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ON THE RELATION BETWEEN DARLINGTON REALIZATIONS OF CONTRACTIVE
AND j-EXPANSIVE MATRIX-VALUED FUNCTIONS

Elsa Cortina

ABSTRACT. We obtain in this paper a relation between the matrices of
coefficients of Darlinton realizations of a j-expansive matrix-valued
function T(z) and the contractive matrix-valued function. S(z), given,
in. terms of T(z) as a linear fractional transformation, over T(z),
with constant coefficients.

1. We recall some known results on contractive and j-expansive'matrik-
valued functions [1,2,3].

A matrix S is called contractive if I -S%S > 0, where I is a unit ma
trix and the symbol * denotes Hermitian conjugation.

Let J be a matrix for which J* = J and J2 = I. A matrix A is called
J-expansive if A*JA - J > 0, and J-unitary if A*JA - J = 0.
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For a j-expansive matrix T, of order 2n, the following matrix is defi

We set P = 2(I, + ) and Q = 2, - §), where j =

ned
-1 0 I,
S = (QT+P) (PT+Q) "J_ , where J_ = . (1;1)
P P 1 0
n
Since I - S*S = JP(QT+P)*'1(T*jT-j)(QT+P)'1JP,

we can afirm that the matrix T is j-expansive if and only if the ma-
trix S, defined by (1;1), is contractive. The matrix T is expressed,

in terms of S, by the formula T = (Q-SJPP)'I(P-SJPQ).
A matrix-valued function S(z) (z=reit) defined on the unit circle

D = {z; |z|] <1}, is called contractive if it is holomotphic and
1S(z)IIl < 1 (z € D). We use S to design this class. S(z) € S is inner

if it satisfies a.e. I-S*(£)S(E) = 0 (g=elt).

A meromorphic matrix-valued function A(z) (z € D) is J-expansive if
it assumes J-expansive values at each point of holomorphicity z, i.e.

A*(z)JA(z) - J >0,

and A(z) is J-inner if it is J-expansive and it satisfies
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A*(E)JA(E) - J = 0 a.e.

Henceforth we will consider a j-expansive matrix-valued function T(z)
(z € D) of order 2n.

In accordance with formula (1;1), T(z) is j-expansive if and only if
the matrix-valued function

S(z) = [QT(z)+P][P+T(z)Q]‘1Jp (1;2)

belongs to the class S. T(z) is given, in terms of S(z), by the formu
la '
T(2) = [Q-S(2)J PI'[P-8(2)J QI (153)

A paper by Efimov and Potapov [1], which studies the applications of
J-expansive matrix-valued functions to passive electrical networks,
shows that an arbitrary passive 2-port can be obtained by connecting

a passive 2-port across the output of a lossless 4-port. A combination
of this result and Arov's results [2] leads us to establish, in Sec.2,
a relation between the linear fractional transformations of a j-expan-
sive matrix-valued function T(z) and the corresponding contracfive ﬁg
trix-valued function S(z) given, in terms of T(z), by (1;2).

2. Darlington realization of a contractive matrix-valued function S(z)
means the representation of S(z) as the linear fractional transforma-
tion [ 2]

S(z) = [a(z)e+B(2)1[y(2)e+s(2)]1 " (z;1)

over a constant matrix € € S with a j-inner matrix of coefficients

a(z) B(Z)}

G(z) = [
y(z) 8(z)

We shall consider also a Darlington realization of a j-expansive ma-
trix-valued function T(z), of order 2n, i.e. the representation of
T(z) as the linear fractional transformation [4]

T(z) = [A(2)t+B(2)1[C(z)t+D(z)] "} (2;2)

over a j-expansive constant matrix t, with a J'-inner matrix of coef-
ficients
A(z) B(z) j 0
, where J' =
C(z) D(2) 0 -3

THEOREM 2.1. Let T(z) be a j-expansive matrix-valued function (z € D)

of order 2n, that admits a representation (2,2) and satisfies one of

W(z) =

the following conditions
i) T*(&)jT(&)-j> 0 a.e., ii) T*(E)jT(E)-j = 0 a.e.;

and 5{z) the contractive matrix-valued function given, in terms of
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T(z), by formula (1;2). Then, S(z) has a Darlington realization (2;1),
with a matrix of coefficients G(z) related to the matrix of coeffi-
cients W(z), of the representation (2;2), by the expression

