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EXISTENCE OF SOLUTIONS FOR GENERALIZED CAUCHY-GOURSAT
' TYPE PROBLEMS FOR HYPERBOLIC EQUATIONS

Eduardo Luna

INTRODUCTION. Let X be a Banach space and R the set of real num-
bers. If S C R is a Lebesgue measurable set we will denote by

L (S X) the set of all Lebesgue-Bochner measurable functions with
-power q summable on the set S into the Banach space X. Let a;€R,
a. > 0 (i= 1 2) and consider the closed intervals I = <0, a;> for
i= 1,2 .

Let the graphs of the functions g1:11 - 12, g2:I2 > I1 represent

two continuous non-decreasing curves with (0,0) as their only

point in common. Denote by A the set of all points (xl,xz)in the
1Xp-plane such that gl(xl) < X, < a, and gz(xz) < X, < a;

Take p; €<1,=> (i= 0,1,2), P, = max(pl,pz) and let p,=(p, ,pl,pz)

In this paper the derivatives we understand in the sense of S.So-
bolev (i.e., L. Schwartz derivatives representable by a Lebesgue-
Bochner locally summable function).

In the f1rst section we define a class of functions UP . This class

is a subset of the set of continuous functions u from % %1, into X
which have S. Sobolev partial derivatives uxi uxz, uxlxz‘ We pro-
ve that the class Up3is linearly isomorphic to the product space
Wp3= LPO(A,X) b3 LPI(II,X) X LPZ(IZ’X) x X . Thus the class Up3
inherits a Banach type structure from the product space Wp3

In the sequel we shall be concerned with the following hyperbolic
equation (0.1) uxlxz(xl,x2)= f(xl,xz) a.e. on A, where f: A =+ X

is a bounded Bochner measurable function on A .

Let Y= L(X,X) denote the collection of all linear continuous map -
pings from X into itself. Let V= B(A,X) x Lp(Il’Y) X Lm(Il’Y) X

xL(I ,X) x L(I YY) x L_(I, Y)xL(I ,X) x X where B(4,X) is
the space of bounded Bochner measurable funct1ons with the supre-
mum norm from A into X, and pe<1,=>. Take (f,o 0?%17%228, ’Bl’BZ’Y)
€'V and let p= (»,p,p). By a solution of the generallzed Cauchy—
Goursat boundary problem in the class UF for the hyperbol;c equa-
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tion we mean a function u€ U— satisfying equation (0.1) and the
boundary conditions (0.2)

Uy, (5810 0 03 gy (00) + o () vy hgy (1) + a0y ()

a.e. on I1

uxz(gz(').')= B, (1) ulg,(h),7) + 31(').“x1(g2(')") + 8,(%)
a.e, on 12
u(0,0)= vy

In the third section we establish that the generalized Cauchy-
Goursat boundary problem is meaningful, i.e., all the operations
appearing in the definition of the problem make sense. Also we
prove the existence and uniqueness of the solutions for the ini-

tial data from the product space V in the fourth section.

The continuity of the solutions on the initial data in the sense
of the topology of the normed space V is also established.

1. DEFINITION OF THE CLASS U
. P3
From now on when dealing with derivatives we will specify if they

are to be taken in Sobolev sense, otherwise they will be taken in
the usual sense,

DEFINITION 1.1. 4 function u:leI2 + X belongs to the class Up s
3

if and only if, u <8 continuous on leI2 and there exist U, €

Lp (IIXIZ’X)’ u,el  (I,xI,,X), u,€L (A,X) suchthat:
1 P Py

(a) Dyu= u;, Dyu= u,, D ,u= u,, where the derivatives are taken
in Sobolev sense. _

(b) There exists a set Al c I1 of Lebesgue measure zero such that
the function X, > ul(xl,xz) 18 continuous on I2 for every fixed
X, ¢ Al; the function ul(-,gl(-)) € Lpl(Il,X); ul(xl,gl(xl))=
u, (x;,x,) for all x,€<0,g, (x,)> at each X € Is ul(xl,cx1)=
= ul(xl,xz) for all X,€ <Cx1,az> at each x € <0,g2(az)> s
where cx1= sup {xzelz:gz(x2)= xl}.

