Revista de la Unión Matemática Argentina Volumen 27, 1976.

FREE SYMMETRIC BOOLEAN ALGEBRAS

Manuel Abad and Luiz Monteiro^{*}

Our purpose is to give a construction of the symmetric Boolean algebras with a finite set of free generators, different from that given by A. Monteiro ([5]).

1. INTRODUCTION.

We shall begin recalling some notions and results of the theory of symmetric Boolean algebras.

DEFINITION 1.1. A symmetric Boolean algebra is a pair (A,T), where A is a Boolean algebra, and T is an automorphism of A of period two, that is, such that TTx = x, for all $x \in A$. (Gr. C. Moisil, [2],[3]).

Briefly, we shall say that A is a symmetric algebra. A.Monteiro has independently studied these algebras under the name of "algèbres de Boole involutives" ([4],[5]).

DEFINITION 1.2. A part S of a symmetric algebra A is said a symmetric subalgebra of A if:

S1) S ≠ Ø

S2) S is closed under Λ , V, - and T

It is clear that a symmetric subalgebra of A is a Boolean subalgebra of A.

Let G be a part of a symmetric algebra A; we shall represent by B(G) (respectively S(G)) the smallest Boolean (respectively symmetric) subalgebra of A containing G. B(G) (respectively S(G)) is called the Boolean (respectively symmetric) subalgebra generated by G. It is clear that $B(G) \subseteq S(G)$.

* This work has been done at the Instituto de Matemática, Universidad Nacional del Sur, 1974. We shall represent by I = I(A) the set of all elements x of A such that Tx = x. It is clear that I(A) is a Boolean subalgebra of A.

DEFINITION 1.3. Let A and A' be symmetric algebras. A symmetric homomorphism from A into A' is a function h from A into A' such that:

H1) $h(x \lor y) = h(x) \lor h(y)$

H2) h(-x) = -h(x)

H3) h(Tx) = Th(x)

for all x and $y \in A$.

If h is a surjective function, we say that A' is a homomorphic image of A. If h is a bijective function, we say that A is isomo<u>r</u> phic to A', and we shall note $A \cong A'$.

From conditions H1) and H2) follows that h is a Boolean homomorphism. Therefore, a symmetric homomorphism is a Boolean homomorphism which verifies condition H3).

The kernel of a symmetric homomorphism h from A into A', that is, the set Ker $h = h^{-1}(1)$, $1 \in A'$, is a filter which verifies the condition:

D) If $x \in Kerh$ then $Tx \in Kerh$.

DEFINITION 1.4. A filter of a symmetric algebra A which verifies condition D) will be called a deductive system or a T-filter.

LEMMA 1.5. A principal filter F(x) of A is a T-filter if and only if $x \in I(A)$.

Proof. Necessary condition: as $x \in F(x)$ and F(x) is a T-filter, then $Tx \in F(x)$, that is, $x \leq Tx$; hence $Tx \leq TTx = x$. Therefore Tx = x, that is, $x \in I(A)$.

Sufficient condition: Let us suppose Tx = x, and let y be such that $y \in F(x)$, that is, $x \leq y$; then $x = Tx \leq Ty$. Hence $Ty \in F(x)$.

If F is a T-filter of a symmetric algebra A, and we define: $a \equiv b \pmod{F}$ iff $(-a \lor b) \land (-b \lor a) \in F$, for all $a, b \in A$, then " \equiv " is a congruence relation on the algebra A. ([1]). Let us represent by A' = A/ \equiv or A' = A/F the quotient set of A by the equivalence relation " \equiv ", and let us note by |x| the equivalence class containing the element $x \in A$. If we define:

 $|x| \wedge |y| = |x \wedge y|$; -|x| = |-x|; T|x| = |Tx|

it is easy to prove that A' is a symmetric algebra.