G(z) = R*W(z)Rt, {2;3)

where R =

[Q PJp

and t; 18 a constant matriz.
P QJp

Proof. i) We shall prove the thesis when T(z) satisfies condition i)
with '

t = % (Q+5P+J.) (2;4)
1
: /5 I, = (Q-P+2Jp)
and t, = 7 : (2;5)
= (Q-P+2J) /51,

Let us consider the representation (2;2) of T(z) over the matrix t gi-
ven by (2;4), and introduce the notation

a),(2) a;,(2)

A(z) = [

J . B(2) [bll(z) blz(z)J

3.21(2) 322(2) b21(Z) bzz(z)

C(z) =

[cll(z) clz(z)

. (2;6)
€y1(2) Gy,(2) J

] . De2) [d11(z) dy,(2)

d,,(2) dy,(2)

Therefore we can set

T(z) d&f t11(2) ty,(2) ]
t21(2)  ty,(2)

]
%[311(Z)+a12(z)] *by;(2) %[311(Z)+5312(z)] * by,(2)
~%[321(z)+a22(z)] * by (2) %Iazl(z)+sazz(z)]'+ bzz(z)l
(1 1 Tt
Zle1(2)*e, (23] + d) (2) Zle;;(2)+5¢ ,(2)] + 4}, (2)

. : (2;7)
\%[°21(Z)*C22(z)] *dy () 7lcy, (2)¥5e,5 ()] + dpp(2))

It is useful to introduce now the expressions
a,(z) = %[a11(2)+a12(2)] *by(2) ;5 a,(2) = %Ia11(2)+5a12(2)]+ by, (2);

718y, (2)%a,,(2)] + by (2) 5 a,(2) = Hla,, (2)+5a,,(2)] + by, (2);

a5(2)
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CI(Z) = 12'[C11(Z)+C12(2)] + dll(z) 5 CZ(Z) = %—[CII(Z)-‘-SCIZ(Z)] + dlz(z);

ey () = Tley (D)vey, ()] + &y (2) 5 cu(2) = gl (2)+5c,, (201 + dpy(2).

(2;8)
Hence from (2;7) and (2;8) it results
612 = [az(z)-al(z)cgl(z)CA(Z)][c2(Z)-Cl(Z)C;1(Z)C4(Z)]_1 ;
t,,(2) = Lay(2)-a,(2)e]  (2)e, (DL, (2)-cy(a)e] (e (7 5
ty,(2) = [a4(z)-a3(z)c;1(z)c4(z)][cz(Z)-cl(Z)Cgl(Z)c4(Z)l'1 ;
t,,(2) = La, (2)-a5(2)e]  (2)e, (D)e, () -cq2)e] (e (171 o (259)

Replacing (2;5) and (2;6) in (2;3), we obtain the matrix-valued func-

tion
[a(Z) B(Z)]
G(Z) = =
y(z) 8(z)
1
E [ Q P [|A(z) B(2)|]|Q PJP V5 I 7§ (Q-P+2Jp)
-3 ,

\QJp PJp C(z) D(z) | |P QJ

1
o) |7 (Q-P+2J) /5,

whose blocks are

a(z) = {[QA(z)+PC(z)1Q + [QB(z)+PD(z)IP} é; I, +
. 1 o .
{[QA(2)+PC(2)1PJ  + [QB(z)+PD(z)]QJP} v (Q-P+23)) ;
B(z) = {[QA(2)+PC(2)1Q + [QB(2)+PD(2)1P} —— (Q-P+2J ) +
. 2/5 P
+ {[QA(2)+PC(2)1PJ + [QB(2)+PD(2)1QJ .} S,
y(z) = {[QJPA(z)+PJpC(z)]Q + [QJPB(Z)+PJPD(Z)]P} %? I, o+
1 .
+ {[QJPA(z)+PJpC(Z)]PJp + [QJPB(z)+?JPD(z)1QJp},E7§ - (Q-P+2J));
- | 1 (o-p+
8§(z) = {[QJPA(Z)+PJPC(Z)]Q + [QJPB(z)+PJPD(z)]P} e (Q-P ZJP) +
/5 .
+ {[QJpA(z)+PJpC(z)]PJP + [QJPB(z)+PJpD(z)]QJP} —Trlzn. (2;10)

Observe that, since W(z) is J'-inner, G(z) is, by its construction,

-1, 0
n

o, -inner, where Jon = l 0 I

]. Then, the linear fractional trans
2n

I *
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formation (2;1) over the matrix e = 02n, with G(z) as matrix of coef-

ficients, is a representation of some contractive matrix-valued func-
tion S(z) (z € D), of order 2n. Let us calculate S(z) by replacing
the expressions (2;10) in the formula

s(z) = 8(z) 6" '(2).

