho-irreguZar, then K can be ahosen to be an h-HiZbert-Sahmidt 

operator as defined in [6]. 

Proof. According to Theorem 3, T can be written as T 

Tv = 0 if v is irregular and 

separable reducing subspace; 

= rr~ (T vk ) = ITS (T), for all 
o v 

Applying the separable theorem ([ 18] , 

v and for all k in r , we can find an 
v 

Kv = k~r Kvk ' where Kvk is a compact 
v 

Theorem 1) to Tvk for all 
operator K E L(~), K = (IlvKv' 
operator. of norm smaller 

than e:/2, such that T+K = ev[ek(Tvk+Kvk)] "" $v[ek(Tvk(llNvk)] and 

the Nvk's are normal operators such that e k Nvk = 
is the given operator N. Since IIKII < e/2 < e, the 
first s·tatement is complete. 

Nand e N v v v 
proof of the 

Now consider the case when h is H -irregular. Let {e } be a fa-o v 
mily of positive numbers such that L e· < e/2, where the sum v v 
is extended over all v < y. For these values of v, instead of 

II Kvkll < e/2 we require the inequality II Kvkll < ev for all k E rv' 
Thus we obtain 11K II < e for all v < y, and it readily follows 

v v 
that e K is an h-Hilbert-Schmidt operator of norm smaller 

v<y v 
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than £/2. If y is an irregular ordinal (in the sense of the proof 
of Theorem 3), then ~ = e ~ and the result is immediate. If y v<y v 

is not irregular. then Iv<y ~v < ~y = h and ~ can be written as 

~ = ~ e~ '. where dim ~ , < h. By using that h is H -irregular. y y y 0 .. 

it is not difficult to obtain a decomposition ~ e 1 ~ into 
y n= n 

reducing subspaces ~n' dim ~n = an < h. such that In:l an = h. 

A(TI~ ) = A (TI~) = A and n(TI~ ) = n (TI~) = nh(T). for all nan y nan. 
n n ( +1) 

n=1,2 •..•. Now define K E L(~) such that HK H < £/2 n • n.n . n 
n=1.2 •...• and T +(e K) ... T eN. Then. if K = (e K )e(e K). y n n y y v<y v n n 

~t is easy to see that K is actually an h-Hilbert-Schmidt opera
tor of norm less than £ and T+K ... TeN. 

Our next result extends F.Wolf's theorem (see [4];[18];[24]). 

THEOREM 4. If h is "o-irregular and T E L(~ is not left inver

tible modulo lh' then given £ > 0 there exists an h-Hilber~

Sahmidt operator K of norm less than £ suah that dim ker(T+K)=h. 

On the other hand, if h is "o-regular, then there exists a non

negative hermitian operator H E L(~) suah that A(H) = ~(H) = 
= [0.1] • but dim ker(H+K) < h for any K E J h (a fortiori, for 

any h-Hilbert-Sahmidt operator K). 

Proof. Assume that h is "o-irregular and let T = VH be the polar 
decomposi tion of T. According to ([6]. Theorem 5.6) and its proof. 
there exists H' E L(~). H' ~ 0 such that H'-H is an h-Hilbert
Schmidt operator of norm smaller than £ and dim ker H' = h. Then 
the operator K V(H'-H) satisfies our requirements. 

Conversely. if h is "o-regular and H ... e{qI:q is rational and 
o < q < n. then A(H) = ~(H) = [0.11. but dim ker(H+K) < h 
for any K E J h (see Example in [6]). 

the following corollary is the non-separable version of ([ 1] • 
Theorem 2.2) and it can be proved by following the same arguments 
and by using Theorem 4 instead of Wolf's theorem. The proof is 
left to the reader. 

COROLLARY 6. If h is "o-irregular and T E L(~), given £ > 0 
there exists an h-Hilbert-Sahmidt operator K£ of norm less than 

£ and a subspaae ~ of dimension h suah that (T-K)~ c ~~. 
£ . £ £ ~ 

T = (T-K ) I~ is normal and A(T ) = A (T ) = nh(T). £ £ £ £ -n £ 
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The next step will be a non-separable version of Propositions 3.2 
and 3.3 of [23] (Corollary 7. below) about bi-quasitriangular op~ 
rators. QuasitrianguZar and bi-quasitrianguZar operators are de
fined in ([ 1] ;[ 10]). According to the celebrated characterization 
of quasitriangulari ty given in [ 1]. an operator A is bi-quasi trh.!l 
gular if and only if indeX-A) = 0 for. all complex X. 

