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ON THE INVARIANT FACTORS 

Enzo R. Gentile 

Let R be a commutative ring with identity 1 # O. We say that an R-mo 

dule M has a principal representation if there exists a sequence 

Al" .. ,An of ideal s of R satisfying: 

i) R # Al ~ '" ~ An # O 

ii) M ~ R/A l e ... e R/An 

where denotes R-module isomorphism. Under these conditions we simply 
say that (Al, ... ,An) gives a principal representation of M. 

In this Note we intend to give an elementary proof of the following 

known resul t, on the uniqueness of the ideals (Al"" ,An) (See [11 , 

Prop . 2, § 4, W 1). 

THEOREM. Let (Al"" ,An) and (B l , ... ,Bm) give principaZ representa

tions of an R-module M. Then 

m1) n = m 

m2) Ai = Bi ' for alZ i = 1, ... ,n . 

It is a well known and classical result that if R is a principal ideal 
domain, then there is, for any finitely generated torsion module, a 

principal representation associated to it. 

The sequence of ideals (Al, ... ,An) are then called the invariant fac

tors of the module. 

The present proof avoids the use of exterior algebras (loc.cit.) and 
improves our first version as given in [21 using tensor producto In 

the case of R = Z, the ring of rational integers, the proof is even 
simpler since one can use there cardinality arguments. 

NOTATION ANO PREREQUISITES. 

a) For any pair of R-modules A and B, we denote with Hom(A,B) the 

R-module of R-morphisms of A into B. We shall use the elementary fun~ 
torial properties of Hom, such as the fact that it commutes with 
finite direct sums. 

b) Let A and B be ideals of R. With (A:B) we denote the quotient 
ideal of R of all r satisfying rB e A. If x E R we shall write, by 

abuse of notation, (A:x) to denote the ideal of R of all r satisfying 
r.x E A. Clearly (A:x) = R if and only if x E A. 
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Let A be an ideal of R. Considering the natural R-module structure of 
R/A, x(R/A), for any x E R, is a submodule of R/A. 

To start ,with, we prove two lemmas. 

LEMMA 1. Thepe is a natupal isomopphism 

R/(A:x) "" x(R/A) 

fop any x E R. 

Ppoof. The following diagram 

f 
R ----->-> R/ A 

f 
R > R/A 

where f is the canonical morphism, mx is the multiplication by x in 
R and m~ is the multiplication by x (as operator) in R/A, is commu
tative. Therefore 

x(R/A) = m~(f(R)) = f(mx(R)) 

and since Ker(f.mx ) = (A:x) we are done. 

R/(Ker(f.mx)) 

LEMMA 2. Let A and B be ideals in R. Then thepe is a natupal isomop

phism 

Hom(R/A,R/B) "" (B:A)/B. 

Ppoof. Let lA and lB denote the canonical generators of the cyclic 
modules R/A and R/B, respectively. The morphisms of R/A into R/B are 
of the form lA ---+ k.1 B ' with k E R. Now, an element k E R defines 
actually a morphism of R/A into R/B if and only if: for every y E A, 
k.y E B. But this is equivalent to saying that k E (~:A). Moreover 
k E (B:A) defines the null morphism if and only if k E B. This shows 
well the isomorphism above. 

PROOF OF THE THEOREM. 

Let us be given an isomorphism 

(1) 

Let T be a maximal proper ideal of R containing Al' By taking 
Hom( ,R/T) on both sides of (1), by using Lemma 2 and the fact that 
(T:A i ) = R for all i, i = 1, ... ,n , we get an isomorphism 

(2) R/T E& ••• EIJ R/T "'" (T:Bl)/T E& ••• E& (T:Bm)/T 

We observe that (2) is an isomorphism of R/T - modules. Since the 
quotient R/T is a field, (2) is an isomorphism of R/T - vector spaces. 
Furthermore we have that 

T or R ,hence (T:Bi)/T R/T or O 
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for a11 i , i = 1, ... ,m 

By the remark above and the invariance of the dimension for vector 
spaces, app1ied to (2) we conc1ude that n ~ m. 

The same argument shows that m ~ n. Therefore.n 

the first part of the Theorem. 
m and this proves 

Let us see the second parto First of a11 ~bserve that Am 

sides of (1) are annihi1ated by Am and Bm' 

B for both 
m 

Assume that for sorne index j is A. ~ B., 1 ~ j < m. Without 1055 of 
J J 

genera1ity we can suppose 

there exists (say) x E A. 

that j is minima1 with that property. Then 

J 
and x ~ B .. Consequent1y, 

J 

(A i :x) = R for al! i , i ~ j , 
i < j =ojo A. = B. ==> (B i : x) R , and 

l. l. 

(Bs:x) ~ R for al! j ~ s ~m 

The restriction of the isomorphism (1) to the mu1tip1es of x and Lem

ma 1, give an isomorphi3m 

(3) $ R/(A :x) ~ R/(B.:x) $ ••• $ R/(B :x) 
m J m 

Next, observe that (3) gives isomorphic principal representations.By 

the first part of the theorem both must have the same number of terms. 

But this is clear1y not so. We get a contradiction, therefore Ai = Bi 
for all i, i = 1, ... ,m . This completes the proof of the Theorem. 

CASE R = Z THE RING OF RATIONAL INTEGERS. The proof can be simp1ified 

by using cardina1ity arguments. We i11ustrate it by proving part m1) 

of the Theorem. 

Let us denute, for any positive integer d, with Zd the group of in-

tegers module d. Let d1 ,· .. ,dn ; sl,···,sm be integers satisfying 

< di' i ~ j ~ d. I d. 1 ~ i,j ~n 
l. J 

< Sj' i ~ ==> s. I s. , 1 ~ i,j ~m 
l. J 

(where I denotes divisibi1ity in Z). Moreover assume an isomorphism 

(4) $ Z 
s 

m 

We get, by taking Hom( ,Zd ) on both sides of (4), an isomorphism 
1 

(S) Zd $ ••• $ Zd ~ Z( d) $ ••• $ Z( d) 
1 1 sI' 1 sm' 1 

where ( , ) denotes greatest common divisor. 

By cardina1ity we must have 

(6) 

But since (51 ,dI) ~ dI' (6) implies n ~ m. In t.he same way we prove 
that m ~ n. Therefore n = m. 
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