The application h from A into A' defined by h(x) = |x|, for all $x \in A$, is a symmetric homomorphism from A onto A', that is, A' is

a homomorphic image of A. h is called the natural homomorphism. It is easy to prove that if A' is a homomorphic image of A, then there is a T-filter F of A, such that $A/F \cong A'$. Therefore, we obtain all the homomorphic images doing the quotiens A/F, where F is a T-filter of A.

2. SIMPLE SYMMETRIC ALGEBRAS.

A symmetric algebra is called trivial if it has only one element.

DEFINITION 2.1. A symmetric algebra is called simple if:

1) A is non trivial.

2) All the homomorphic images of A are either trivial or isomorphic to A.

A. Monteiro ([5]) proved that the only simple algebras are those whose Hasse diagrams and the corresponding automorphisms are shown in the next figure:

We shall next give another proof of this result. It is not difficult to prove the following theorem.

THEOREM 2.2. In order that a non trivial symmetric algebra A be simple it is necessary and sufficient that $I(A) = \{0,1\}$.

This result can be stated as follows: "In order that a symmetric algebra A be simple it is necessary and sufficient that the Boolean algebra I(A) be simple". Then, it is clear that the algebras B_1 and B_2 shown in the above figure are simple algebras. We shall now prove that they are the only simple symmetric algebras.

LEMMA 2.3. Let A be a simple symmetric algebra with more than two elements. If $x \in A - I(A)$, then Tx = -x.

Proof. Consider $y = x \land Tx$; then $y \in I(A)$. If y=1, then x=1 which is a contradiction. Therefore (1) $x \land Tx = 0$. Consider $z = x \lor Tx$; then $z \in I(A)$. If z=0, then x=0, which is a contradiction. Therefore (2) $x \lor Tx = 1$. From (1) and (2) follows Tx = -x. LEMMA 2.4. Let A be a simple symmetric algebra with more than two elements. If $x_1, x_2 \in A - I(A)$ and $x_1 \neq x_2$, then $x_1 = -x_2$. Proof. By hypothesis, $x_1 \wedge x_2 \neq 1$. If $x_1 \wedge x_2 \neq 0$, then it follows from 2.3 $T(x_1 \wedge x_2) = -(x_1 \wedge x_2)$, that is, $Tx_1 \wedge Tx_2 =$ $= -x_1 \vee -x_2$. Besides $Tx_1 = -x_1$, $Tx_2 = -x_2$; hence $-x_1 \wedge -x_2 =$ $= -x_1 \vee -x_2$, and then $-x_1 = -x_2$, that is, $x_1 = x_2$, which is a contradiction. Therefore $x_1 \wedge x_2 = 0$. It can be likewise proved that $x_1 \vee x_2 = 1$.

It immediately follows from lemmas 2.3 and 2.4 that if A is a simple symmetric algebra which contains an element different from 0 and 1, then it contains exactly four elements 0,a,b,1, with a = -b and T0 = 0, Ta = b, Tb = a, T1 = 1.

3. T-FILTERS OF A SYMMETRIC ALGEBRA A AND FILTERS OF I(A).

Let T = T(A) be the set of all the T-filters of a symmetric algebra A, and F = F(I) the set of all the filters of the Boolean algebra I(A). It is clear that T and F are ordered sets if we order both by inclusion.

LEMMA 3.1. The transformation $\varphi: T \longrightarrow F$ such that $\varphi(D) = D \cap I(A)$, $D \in T$, is an order isomorphism.

Proof. It is clear that if $D \in T$, then $D \cap I(A) \in F$. Given $F \in F$, let $D = F_A(F)$ be the filter in A generated by the filter F of I(A). Let us prove that D is a T-filter. D is a filter by construction. If $x \in D$, then $Tx \in D$. It is well known that $F_A(F) = \{x \in A: \text{ there is } f \in F \text{ such that } f \leq x\}$. Hence, if $x \in A$, there is $f \in F$ such that $f \leq x$. Then $Tf \leq Tx$, and since $f \in I(A)$, Tf = f. Therefore, $f \leq Tx$, that is, $Tx \in D = F_A(F)$.