We shall need the following elementary result. 

LEMMA 3. Let {Av} be an arbitrary famiZy of nonempty oompaot sub

sets of the oompZe~ pZane. oontained in a fi~ed oompaot Ao' and 
Zet e:> 0 be given. Then there e~ista a finite famiZy 

~Gl.G2, ..• ,Gm}·of open sets suoh that Av C Gj C eAv)e: for at 
Zeast one vaZue of j depending on v. 

Proof. Let {Dn} n-l N be a finite covering of Ao by open discs ·of 
radii e:/2. Then to each A we associate the open set 

v 
Gv U{Dn: Dn n,Av {: {II}. Clearly, the family {G v} cannot have more 

than 2N-l different elements, whence the result follows. 

The following result was conj ectured by the author in [15] • The 
proof follows eas ily from [ 23] • 

THEOREM 5. Let A E L(~) be a bi-quasitrianguZar operator aoting 

on the separabZe infinite dimensionaZ HiZbert spaoe ~ and Zet 
e: > 0 be given. Then there e~ists A' E L(~) suoh that A-A' is a 

oom.paot operator of norm smaZZer than e: suoh that for a suitabZe 
orthogonaZ direot sum deoomposition ~ = ~le~2 into t~o infinite 

dimensionaZ 8ubspaoes. A' = [~ i], ~here N is normaZ. B is bi

quasitrianguZar and A(N) = E(N) = E(B) = E(A). Furthermore. there 

aZso e~ists a bi-quasi,(;rianguZar operator A" = [~ ~,] suoh that 

IIB-B'II < e:, E(B') C E(A) and ~l admits an aZgebraio oompZement 

dil ' invariant under A" suoh that. ~ith respeot to the aZgebraio 
(not neoessariZy orthogonaZ) direot sum ~ = ~l .j. di1 ', A" = N .;. B'II 

~ith B" simiZar to B'. 

Proof. According to ([23] ,Proposition 3.2), there exists a compact 
operator K E L(~) of norm smaller than e: and an orthogonal direct 

sum decomposition di M di. into eight infinite dimensional sub-
j=l J 

spaces with respect to which A+K can be written as the upper 
triangular operator mat'rix 
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N1 0 

0 D1 

N2 0 * 
0 D2 

A' A+K N3 0 (I) 

0 0 D3 

N4 0 

0 D4 

where Nk is a normal operator and Dk is' a block-diagonal operator 
such that E(Dk) C E(Nk) = E(T), k=1,2,3,4. (The * denotes unspe
cified entries; see ([23] ,Proposition 3.2) for the proof and de
finition of block-diagonal operators). Block-diagonal operators 
are particular cases of bi-quasitriangular operators. It is clear 
that, with respect to the orthogonal direct sum ~ = ~1.[j!2 ~j]' 

A' = [:1 ~], where B is bi-quasitriangular and E(B) = E(N1) = E(T). 

This proves the first statement. 

Since B is bi-quasitriangular, it follows from ([ 23] ,Proposition 
3.3) that B is a norm limit of algebraic operators. Hence, there 

8 
exists an algebraic operator B' E L(~2') (where ~2' j~2 ~j) 

such that IB-B'U < &/3; moreover, B' can be chosen so that E(B')C 
C E(B}. Since A(B') is finite. we can use the spectral decomposi
tion of N1 to obtain a normal operator Ml such that UN1-M11 < 
<&/3 and A(M1) = E(M1) is a finite set disjoint from A(B'). 
Then, by Riesz' decomposition theorem. ([ 19], Chapter XI), the op~ 

rator L' [H1 C] admits two complementary invariant subspaces 
o B' 

~l and 
~ = ~1 
to. B'. 

~l' such that, with respect to the algebraic direct sum 
+ ~, L' can be written as L' = M + B" with B" similar 

1 ' 1 • 

Finally, let A" = N + B". where N is a normal operator in L(~l)' 
N Otj N1• such that ON-N1H < &/3 (Le •• A" is the operator obtained 
from L' by replacing Ml by N). Then UA-A"U < & and A" has the de
sired properties. The proof is complete now. 

Now we are in a position to prove a very important consequence 
of Theorem 3. 