(c) symmetrically, there exists a set A2 c Iz of measure zero such
that the function x, = uz(xl,xz) 18 continuous on I1 for eve-

ry fixed X, A2 s the funection uz(gz(-),°)€Lp2(Iz,X) 5
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uz(gz(xz),x2)= u2(x1,x2) for all X, € <0,g2(x2)> at each xzelz;

uz(cxz,x2)= u, (xl,xz) for all x, € <cx2,al> at eaahxze<0,g1 (a1)>
where cx; sup {xle Il;gl(x1)= xz}.

DEFINITION 1,2. Let sequ(leIZ,X) » q = 1, We define the opera-

tors Ji(i= 1,2) by the formulas
*1
Jls.(xl,x2)= JO s(t,xz)dt
X
st.(xl,x2)= jo s(xl,r)dr for all (xl,xz) € leI2

LEMMA 1.1. The operators Ji(i= 1,2) are well defined bounded li-
near orerators on Lq(leIZ).

LEMMA 1.2. The operator T given by the formula:
T(s,¢,¥,v)= J2J1§ + Jltb + Jllb + vy

where S= s on A and S= 0 on leIZ\A, is a well defined linear

operator from the praduet'wp into the space Up
3 3

Proof. Let u= T(s,¢,v,y) , where (s,¢,w,y)ewp . Clearly, u is con-
3

tinuous on leI2 and D1u= J2§ + ¢, D2u= J1§ + Y, D12u= S , where
the derivatives are taken in the sense of Sobolev.

Letting u = J2§ + ¢, u,= J1§ + ¢, u,,= S one can prove that u

12
satisfies all the conditions specified in the definition of Up .

Thus, T is a well defined mapping. 3

From the linearity of the integral and the fact that UP is a 1i-
near space follows the linearity of the operator T. 3

LEMMA 1.3. Let the set A C IIXIZ’
zero. Then the boundary value problem

AIC 11, B1C I2 be of measure

wlz(xl,x2)= 0 if (xl,xz)eA
wl (xl 9g1 (xl))=, 0 <Zf x1¢ Al
w(0,0)= 0
has a unique solution in the class Up » namely, w = 0, where deri-
3

vatives are taken in the sense of Sobolev.

Proof. It is evident that w = 0 satisfy the given boundary value
problem. Suppose wesUp is a solution of the boundary value pro-
blem. Then there exists’a set B2 c I, of measure zero such that
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wz(xl,x2)= lelz.(xl,xz) + w2(0,x2) if ng B2, xlell.

The equation J2J1w12.(x1,x2)= 0 for all (xl,xz)e leI2 implies the

existence of a set B3 C I2 of measure zero such that

lelz.(xl;x2)= 0 if X, ¢ B3, X, € Il.

Hence wz(xl,x2)= w2(0,x2)= wz(gz(xz),x2)= 0 if xle,I1 ,

x, & BlUBzUB3.

Similarly we obtain sets Az, A3 C Ilof measure zero such that
wl(xl,x2)= 0 if X, ¢ AlUAZUA3 , xzel2

Also there exist sets A4 c Il, B4 c I2 of measure zero such that

w(xl,x2)= lel.(xl,xz) +-w(0,x2) if X, & B4 » X, € I1
wix;,X,)= Jow,. (x),x,) + w(x;,0) if x; g A, , X,€ I,
Hence, : w(xl,x2)= w(O,xz) if X, & B4 » X, € I1

w(xl,x2)= w(xl,O) if X, ¢ A4 y X, € 12

The last two equalities and the continuity of w imply that there
exists ke X such that w(xl,x2)= k for all (xl,xz) (S leIZ.

So, from w(0,0)= 0 we have that w =0 on leIZ.

THEOREM 1.1. The map T defined in Lemma 1.2 establishes a linear
isomorphism between the product Wp and the space UP . The inverse
map F is given by the formulas: 3 3

s=u, a.e. on A

¢= ul(',gl(')) a.e. on Il

v=u,(g,(+),*) a.e. on I,

vy= u(0,0)
Proof. It is clear that F is a well defined linear map. Let
(s,é,9,v) € W , u= T(s,¢,¥,v) , and F(u)= (5,9,¥,Y).