On the other hand, $\varphi(F_A(F)) = F_A(F) \cap I(A) = F$, that proves that φ is a surjective function.

It is clear that if $D_1, D_2 \in T$ and $D_1 \subseteq D_2$, then $\varphi(D_1) \subseteq \varphi(D_2)$. Let us prove, if $D_1, D_2 \in T$ and $\varphi(D_1) \subseteq \varphi(D_2)$, then $D_1 \subseteq D_2$.

Indeed, by hypothesis, $D_1 \cap I(A) \subseteq D_2 \cap I(A)$. Let x be an element of D_1 , then $Tx \in D_1$ and x $\land Tx \in D_1$; moreover x $\land Tx \in I(A)$, then x $\land Tx \in D_1 \cap I(A)$. But $D_1 \cap I(A) \subseteq D_2 \cap I(A)$. Therefore x $\land Tx \in C_2 \cap I(A)$. In particular x $\land Tx \in D_2$ and then $x \in D_2$.

LEMMA 3.2. If $D \in T$, $I(A/D) \cong I(A)/D \cap I(A)$.

Proof. Let us consider the natural homomorphism h: A \longrightarrow A/D and h* the restriction of h to I(A). It is clear that h* is a Boolean homomorphism from I(A) into I(A/D), with kernel I(A) \cap D. Given

 $y \in I(A/D)$, there is $x \in A$ such that h(x) = y. Then $h(x \wedge Tx) = h(x) \wedge Th(x) = y \wedge Ty = y$. But $x \wedge Tx \in I(A)$, hence $h^*(x \wedge Tx) = h(x \wedge Tx) = y$, that is, h^* is an epimorphism from I(A) onto I(A/D). Therefore $I(A/D) \cong I(A)/D \cap I(A)$.

DEFINITION 3.3. A T-filter D of a symmetric algebra A is said a maximal T-filter if

1) D is a proper T-filter.

2) If D' is a T-filter such that $D \subseteq D'$ then D' = A or D' = D.

THEOREM 3.4. If D is a maximal T-filter of a symmetric algebra A, then A/D is a simple symmetric algebra.

Proof. If D is a maximal T-filter, then it follows from Lemma 1.1 that $D \cap I(A)$ is an ultrafilter (a maximal filter) of the Boolean algebra I(A). Then $I(A)/D \cap I(A)$ is a simple Boolean algebra, hence, by Lemma 3.2, I(A/D) is a simple Boolean algebra, that is, $I(A/D) = \{0,1\}$. Therefore, it follows from Theorem 2.2 that A/D is a simple symmetric algebra.

4. REPRESENTATION THEOREM.

Given a family $\{A_i\}_{i \in I}$ of symmetric algebras, the cartesian product $P = \prod_{i \in I} A_i$ is defined in the usual way.

Given a symmetric non trivial algebra A, let $M = \{M_i\}_{i \in I}$ be the family of all the maximal T-filters of A. A. Monteiro ([5]) proved that A is isomorphic to a subalgebra A* of the cartesian product $P = \prod_{i \in I} A/M_i$. The isomorphism is defined in the following way: let m_i be the natural homomorphism from A onto A/M_i . Then, if $f \in A$, $\varphi(f) = (m_i(f))_{i \in I} \in P$. The subalgebra A* of P is $\varphi(A)$. Moreover, if A is finite, then A is isomorphic to P.

5. FINITELY GENERATED SYMMETRIC BOOLEAN ALGEBRAS.

We shall prove that if a symmetric algebra A has a finite set of generators, then A is finite, that is, if G is a finite subset of A with n elements (N(G) = n) such that S(G) = A, then A is finite.

We know that A is isomorphic to a subalgebra A* of the symmetric algebra P = $\prod_{i \in I} A/M_i$, where $M = \{M_i\}_{i \in I}$ is the set of all the maximal T-filters of A. Moreover we know that the quotiens A/M,

 $M \in M$ are finite, more precisely, N(A/M) = 2 or N(A/M) = 4, because $A/M \cong B_1$ or $A/M \cong B_2$. It is sufficient then to prove that M is finite.