COROLLARY 7. The set of an opel'atol's in L (X) lI1ith on1.y finite1.y 
many diffel'ent spectl'a is no~m dense. FUl'thel'mol'e, given T E L(~ 
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and e: > 0, thel'e exists T' E L(3C) suah that IIT-T'II < e: and 

(i) A(T) c A(T') c (A(T))e: and Aa(T) C Aa(T') C (Aa(T))e: fol' a~t 
Q(, ~o ...-; Q( ...-; h. 

m 
(ii) T' = To 'EB[ j!'l T j '), 1.Uhel'e T j' E L(JCj ), JCj = JCj ,lEBJCj ,2' 

dim JC. 1 
J. dim JCj ,2 =; f3 j' ~ 0 < f3 1 < f3 2 < ... < f3 m = h, and 

(iii) With l'espeat to the above ol'thogonat dil'eat sum, Tj is the 

2x 2 opel'atol' matl'ix T. = [N j" T j 1], 1.Uhel'e Nj " is a nol'ma t opel'a-
J 0 T j 2 

tOl' of unifol'm muttipliaity P. suah that A(N.) = AS (N.) = G.-
J J j J J 

for some open ~eighbol'hood Gj of ns. (T) bounded by finitely many 
J 

pail'1.Uise disjoint l'eatifiable JOl'dan aUl'ves, j=1,2, •••• m. 

(iv) n(T. 2) = ITII (T. 2 ) c interior A(N.), j=1,2, ... ,m. 
J j J J 

(v) AS1 (T) c Aa(T) C A(N1) U ASj (T 12 ) C (AS1 (T))e: fol' atl Q( ...-; f3 1 , 

and AS. (T) c Aa(T) C A(Nj ) U AS. (T j2 ) C (AS. (T))e: fol' aU Q(. 

J J J 
f3. 1 < Q( ...-; f3 •• j = 2,3, ... ,m. 

J - J 

(vi) If, in addition, it is assumed that ind(X-T) 
X E C, then ind(X-T') = 0 fol' all X E C. 

o fol' aU 

Pl'oof· Let T = O~~~y Tv' Tv k~r Tvk be the decomposition of 
v 

T given by Theorem 3. If either A(T) ~ E(T) or A(T) = E(T) and 
f3 1 = ~ • then the decomposition's first term (T • or o 0 

To = 0) is kept unchanged: To' = To (or To' = T1 , if 
Thus, we Can restrict our att~ntion to the case when 

A(T) = E(T) = ~1 and f3 1 > ~o' 

T l' if 
To = 0). 
T = EB T 

O~v~y v' 

By ([ 1] ,Theorem 2.2), there exist operators TVk' E L(JCvk ) such 
that Tvk ~ TVk' is a compact operator of norm smaller than 8/4 
and JCvk admj_ts a decomposition JCvk = JCvk •1$ JCvk •2 with respect 

T '= [NVk T Vk •1], 
vk 0 T 

vk.2 
to which TVk' is the 2x2 operator matrix 

where Nvk is a normal operator such that A(Nvk) = E(Nvk) = 

= nK (T) ~ n~ (T ,. 2); moreover. with a minor modification, it 
o 0 v,,-. 

can be obtained that n~ (T vk •2) = A(Nvk)' Let 
o 

R= $ ($ T '). 
l~v~y ke:r v vk ' 

then IIT-RII ...-; e:/4, A (T) c A (R) a a for all Q( and (by the upper semi-
continuity of the spectrum; see, e.g., [9]) we can assume that 
IIT-RII is small enough to insure that A(R) C (A(T))e:/4 and Aa(R) C 
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C(A (T)) 14 for all a, ~ < a < h. a e 0 

By Lemma 3 there exists an increasing finite family {G 1 ,G 2 , ••• , 

Gm} of open sets such that for every a, [ITa (T)e/41- C Gj C 

C [ITa (T) e 121 for some j =j (a) and j =j (a) for at least one value 

of a. Moreover, Gj - is bounded by finitely many pairwise disjoint 
rectifiable Jordan curves. To every G. we associate a normal ope-

J 
rator M. of uniform mUltiplicity ~ such that A(M.) = E(M.) = G.-. 

J 0 J J J 

Let T\/k" be the operator obtained from T\/k' by replacing N\/k by 

N kIf ... M. ( ) (where A (T) = A !) such that liN k-N k"11 < 3 e/4 \/ J a a \/ \/ \/ 

(The existence.of such operators N\/k" is guaranteed by standard 
arguments based on the sp~ctral theorem for normal operators; 
see (81). Let T' = $ [$ T "1. It readily follows that IIT-T'II < 

\/ k \/k 
< e. 