We have

S(z) = {Qly A(2) (Q+5P+3)) + B(2)] + Plg C(2) (Q+5P+J)) + D(2)]} .

.{QJp[% A(2) (Q*5P+J ) + B(2)] + PJp[% C(2) (Q+5P+T ) + Dz}t

Hence from (2;8) it follows that

. )
Ty, (2)+a,,(2)1+b, (2)  Zlag, (2)+5a,,(2)]+b,(2)
S(z) =
hlz-[c21(z)+c22(z)] *dy, (2) 7leg; (2)45¢5, ()] +dy, (2]
(1 1 174
712y, (2)+a,y,(2)1+by, (2) 7la,y (2)+52,, (2)1+by, (2)
k%[cn(z)*clz(z)] *d,(2) 17[C11(Z)+5°12(Z)]+d12(z),

After elementary calculations we can obtain the blocks of S(z)

s,,(2) = [a,(2)-a, ()] (2)e, ()1l a, (2)-ay(2)c]  (R)ey (2)17F 5

s;,(2) [.':12(2)-al(z):agl(z)z14(z)][c2(z)—cl(z)agl(z)aa(z)]—1 ;

s,,(2) = [c, (2)-c ()]t (2)e, ()]l a, (2)-ay(2)c]  (R)ey(2)17F 5

$,,(2) [ca(z)-cacz)agl(z)a4(z)][czgz)—cl(z)aglcz)aa(z)]‘1 . (2;11)

The j-expansive matrix-valued function related to S(z) by (1;3) is
s.,(2)-5,,(2)s5](2)s,,(2) s, (2)s51(2)
12 11 21 22 11 21
—s_l(z)s (z) s_l(z)
21 22 21

To prove the thesis, we have to show that this matrix-valued function
coincides with T(z). From (2;9) and (2;11) it is immediate to see that

tzz(z) = s;i(z) N tlz(z) = sll(z)sgi(z).

We will show now that s;i(z)szz(z) = t21(z). Using the expressions
(2;11) we obtain

s;i(z)szz(z) = [ah(z)—aa(z)czl(z)cz(z)][c4(z)-c3(z)czl(z)c2(z)]_l .

Le, (2)-cy(2)a3}(2)a, (2)]lc,(2)-c, ()3} ()a, (2217
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s;i(z)szz(z) —{[a4(z)-a3(z)¢;1(z)c4(z)] + [a3(z)c;1(z)c4(z)
- ay(2)c] (e, (D) e, (2)-cq(2)c]  (2)e, ()17 .

Alc, (2)-cq(2)c] (2)cy ()] + Leg(z)e]  (2)c,(2) -

- c3(2)a;1(2)a4(2)1}lCZ(Z)-c1(2)a§1(23a4(Z)l_1

[a,(2)-a,(2)c;  (2)c, (2)] {1, + [c,(2) -
- ey (e (e, (] ey (2)e;  (2)l ey (2) ¢y (2)a3  (2)a, ()13
'[cz(z)—cl(z)agl(z)al}(z)]-1 + a3(z)c;1(z) [c,(2) -

- cy(m)az (2)a, ()]l cy(2) ¢ (2)aj (2)a, (217! =

[a,(2)-a,(2)c; (2)c, (2)1{lcy(2)-c, (2)a5 (2)a, ()17} +
+ {ey ()3t (Dl ey () -c5(2)c] (), ()11 M ay(2) 5 (a).

. [cz}(z)-c3(z)a;1(z)a4(2)][cz(z)-c:l(z)a:;l(z)az‘(z‘)]'1 =

[a4(z)—a3(z)c;1(z)c4(z)][cz(z)-cl(z)cgl(z)c4(z)]_1 +
+ La, (2)-a,(2)c; (2)c, (2) + az(z)cs  (2)c, (2)-a,(2)] .

. [cz(z)_-cl(z)a3(z)a4(z)]_1 =

[a,(2)-a,(2)c; (2)c, (2], (2) ¢, (z)c; (2)c, (217" =
ty)(2).
To finish the proof of i), it only remains to show that
t)1(2) = 51,(2)-5),(2)551(2)5,,(2). (2;12)

Replacing expressions (2;8) in the preceding relation it results
Slz(z)'Sllcz)szi(z)szz(z) = {[az(z)'al(z)agl(z)a4(z)] :

- Ley(2)-c (2)a3' (2)a, (217! [y (2) ¢ (2)c3  (2)e, (2)] +
+ Lay(2)-a, (2)c]  (2)ey (2)1la, (2)-a (2)c]  (2)c, ()] 7!