Let us consider
$$M_1 = \{M \in M : A/M \cong B_1\}$$

 $M_2 = \{M \in M : A/M \cong B_2\}$

It is clear that $M_1 \cap M_2 = \emptyset$ and $M_1 \cup M_2 = M$.

Let us note $\text{Epi}(A,B_1)$ the set of all the epimorphisms from A onto B_1 , $F(G,B_1)$ the set of all the functions from G into B_1 . We shall prove that:

I)
$$N(M_1) = N(Epi(A,B_1)) \le N(F(G,B_1)) = 2^n$$

Consider the function s: $\operatorname{Epi}(A,B_1) \longrightarrow M_1$ defined by $s(h) = \operatorname{Ker} h$, where $h \in \operatorname{Epi}(A,B_1)$. It is clear that $\operatorname{Ker} h \in M_1$. Let be $M \in M_1$; then $A/M \cong B_1$; if $\sigma_M \colon A/M \longrightarrow B_1$ is the isomorphism and $h_M \colon A \longrightarrow A/M$ is the natural homomorphism, then $h = \sigma_M \cdot h_M$ is an epimorphism from A onto B_1 , whose kernel is M, that is, s(h) = M. Hence s is a surjective function.

Let be $h_1, h_2 \in Epi(A, B_1)$, $M_1 = Ker h_1$, $M_2 = Ker h_2$, and suppose $M_1 = Ker h_1 = Ker h_2 = M_2$. Let be $x \in A$. If $x \in M_1 = M_2$, then $h_1(x) = h_2(x) = 1$; if $x \notin M_1 = M_2$, then $h_1(x) = h_2(x) = 0$. Hence $h_1 = h_2$, that is, s is an injective function. Hence, $N(M_1) =$ $= N(Epi(A, B_1))$.

Consider now r: $\operatorname{Epi}(A, B_1) \longrightarrow F(G, B_1)$ the application which maps each epimorphism h: $A \longrightarrow B_1$ into its restriction to G: f = h/G.

This is an injective application, because if h/G = h'/G, then $\{x \in A: h(x) = h'(x)\}$ is a symmetric subalgebra of A which contains G, and therefore h = h'. Therefore $N(Epi(A, B_1)) \leq N(F(G, B_1)) = 2^n$.

We shall now prove that:

II)
$$N(M_2) = \frac{N(Epi(A, B_2))}{N(Aut(B_2))} = \frac{N(Epi(A, B_2))}{2} \le \frac{N(F^*(G, B_2))}{2} \le \frac{N(F(G, B_2))}{2} = \frac{4^n}{2}$$

where $\operatorname{Epi}(A, B_2)$ is the set of all the epimorphisms from A onto B_2 , $\operatorname{Aut}(B_2)$ is the set of all the automorphisms of B_2 , $F^*(G, B_2)$ the set of all the functions f from G into B_2 such that S(F(G)) = $= B_2$, and $F(G, B_2)$ the set of all the functions from G into B_2 . Consider s: $\operatorname{Epi}(A, B_2) \longrightarrow M_2$ the mapping defined by $s(h) = \operatorname{Ker} h$, $h \in \operatorname{Epi}(A, B_2)$. It can be proved as in I) that s is a surjective function. If s(h) = M, then it is easy to see that $s^{-1}(M) = \{\alpha \circ h: \alpha \in \operatorname{Aut}(B_2)\}$. But there are only two automorphisms in B_2 : the automorphism Tx = x, for all $x \in B_2$, and the automorphism T (T0 = 0, T1 = 1, Ta = b, Tb = a).

Then, for all $M \in M_2$, $s^{-1}(M)$ has exactly two elements. Hence

$$N(M_2) = \frac{N(\text{Epi}(A, B_2))}{N(\text{Aut}(B_2))} = \frac{N(\text{Epi}(A, B_2))}{2}$$

Consider now the mapping r: $\operatorname{Epi}(A,B_2) \longrightarrow F^*(G,B_2)$, which maps each epimorphism h: $A \longrightarrow B_2$ into its restriction to G: f = h/G. As h is an epimorphism, then $S(h(G)) = B_2$, hence, $S(f(G)) = B_2$, that is, $f \in F^*(G,B_2)$.