3

By definition of the map F we have:

5= u,, a.e. on A

o= ul(-,gl(-)) a.e. on I1

P= uz(gz(-),-) a.e. on I2

Y=Y
But, u;,= s, u;= J,s + ¢, Uy= Jys + ¥ Hence, s= S a.e. on 4,
=7 a.e. on I,, y= Y , or equivalently

Fo T= Iw i.e. the identity map on Wp

Let v € Up » F(v)= (s,¢,w,Y)>, u= T(s,¢,¥,Y).
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Letting w= u - v we obtain:

welu
P3
W= 0 a.e. on A

wl(',gl(-))= 0 a.e. on I1
wz(gz(o),-)= 0 a.,e. on I2
w(0,0)= 0
Therefore from Lemma 1.3 it follows that w = 0 on leIZ’ or equiva-

lently T o F= Iy . This completes the proof of the theorem.
P3

COROLLARY 1.1. The gpace Up 18 a Banach space with the norm | |
defined by the formula 3
lul= IF(u)| for all u € U,
i 3
The operator T establishes a linear i{somorphism and isometry bet-

ween the spaces W_ and U_ .,
P3 P3

2. A CAUCHY-GOURSAT TYPE PROBLEM IN THE CLASS UF .

We are going to enunciate a series of hypothesis which will be used
throughout the remainder of this paper.

HYPOTHESIS (Al). The functions g;, g, are continuous, strictly in-
creasing, gi(0)= 0 for i= 1,2 , and X,= gl(xl), x;= gz(xz) imply

X)= X,= 0.

HYPOTHESIS‘(AZ). The functions 81> & satisfy hypothesis (Al), gzl

(i= 1,2) are absolutely continuous functions on their domain of de-
finition, and the derivatives (ggl)' (i= 1,2) are essentially boun-
ded functions.

HYPOTHESIS (A3). The curves g1 ngsatisfy hypothesis (AZ) and they
are absolutely continuous on their domain of definition.

HYPOTHESIS (AA)‘ The functions gi(i= 1,2) are such that

gi(xi) < X, for all xX; € Ii (i= 1,2)

HYPOTHESIS (Ag). (f, a_, o), a,, B_, By, B,y ¥) €V .

DEFINITION 2.1. Under Hypothesis (Al)and (Ah) we want to find a
funetion u € U= satisfying equation (0.1) and the boundary condi-
tions (0.2) where the derivatives are understood in the sense of
Sobolev. Such a function u, <if <t exists, will be called a solution
of the Cauchy-Goursat problem for equation (0.1) under the bounda-
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ry conditions (0.2).

3. THE CAUCHY-GOURSAT PROBLEM IS MEANINGFUL.
The following two lemmas will be needed in this section.

LEMMA 2.1, If wie Lw(Ii,Y), wje Lp(Ij,X) and g; satisfy Hypothesis
(Az), then the function X; wi(xi)(wjogi(xi)) belongs to the
space Lp(Ii,X), where i, j € {1,2}, i#j.

LEMMA 2.2. If f:A + X s Bochner measurable and bounded on A,
LIPS Lw(Ii’Y) (i= 1,2), gi(i= 1,2) satisfy Hypothesis (Az), then the

X.
funetion x; a-wi(xi)(J . f(t,g; (x;))dt) belongs to the space
LP(Ii,X). °

THEOREM 2.1. Under Hypothesis (AZ) and (A5) the Cauchy-Goursat pro-
blem is meaningful.

Proof. Because of Theorem 1.1 every u€U- has a representation of
the form u= JZJIS + J1¢ + sz + v where (s,¢,¥,y) € WE . For any
function Gi € LP(Ii,X) (i= 1,2) we are going to write JiGi.(xl,x2)=
J.G..(x.), for all x.e€1I.,.

1 1 1 1 1

To find u € U; satisfying the generalized Cauchy-Goursat boundary
problem is equivalent to find (s,¢,¥,y) € WF such that

8()= o (I,T,€. (-8 ()% Ty ()% Tpb. (g (:))* vl

by (LT E. (8, ()+ ¥(g ()1+ ay(-) a.e. on Iy

(221 Y y()= By (DT T,E. (5 (), )% J10.(8, (1)) T ()+ v] +
+ 8 (T, (g, (1),)% 68, (.))1+ 8,(*) a.e. on I

From Lemmas 2.1 and 2.2 it follows that the equations of system
(2.1) are meaningful. This completes the proof of the theorem.