Observe that N = $\/[$k ~\/k,ll is invariant under R and, with res-

pect to the orthogonal direct 

as the operator matrix R = [: 

sum ~ = N $ wi, R can be written 

T1]. With respect to this decompo
T2 

[
Nil 

sition, T' = 0 

is a normal operator 

Pj copies of Mj such 

m 
where N" = $ N." and T2 

j = 1 J 

m 

j~l T 2 ,j' N/ 

uniterily equivalent to the direct sum of 

that n~ (T 2 .) = n(T 2 .) is contained in the 
j ,J ,J 

interior of G. - = A(N. "), j = l,2, ... ,m. 
J J 

It is not difficult to check that T' satisfies the conditions (i)
(v) • 

Finally, consider the case when ind(A-T) = 0 for all complex A. 

Then, by Theorem 3, the operators To' T\/k can be chosen so that 

ind(A-To) = 0, ind(A-T\/k) = 0 for all complex A, i.e., To and T\/k 

are bi-quasitriangular operators. Since the class of all bi-quasi 
triangular operators is invariant under compact perturbations 
(see (101) it follows that ind(A-T\/k ' ) = 0 for all complex A and~ 
a fortiori, the same result holds for R. Moreover, Theorem 5 shows 
that T\/k' can be chosen so ~nat T\/k,2 is also bi-quasitriangular 

and E(T\/k,t) = E(N\/k)' Then, our previous arguments show that T' 

actuaily satisfies the condition (vi) too. In fact, ind(A-T 2) = 0 
for all A. 

REMARK. If dim~= h;;;. ~w, then we have the following "converse" 
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to Corollary 7: The set of all operators with infinitely many di! 
ferent spectra is norm dense. The proof can be carried out by 
using the same arguments as in Corollary 7, and Example 1. 

4. PROOF OF THEOREM 1. 

Neaeesity. First of all, observe that the conditions of (i) and 
(ii) are necessary. In fact, if A is an algebraic operator , then 
indeX-A) = 0 for all complex X. By the stability properties of 
the Fredholm index, it readily follows that, if T E ~(X)-, then 
ind(X-T) • 0 for every X such that X-T is a semi-Fredholm operator, 
On the other hand, T must satisfy the following property: The 
left and the right spectra of IT (T) in L(X)I] coincide, i.e., a a 
Aa(T) = ITa(T)" ITa(T*)* for all ll , ~o IIO;1l IIO;h. It is clear from 
the results quoted in the Introduction that this property is equi - -valent to say that 6 (X-T) = 6 (X-T*) for every X (These very simple 
necessary conditions have been proved by several authorsj see (Zl I 

( 12] j[ 13] j( 15] j[ 20]). Thus ,we conclude that if T E ~(X)-, then 
ind (X -T) .. 0 for all complex X. 

If, moreover, T E !i(X) -, then ACT) and Aa (T) (~o 110; Il "h) mu~t be 
connected sets containing the origin (see [13], Theorem 3). Hence~ 

the conditions given in Theorem 1 (i) and (ii) are necessary. 

Suffiaiency for the case (i). Now we are going to prove the suf
ficiency of those conditions. First we consider the case (1). Ob
serve that many of the arguments used in([ 15] j[ 23] )do not depend 
on the separability of the underlying Hilbert space. We can say 
even more: (With the notation of [15)). Let T E L(X) be an opera~ 
tor such that A(T) c n, where n is an open set bounded by finite
ly many pairwise disjoint rectifiable Jordan curves and let MT be 

the Rota subspace of T (M T c Rx2 and T is similar to Sx*1 (MT)l); 

then MT T (z-T*)Rx2 and therefore SXIMT is actually simiZar to 

Sx acting on the whole space Rx2 . This result can be proved by 
using the same kind of arguments as in (21) or in (23) and it in
troduces strong simplifications in the results of (15). Namely, 
in (( 1 5) ,Theorem 3). "simply connected" can be replaced by "con~ 
nected", etc., etc. (There is a second way to prove our resultsl 
instead of the generalized universal model given in [14] , we can 
use the equivalent model given in [23)). This shows, in particu
lar, that if N,B E L(X), where N is a normal operator such that 
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A(N) = ~(N) ~ A(B). then NeB E ~C~ e ~)-. If. in addition. it 
is assumed that A(N) is a connected set containing the origin. 
then NaB is actually a norm limit of nilpotent operators (see 
[2];[ 15]. Theorem 3; [23]. Proposition 3.3). 