It can be proved as in I) that r is an injective function. Then $N(Epi(A,B_2)) \leq N(F^*(G,B_2))$. It is clear that $N(F^*(G,B_2)) \leq N(F(G,B_2)) = 4^n$. Then we have:

$$N(M_{2}) = \frac{N(\text{Epi}(A, B_{2}))}{N(\text{Aut}(B_{2}))} = \frac{N(\text{Epi}(A, B_{2}))}{2} \le \frac{N(F^{*}(G, B_{2}))}{2} \le \frac{N(F(G, B_{2}))}{2} = \frac{4}{2}^{n} < \infty$$

From I) and II) it follows that $M = M_1 \cup M_2$ is finite, and then A is finite, that is:

THEOREM 5.1. Every finitely generated symmetric algebra is finite. It follows from the above, that if A is a finitely generated symmetric algebra, then $A \cong B_1^{N(M_1)} \times B_2^{N(M_2)}$.

6. SYMMETRIC ALGEBRAS WITH A FINITE SET OF FREE GENERATORS.

DEFINITION 6.1. Given a cardinal number c > 0, we shall say that f is a symmetric algebra with c free generators if:

L1) There is a subset G of f, of power c, such that S(G) = f. L2) Given a symmetric algebra A and an application f from G into A, there is a homomorphism \overline{f} , necessarily unique, from f into A such that \overline{f} is an extension of f.

If it is so, we shall say that G is a set of free generators of \pounds . A symmetric algebra is said to be free if it has a set of free generators. We shall note $\pounds = L(c)$. Since the symmetric alge bras are defined by equations, we can state, by a theorem of universal algebra of G.Birkhoff ([1]), the existence and uniqueness,

up to isomorphisms, of L(c).

In view of the preceding paragraph, we can state that L(n) is finite, for every natural number n > 0. Furthermore,

 $L(n) \cong B_1^{N(M_1)} \times B_2^{N(M_2)}. \text{ We shall now compute } N(M_1) \text{ and } N(M_2).$

LEMMA 6.2. Let G be a set of free generators of L(n), and B(n) = B(G). Then G is a set of free generators of the Boolean algebra B(n).

Proof. We must prove that if A is a Boolean algebra, and f is an application from G into A, then f can be extended to a Boolean homomorphism from B(n) into A. Indeed, let A be a Boolean algebra and f: $G \longrightarrow A$. Consider the transformation T: $A \longrightarrow A$ defined by Tx = x for all $x \in A$. Then (A,T) is a symmetric algebra. Then f can be extended to a symmetric homomorphism \overline{h} : L(n) $\longrightarrow A$. Consider h = $\overline{h}/B(n)$. It is clear that h is a Boolean homomorphism from B(n) into A and h(g) = $\overline{h}(g) = f(g)$, which proves that G is a set of free generators of the Boolean algebra B(n).

COMPUTATION OF $N(M_1)$. We know by paragraph 5, I) that

$$N(M_1) = N(Epi(L(n), B_1)) \le N(F(G, B_1)) = 2^n$$

We now prove that $N(Epi(L(n), B_1)) = N(F(G, B_1))$. The function r: $Epi(L(n), B_1) \longrightarrow F(G, B_1)$ which maps each epimorphism h: $L(n) \longrightarrow B_1$ into its restriction to G, is injective. Let us see that it is surjective. If $f \in F(G, B_1)$, it is clear that S(f(G) = $= B_1$. Since L(n) is free, f can be extended to a homomorphism $\overline{f}: L(n) \longrightarrow B_1$; \overline{f} is an epimorphism because $B_1 = S(f(G)) =$ $= S(\overline{f}(G)) \subseteq S(\overline{f}(L(n))) = \overline{f}(L(n))$, that is, $\overline{f}(L(n)) = B_1$. Moreover, $r(\overline{f}) = \overline{f}/G = f$. Therefore, $N(M_1) = 2^n$.