3. THE OPERATORS H AND J.

DEFINITION 3.1. Under hypothesis (A2) and (A5) let us define the
operatore H and J from the space Lp(Il,X) x L (IZ’X) into itself
by the formulas P
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1]

H (Q) = (ql(xl)(¢(g1(x1))) J (¢) = (uo(xl)[J1¢-(x1)+J2¢-(gl(xl))])
]

B, (x,) (4 (g, (x,)) B, (X)L T 4. (8, (x,)) 4040 (x))]

LEMMA 3.1. The operators H and J are well defined.

For every ¢ € Lp(Il,X), = LP(IZ,X), let 1= ¢

" (ao (x0T T, (xy,8q (%)) +y]+ay (x))1J £ (xp,8y (x)]+ay (xp) )

¢) and

Bo ()T J,5E . (8, (x5) %) +yl+8; () T5F. (g5 (xp) X)) 1 +8, (%,)
(3.1)
assuming that Hypothesis (A2) §nd (A5) hold.
By means of the operators H.an& J equation (2.1) can be written
(3.2) t= Jr + Ht + 1

Thus to solve the Cauchy-Goursat problem is equivalent to find a
solution t of equation (3.2).

DEFINITION 3.2. Under Hypothesis (Al) define the functions

A?: Ii+ Ii’ (i= 1,2), n a non-negative integer, by the formulas

o =
Ai(xi)- Xy for all x; € Ii
SHERERWCHE g08;(x;) for all x;€ 1y, (=1,2, J#1) .

and Az(xi)= Ai(lz_l(xi)) for all x; €I, n > 1

LEMMA 3.2. If g; (i= 1,2) satisfy the Hypothesis (A ), then s )
(i= 1,2) are strﬁctly inereasing absolutely continuous functzons on

<0,Ai(ai)>, and the derivatives ((xi)' )' are essentially bounded,
where n= 0,1,2,....

LEMMA 3.3. If g; (i=1,2) satisfy Hypothesis (A ), then the sequences
(1= 1,2) are non-increasing sequences converging uniformly toward

kS

gero in I,
i’

This Lemma is proven by J. Kisynski and M. Bielecki in [31.

DEFINITION 3.3. Under Hypothestis (Az) and (As) let us define the
functions:

ul(x1)= al(xl)sl(gl(xl)) for all X eI,
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-1
uln(x1)= ul(xl) e ul(k? (xl)) for all X, € Il’ n>1

My (x,)= By (x,)a; (g,(x,)) for all x,e€lI,

by (X)= u, (%)) oo w,(A37H(x,)) for all x,el,, n>1

-— 1 = 1
LEMMA 3.4. Let o= al/(gl') /P, By = Bl/(gz') /P, where o i1, ~ Y,
Bl:I2 - Y. If El and El are essentially bounded funetions, and g;

satisfy Hypothesis (AS)’ then uin/((kz)')l/P (i= 1,2) are essen-
tially bounded functions on Ii for every natural number n.

DEFINITION 3.4. Let £ € L_(4,X), p > 1. Define Iflz

X X
= sup {e F(X1¥%2) J 1 J 2 fnyt/e (x,,X,)€ A} where k > 0 and
0 0

f=f on A, T= 0 on leIZ\A . From now on we will write f instead of
f.

One can prove that (L _(A,X),l ) is a Banach space for k > 0. This

I
type of norm was introduced by M.A. Bielecki in [2].

DEFINITION 3.5. If (¢,9) €L (I;,X) x L (I,,X), p > 1, we define
NCo )0 = max (Nl 0wl ), k > 0. It s known that Lp(Il,X) x

X Lp(IZ’X) is complete under the above defined norm.

HYPOTHESIS (AG)‘ The functions g, (i= 1,2) satisfy Hypothesis (A3)
and (A4)' The functions @, € Lw(Il,Y) and B € Lm(IZ,Y) are such

that E;eLw(Il,Y), Ele Lw(IZ’Y)’ and lim +El(x1)= 51(0),

A1 ? x1+0
lim , B, (x,)= B (0) exist in the sense of the norm of Y where
A3 x>0
2 2
a B
El= - B. = — !  and A; C I, (i= 1,2) are of Lebesgue

: > By .
g)/? gpt’?
measure zero. Finally, lla, (0)8, (0)) < 1.