Let T E L(~) be such that ind(X-T) = 0 for all complex X and let 

T = Toa{av[ak Tvk]} be the decomposition given by Theorem 3. such 

that indeX-To) = 0 and ind(X-Tvk ) = 0 for all v. for all k in rv 

and for all complex X. 

Given E > O. let T' E L(~) be s:uch that IIT-T'II < E and T' satis
fies the conditions (i) - (vi) of Corollary 7. It will be enough 
to prove that T' E ~(~)-. (Then we can use this result to show 
t"hat dist[T.~(~)] < E; sinceE > 0 can be taken arbitrarily small. 
it will follow that T E ~(~)-). Moreover. T' has the form 

m 

T 'a[ .e l T.]. where To' is either 0 or a bi-quasitriangular oper_a 
o J= J 

tor on a separable Hilbert space and T. E L(~.). where dim X. = 
J J J 

= ~. > ~ and ACT.) 
. J 0 J 

= AS CT.) = ITS CT.) ITS (T.*)*. Therefore. 
j J j J j J 

it suffices to show that To' .Tl •...• Tm are norm limits of alge-

braic operators in their respective spaces. Now. Proposition 3,3 
of [23] takes care of To'. Thus. we have reduced our problem to 
show that: 

(i') If A E L(X). dim ~ = h > ~o. A(A) = ~(A) and indeX-A) 0 
for all complex X. then A E ~(X)-. 

The proof of (i') follows as in [ 23]. In fact, by using once again 
Proposition 3.2 of [23] • we can proceed as in the proof of Corol
lary 7 to show that. given E > O. there exists A' E L(X) such that 
IIA-A'II < E, A(A) c A(A') = ~(A') c (A(A))E' A(A') is the closure 
of an open set bounded by finitely many pairwise disjoint recti
fiable Jordan curves and ~ can be decomposed as an orthogonal di-

S 
rect sum of eight subspaces of dimension h, ~ = j~l Xj with res-

pect to which A' has the form (I). where Nk is normal, A(Nk) 
= ~(Nk) = A(A') and A(Dk) C interior (A(Nk)). Therefore 

N 1 e Dl 
* 

A' 
N2eD2 

N3eD3 
0 N4eD4 

where the diagonal entries are norm limits of algebraic operators. 



103 

It readily follows (see! 2] ;! 15] ;[ 20] ;[ 23]) that A' E ~(::K') -. This 
proves (i'). 

By applying (i') to T1 .T 2 ..... Tm , it follows that T' E ~(::K')-. 

sufficiency for the case (ii). Theorem 1 (i) yields the following 
result: 

COROLLARY 8. Let T E ~(::K')-. Then T is the norm Zimit of operators 

T' of the form T' = N .j. Til. where N is normaZ, A(N) = B(N) and 
A (Tit) = A (N) = A (T) for all ex, ~ ";;;ex ";;;h. 

a a a 0 

The proof is a.formal repetition of the o~e given for Theorem 5, 

by using Theorem 1 (i) and Corollary 7 instead of ([ 23] .Proposi
tion 3.2 and 3.3).The details are left to the reader. 

Let T E ~(::K')- and assume that A(T). Aa(T) are connected sets con
taining the origin. As in the proof of the case (i), we can res-

trict our attention to the case whe~ T has the form 

·where To' acts on a ?eparable reducing subspace and 

m 
T=T '$[.$ T.] 

o J=l J ' 

Tj E q::K'j)' 

dim::K'. = P. > ~ , an~ A(T.) = AQ (T.) 
J J 0 J '"'j J 

n e (T.) 
j J 

n e (T. *) * , 
~ J 

j = 1,2, .... m. 

Then it suffices to show that To' ,T1, ... ,Tm are norm limits of 
nilpotents. The result of [2] takes care of To'and we have redu
ced the problem to show that: 

(ii') If A E L(::K'), dim::K';= h > ~o' A(A) ;= AhCA) is a con~ected 
set containing the origin and ind(A-A) = 0 for all complex A, 
the~ A is a norm limit of nilpotents. 

Assume that A satisfies (ii'). Then, by Corollary 8. given E > 0 
there exists A' similar to N $ A", where N is a normal operator 
such that A(A) = A(N) ;= ~(N) :J A(A"). By the previous comments 
in the proof of sUfficiency for the case (i), N $ A" E !i(::K')-. 
whence it readily follows that A E !i(::K')-. 

Applying this result to T1 ,T2 •... ,Tm, it follows that T E !i(::K')
and the proof of Theorem 1 is complete. 
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