COMPUTATION OF $N(M_2)$.

LEMMA 6.3. If $X \subset B_2$ and $S(X) = B_2$, then $B(X) = B_2$.

The application r: $\operatorname{Epi}(L(n), B_2) \longrightarrow F^*(G, B_2)$ such that r(h) = h/G, $h \in \operatorname{Epi}(L(n), B_2)$, is injective, and it is easy to prove that r is onto. Then $N(\operatorname{Epi}(L(n), B_2)) = N(F^*(G, B_2))$.

Consider B(n), the Boolean algebra generated by G. By Lemma 6.2, G is a set of n free generators of B(n). Consider \mathcal{H} the set of all the Boolean epimorphisms from B(n) into B_2 . Let us see that $N(F^*(G,B_2)) = N(\mathcal{H})$.

If $f \in F^*(G,B_2)$, we note \overline{f} the extension epimorphism from L(n) onto B_2 , and f' the restriction of \overline{f} to B(n). We know that f' is a Boolean homomorphism. Moreover, $B_2 = S(f(G)) = S(f'(G)) =$ = $B(f'(G)) \subset f'(B(n))$, that is, f' is a Boolean epimorphism. We

define $\varphi(f) = f' \cdot \varphi$ is a mapping from $F^*(G, B_2)$ into \mathcal{H} . It is clear that φ is biyective. Since B(n) has 2^n atoms, and B_2 has two atoms, it is well known that $N(\mathcal{H}) = V = \frac{2^n!}{(2^n-2)!}$ ([6], [7]).

Then
$$N(M_2) = \frac{N(\text{Epi}(L(n), B_2))}{N(\text{Aut}(B_2))} = \frac{N(F^*(G, B_2))}{2} = \frac{N(\mathcal{H})}{2} = \frac{V(\mathcal{H})}{2} = \frac{V_2^n, 2}{2} = \binom{2^n}{2}$$

Therefore $L(n) = B_1^{2^n} \times B_2^{\binom{2^n}{2}} = B_1^{2^n} \times B_2^{\frac{4^n-2^n}{2}}$ and

 $N(L(n)) = 2^{2^n} \times 4^{\frac{4^n - 2^n}{2}} = 2^{4^n} = 2^{2^{2n}}$. Which coincides with the results obtained by A. Monteiro [5].

BIBLIOGRAPHY

- BIRKHOFF G., Lattice Theory, American Mathematical Society Colloquium Publications. Vol. 25, 3rd. ed. Providence, 1967.
- [2] MOISIL Gr. C., Algebra schemelor cu elemente ventil, Revista Universității "C.I. Parhon" și a Politehnicii Bucarești, 4-5, 9 (1954).
- [3] MOISIL Gr. C., Essais sur les logiques non chrysippiennes. Editions de l'Academie de la Republique Socialiste de Roumanie, Bucarest, 1972. p. 694-698.
- [4] MONTEIRO A., Algebras de Boole Involutivas, Revista de la Unión Matemática Argentina. Vol. XXIII, N°1, (1966) p. 39.
- [5] MONTEIRO A., Algebras de Boole Involutivas, Lectures given at the Universidad Nacional del Sur, Bahía Blanca, Argentina, (1969).
- [6] SIKORSKI R., On the inducing of homomorphisms by mappings, Fund. Math. 36 (1949), p. 7-22.
- [7] SIKORSKI R., Algebras de Boole, Notas de Lógica Matemática N°4 (1968). Instituto de Matemática. Universidad Nacional del Sur, Bahía Blanca, Argentina.

Departamento de Matemática Universidad Nacional del Sur Bahía Blanca, Argentina.

Personal address: Calle Rodriguez n°1551 8.000 Bahía Blanca.Argentina.

Recibido en junio de 1975