LEMMA 3.5. Under Hypothestis (A6) the operator A= (I-H)-l, from

Lp(IIXX) X Lp(szX)into itself, is bounded and linear. Moreover,

there exists M independent of k > 0 such that WAl <M.

Proof. It is clear that H is a well defined linear operator. We ha-
-1 1

ve (3.3) IHI, <M, where M= max ( la I 1( ) 1L/P

IBllmﬂ(gzl)‘ni/p) is independent of k > 0.

From the definition of the operator H it follows that
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H?"/ ¢ Bia (X)) 07 (x)))

v Hpn (%,) W (A2 (x,))

for all ¢ € Lp(Il,X), Y € LP(IZ,X), n= 1,2,...

We have the following inequality for every natural number n:

xl x2 .
(3.4) Jo Jo ey o (8) 4 (A7 (6))1Pdnde <
X X

1 2 .
< Jo Jo LD ™Ry, (M) 114 (£) 1Pdndt

Let us note that lim ul(xl)/(ki(xl))l/p= a, (0)8; (0) where
C £x1+0+ )

C= AlUg;I(AZ) is of Lebesgue measure zero., Thus, given q > 0
such that uEl(O)El(O)n < q2 < 1 there exists 6§ > 0 such that

' 1 . .
uul(xl)/(kl(xl)) /p“ < q2 if X, €C, x| € I, 0< X < §. Since by
Lemma 3.3 there exists n, such that 0 < AT_I(XI) <& for all x€l,,

n = n_ we have

(3.5 1, (AT /0,07 )P < ? for all n>n and

X, & (A?'l)_l(c), which is a set of Lebesgue measure zero.

From (3.4), (3.5) we obtain
(3.6 Muy, (x)) .0 O xS AT HF,0,) 07 lq? (BmotD)

Similarly there exists n, such that

1

(3.7 My (%) 0 (A5 (X)) 1,< (a0 18, 1,) 17 g2 (B ™y ¥ D)

Hence HH2n|k< quzn for all n > max(n_,n;), where M, independent of
k is defined in an obvious way.

Noting that A= (I + H)B, where B= 1 + HZ + H* + ...+ H® + ... and
using (3.3), (3.6), and (3.7) we can obtain the desired result.

DEFINITION 3.6. Let C(Ii) (i= 1,2) denote the set of all continuous

functions £:1.+ X. For every £ € C(I;) define "f"£2)=

= sup {e'kxillf(xi)l:xi €I}

It is known that (C(Ii)’“ ﬂéi)) is a Banach space.
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LEMMA 3.6. The operators Ti (i= 1,2) from the space (LP(Ii,X),u )
into the space (C(Ii)’" Hé:)) defined by the formula

*3
(Ti¢)(xi)= JO ¢(t) dt for all x; € Ii

are well defined bounded linear operators and "Ti"k=

= (kep)!/P a{P"D/P sp q/pk < min(a ,a,), p >1, k > 0.

LEMMA 3.7. Let a:Il+ Y, B:Iz» Y be p-Bochner summable functions on
I1 and I2 respectively. Then, the operators

Hyt (UL 1{8) » @ (10,0 1) = 1,2)
defined by the formulas

(Hlf)(x1)= a(xl).f(xl) for all x, € Il’ f e C(Il)

1
(Hyg) (x))= B(x,).g(x,) for all x, €I,, g € C(I,)

are well defined bounded linear operators. Moreover, for any € > 0
there exists k such that |H,| < (e/pke)lfp for all k > k_ (i=1,2).