. [aA(z)—a3(z)c;l(z)c4(z)]}[cz(z)-cl(z)cgl(z)CA(z)]_1. (2;13)

After long but elementary calculations we obtain the following form
for the factor inside braces:

[a,(2z)-a, (2)a] (2)a,(2)][c,(z)-c, (2)a; (2)a,(2)] " .
-[CZ(Z)-CI(ZJCEI(Z)C4(Z)] + [az(Z)-al(Z)czl(Z)cz(Z)] .

La,(2)-a,(2)c M (2)c, (217} [a, (2)-a,(2)c;  (2)c, (2] =
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[a,(2)-a,(2)c3 (2)c, ()] + a (2)e3t(2)e, (2)-a{z)
Alazt()ag(2) -5  (2)e (22171 + [ejt(2)e) (2) -2, (2)ag ()17} -
- €3l (2)e, (2) = a,(2)-a; (2)c; (2)c, (1) (2514)
Replacing (2;14) in (2;13) it results
$12(2)-5,,(2)551(2)5,,(2) = [a,(2)-a,(z)c5 (2)c, (2)lc,(z) -
-c; ()3t (), (2171

From the preceding relation and (2;9), we conclude that (2;12) holds.
This completes the proof of part i).

ii) We will show that, when T(z) satisfies condition ii), the relation

(2;3) holds with t = I2n and

J 0
t, = [ P } (2;15)
n

Using the notation introduced in part i) for the blocks of W(z), i.e.
the expressions (2;6), and replacing t and (2;6) in (2;2), we have

: -1
T(z) = al(z) az(z) cl(z) cz(z) , (2:16)
33(2) aa(z) c3(z) c4(z) :

where

a;(z) = a;;(2)+b;,(2) ; a,(z) = a,,(2)+b;,(2) ; ay(z)=a,(2)+b, (2);

34(2) = azz(z)+b22(z) H CI(Z) C11(2)+d11(z) 5 C2(2)= Clz(z)"'dlz(z);

c3(z) c21(z)+d21(z) ; c4(z) = czz(z) + dzz(z). (2;17)
By virtue of (2;16) we can observe that the expressions (2;9) hold for
the blocks of T(z), but in this case with a;(z) and c;(z) (i=1,4) gi-
ven by (2;17)

a(z) B(z)
Let us write now the blocks of G(z) = [Y(Z) 6(2)] , applying (2;3),

(2;9) and (2;15).

a(z) = [QA(z)+PC(z)]QJp + [QB(z)+PD(z)] AN

B(z) = [QA(z)+Pc(z)]PJp + [QB(z)+PD(2)] QT

v(z) = [QJPA(z)+PJpC(z)] QJ, + [QJPB(z)+PJpD(z)] PI

8(z) = [QJpA(z)+PJPC(z)] PJp + [QJPB(Z)+PJPD(2)] QJp . o (2;18)

It can be easily checked that G(z) is, by its construction, j, -inner.
Then, the linear fractional transformation
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-1
[a(z)e+B(2)1[Y(2)e+8(2)] (2;19)
over the constant matrix € = IZn’ with G(z) as matrix of coefficients,
is a representation of a contractive matrix-valued function S(z). Mo-
reover, S(z) is, in this case, an inner matrix-valued function.

It follows from (2;18) and (2;19)
S(z) = {QlA(2)+B(z)] + PIC(2)+D(2)]1}J . 1QJ, (A(z)+B(2)1J +

-1
+ PJP[C(Z) + D(z)]JP} .
Hence using (2;15) we have

a, (z) a,(2) (aB(z) a,(z) -1

S(z) =
c3(z) c4(z) lcl(z) cz(z)

(2;20)

From the preceding relation it turns out that the blocks of S(z) are
given by expressions that take the form (2;11), with ai(z) and ci(z)
(i=1,4) defined by (2;15).

To complete the proof it only remains to show that we can obtain T(z)
réplacing S(z), given by (2;20), in (1;3). Note that, since the expres
sions defining T(z) and S(z) are, in this case, formally the same than
those of part i), the calculations we have to perform to conclude the
proof are also the same we have done in part i), and the results are
essentially similar.

This completes the proof of theorem 2.1.
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