Proof. It is clear that Hi (i= 1,2) are well defined and linear. We
have also

*1 [*2
(3.8) ( Jo JO Ja(t) . £(£)1Pdr at)1/P <

x1 x2 . 1/
< nfuéi) ( Jo Jo la(t)1Pe*Ptar dt)l/P

Let k., be such that r < min(a, ,a_ ) for all k = k
1 pk 1 2

= For any

k > k1 we have:
X, . X
-pk(x,+x,) 1 2 kpt
(3.9) e PRIX Xy o Jo Na(t)gPePrdr dat <
*1
-1 _-k k
< (pke) le kpx) Jo la(t) Pe*Ptdt , (x,,x,) € I;xI,

Let s 2 0 be a simple function defined on I, such that

a
1
JO [Me(t) )P - s(t)ldt < ¢/2 where ¢ > 0 is given. So,

X
1 € s|
(3.10) Jo Te(t)Pe~ kP (x1=t) gy < — 4 15l
2 kp

From inequalities (3.8), (3.9),(3.10) it follows that
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_ lsnm 1/p
1H 1, < (pke) 1/PLE 4 —2)
2 kp
-1/p € ||'5—|.,° l/p
Similarly we obtainnH2|k< (pke) [— + ” for some simple
p
— sl €
-function s defined on I,. Let k2 be such that —— < -,
' k,p 2
2

Ist, =

< — ., Thus for all k > k = max(kl,kz) we have uH.nk <
kzp 2 o i

< (e/pke) /P for i= 1,2.

LEMMA 3.8. Assume g,:8, satisfy Hypothesis (Al) and (AQ). The ope-
rators T, (L (1,%),1 1)+ (C(T,),1 1)) (where p > 1,i,m € (1,21,
g, (%)

i#m, j=i+2) defined by the formulas (Tj¢)(xm)= J 6 (t) dt,

0 .
for all xme I are well defined bounded linear operators. Moreover,
m
1 -
if — <min(a;,a,) then |T |, < (kep)l/pagp /e,
kp J T

LEMMA 3.9. Under Hypothests (Al), (A4) and (A5) the operator J (De-
finition 3.1) is a well defined bounded linear operator. Moreover,
for any given € > 0 there exists ko such that “J"k < ¢ for all

k = ko.

The proof follows easily from Lemmas 3.6, 3.7 and 3.8.

L. EXISTENCE THEOREMS FOR THE CAUCHY-GOURSAT PROBLEM IN THE CLASS Up'

Under Hypothesis (As) and (A6) equation (3.2) can be written:

(4.1) 1= (I-#)"'gr + (1-H)7lt_. Let us define the operator F, by
the formula: (4.2) F 1= AJt + At . Clearly F  is a well defined o-
perator from the space Lp(Il’X) X LP(IZ,X) into itself because of
Lemmas 3.5 and 3.9.

Moreover, from equation (4.1) it follows that to find a solution of
the Cauchy-Goursat problem in the class UE is equivalent to find a
fixed point of the operator F,.

THEOREM 4.1. Under Hypothesis (As) and (A6) the Cauchy-Goursat pro-
blem has a unique solution in the class UE'
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Proof. Note that IEjty = Freply SMIJl T, - Tyl Where M is as in
Lemma 3.5, From Lemma 3.9 it follows that there exists ko such that

- F 1 -
IIFl'r1 FlTZHk < .E "Tl Tzuk for all k > ko'

Thus for any fixed k > ko the operator F1 has a unique fixed point
because of Banach Fixed Point Theorem.

THEOREM 4.2. Under Hypothesis (Al), (A4) and (As) the boundary va-
lue problem u )= £ a.e.in A5 up(-,g,(:))= a (-).ul,g, (-)) + a,(.)
ae'znll’u(gz()’)'B()u(gzc)’)+8()ae'7’n1
u(0,0)= vy, has a unique solution in the class U— .

Proof. This theorem is proven as the preceding one considering the
operator F21= Jtr + LN from the space LP(II,X) b Lp(I2’X) into it-
self, where

T “o(xl) (JIJZf'(xl’gl(xl)) +y) + °‘2(x1)

Bo (X)) (37,5 (8,(x,),X,) + v) + 8, (x,)

REMARK. If in the Cauchy-Goursat problem we let a = 0, Bo= 0, then
we cannot weaken the conditions on gi(i= 1,2) as we did in Theorem
4.2,

¥
THEOREM 4.3. If gi(i=1,2) are non-decreasing functions, andyf, o

Bys Y are as in Hypothesis (As) then the boundary value probﬁem
u;,= face. in 4, u;(-,g, ()= a,(*) a.e. in I, uy(g,(+),-)=8,(+)
a.e. in 12, u(0,0)= vy, has a unique solution in the class UF'

ZJ

Proof. From the isomorphism of the spaces U_ and W— it follows that
the unlque solution of our boundary value problem 1n the class U—
is u= f +J 18 v J 2By * Y.

5. CONTINUOUS DEPENDENCE OF THE SOLUTION ON THE INITIAL DATA FOR

THE CAUCHY-GOURSAT PROBLEM IN THE CLASS UF .

Throughout this section we assume that the functions gi(i=1,2) sat-
isfy Hypothesis (A3) and (A4). Let vy be the subset of V such that
the coordinates @, and B, satisfy the conditions specified in Hypo-
thesis (A6).

DEFINITION 5.1. We define the operator S:V, » U; as follows :
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S(v)=u, v € Vl’ if and only if, U is the unique solution of the
Cauchy-Goursat problem corresponding to the initial data V.

Note that S is a well defined operator because of Theorem 4.1, It
is easy to show that V, is a normed space. In U; consider the norm
introduced in Corollary 1.1.

To prove continuous dependence of the solution on the initial data
for the Cauchy-Goursat problem in the class U; is equivalent to
show that the operator S is continuous.

Take Va© (f’aon’dln’GZn’Bon’Bln’BZn’Yn) in V1 and

v= (f,ao,ul,az,so,sl,sz,y) in V1 such that Ivn-v| + 0 as n » «, Let
S(v )= u,, S(v)= u. We know that there exists (sn,¢n,wn,?n) € WE ,
(sy,¥,7) € W; such that F(u )= (s_,¢_ ,¥ ,v )= (£,,0, ¥ 5v,)
F(u)= (s,¢,¥,¥)= (£,4,v,v). Taking lu -u|=max(|f ~£|_, 1¢ ¢,
Iwn“wlp, HYn'Y“) it is evident that the operator S is continuous if

l¢n'¢lp + 0, lwn-w|p > 0asn+ o ,

For each (fn,¢n,wn,yn), n= 1,2,.... , we can write an equation of
the form (4.1).

Letting Th? Ton be as in equation (3.1) we have (5.1):

T, (i—H)'lJrn + (1-H)_1Tdn‘ Similarly for (f,¢,v,y) we have t and
x, such that (5.2): v= (I-H)7lyr + (-W)7'r .

LEMMA 5.1, If It _ -1 |_+ 0 asn + » then |t _=1|_ =+ 0 as n+ ~
on o'p n P

Proof. From equations (5.1) and (5.2) we obtain rn-r=(I-H)_lJ(rn-r)+
+ (-7

-t ).
on [¢]
Using the properties of the operators ('I-I-l)_1 and J already establi-

shed the lemma is proven.

LEMMA 5.2, Jt_ -1 |_ =+ 0 as n + o .
on o'p

Proof. Let Ton o™ }—n L If v, > Vas n + » , then lanlp and H}nlp
Wl'l.

converge toward 0 as n + . Hence, lTon’T°|P= max(|¢n[p,|wn|p) >0

as n » =

THEOREM 5.1. The operator S is continuous. Moreover for all e > 0

»
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there exists § > (0 such that if u, U are solutions of the Cauchy--
Goursat boundary problem corresponding to initial datas V, V € V
respectively, then |u(x1,x2) u(xl,xz)l < € for all (xl,xz)e I xI
if 1v=-v| < s,

Proof. The continuity of the operator S follows from the consider-
ations made in this section and Lemmas 5.1 and 5.2,

Let (s,¢,¥,7)e W= (5,9,9,7) € W= be such that F(u)= (s,¢,¥,v)=
= (f,¢"ll’Y); F(E)= (§s$’$,—Y—)= (T,E:ﬁ;,?)— One can prove that
(5.3) ]u(xl,xzj-ﬁ(xl,x2)| < K|u-u] for all (x;,x,)€ I,xI,

= (p-1)/p (p-1)/p -
where K= a,a, + a; + a, + 1.

From (5.3) it follows that lu=u)_ < K|u-U]. The continuity of the
operator S implies that given ¢ > 0 there exists & > 0 such that
IS(WVI-S(V)|= |u-T| < e/K if |v-v| < §. Hence Ju-uj_ < Klu-u] <

if lv-v] < &. This completes the proof of the theorem.
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