Revista de la Unión Matemática Argentina Volumen 31, 1983.

WHAT F_{σ} SETS CAN BE NUMERICAL RANGES OF OPERATORS?

Domingo A. Herrero (*)

The classical Toeplitz-Hausdorff theorem asserts that if T is a bounded linear operator acting on a Hilbert space H, then its *numerical range* W(T) (defined by

$$W(T) = \{(Tx,x): x \in H, \|x\| = 1\}$$

is a nonempty bounded convex subset of the complex plane C. It is also known and easy to prove that the closure W(T) of W(T) contains the spectrum of T and that

$$\frac{1}{2} \leq \frac{1}{\|\mathbf{T}\|} \sup \{ |\lambda| : \lambda \in W(\mathbf{T}) \} \leq 1$$

(see [2, Chapter 17, p.114]).

In a recent article, J. Agler proved that if T acts on a *separable* Hilbert space H and the boundary W(T) of its numerical range does not contain denumerably many linear segments, then W(T) is an F_{σ} subset of C [1].

Agler's result suggests the obvious problem: For which nonempty bounded convex F_{σ} subsets F of C does there exist T = T(F) such that W(T) = F?.

A large family of examples will be exhibited; it will show that the boundary of W(T) can be very pathological and, in particular, that for each F as above there exists T such that W(T) is homeomorphic to F and "approximately equal" to F.

In addition to the above observations, we shall only need two results about numerical ranges:

(1) If $\{T_{\nu}\}_{\nu\in\Gamma}$ $(T_{\nu} \text{ acting on } H_{\nu} \text{ for each } \nu \text{ in } \Gamma)$ is a uniformly bounded family of Hilbert space operators and $T = \bigoplus_{\nu\in\Gamma} T_{\nu}$ denotes the direct sum of the T_{ν} 's acting in the usual fashion on the *orthogonal di* rect sum $H = \bigoplus_{\nu\in\Gamma} H_{\nu}$ of the underlying Hilbert spaces, then W(T) coincides with the *convex hull*, $co[\cup_{\nu\in\Gamma} W(T_{\nu})]$ of the union of the numerical ranges of the T_{ν} 's $(\nu \in \Gamma)$.

(*) This research has been supported by a National Science Foundation Grant. AMS CLASSIFICATION NUMBER: 47A12. (ii) (M. Radjabalipour and H. Radjavi [3]) If γ is a nonempty bounded open arc of a conic curve, then there exists an operator T_{γ} such that $W(T_{\gamma}) = co(\gamma)$.

The author wishes to thank Professor Jim Agler for several helpful discussions.

THE CONSTRUCTION. Let $F = \bigcup_{n=1}^{\infty} F_n$, where F_n (n = 1,2,...) is a nonempty closed subset of DD, and D denotes the open unit disk, and let $\varepsilon > 0$ be given. Define $T_0 = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$ (acting on C²). A straightforward computation shows that $W(T_0) = D$. In what follows, rD (r > 0) denotes the open unit disk of radius r. Assume that $\partial D \setminus F_1 = \bigcup_{n \in N_1} \gamma_{1n}$, where $\{\gamma_{1n}\}_{n \in N_1}$ is an enumeration of the (pairwise disjoint) arcs complementary to F_1 in ∂D . If γ_{1n} is an arc in this family with extreme points α_{1n} and β_{1n} (we shall always assume that γ is "positively oriented", so that $\gamma \subset \{\lambda: \text{ arg } \alpha < \text{arg } \lambda < \text{arg } \beta\})$, then we replace γ_{1n} by an arc of ellipse δ_{1n} tangent to ∂D at α_{1n} and at β_{1n} and $\delta_{1n} \subset (1+\epsilon/2)D \setminus D$. As observed above, there exists an operator T_{1n} such that $W(T_{1n}) =$ = $co(\delta_{1n})$. Define $T_1 = \bigoplus_{n \in N_1} T_{1n}$; then $M_1 = W(T_0 \oplus T_1) =$ = $co[W(T_0) \cup W(T_1)]$ is the *closed* convex set with boundary equal to $(\partial D \setminus \bigcup_{n \in N_1} \gamma_{1n}) \cup (\bigcup_{n \in N_1} \delta_{1n}).$ Assume that we have already defined T_0, T_1, \dots, T_m , so that $W(\stackrel{m}{=}_{0} T_n) =$

 $= \operatorname{co}[\underset{n=0}{\overset{m}{\smile}} W(T_n)] \text{ is a closed convex set } M_m \text{ satisfying the conditions}$ $(i)_m \quad D^{-} \subset M_m \subset (1 + \sum_{n=1}^{m} \varepsilon/2^n) D;$

(ii) ∂M_m has a continuous tangent;

 $\begin{array}{ll} (\text{iii})_{\text{m}} & \partial M_{\text{m}} = \begin{pmatrix} m \\ n=1 \end{pmatrix} F_{n}' \cup \begin{pmatrix} \bigcup \\ n \in N_{\text{m}} \end{pmatrix} \delta_{\text{mn}}, \text{ where } \prod_{n=1}^{m} F_{n}' = \partial M_{\text{m}} \cap (\cup \{\text{re}^{i\theta}: r > 0, e^{i\theta} \in \prod_{n=1}^{m} F_{n}\}) \text{ and } \{\delta_{\text{mn}}\}_{n \in N_{\text{m}}} \text{ is an enumeration of the (pairwise disjoint) open arcs complementary to } \prod_{n=1}^{m} F_{n}' \text{ in } \partial M_{\text{m}}; \\ (\text{iv})_{\text{m}} \text{ For each } n \in N_{\text{m}}, \delta_{\text{mn}} \text{ is an arc of ellipse.} \\ \text{Let } F_{\text{m}+1}' = \begin{pmatrix} \bigcup \\ n \in N_{\text{m}} \end{pmatrix} \cap (\cup \{\text{re}^{i\theta}: r > 0, e^{i\theta} \in F_{\text{m}+1}\}) \text{ and let} \end{array}$

 $\{\gamma_{m+1,n}\}_{n\in\mathbb{N}_{m+1}}$ be an enumeration of the (pairwise disjoint) open arcs of ellipse complementary to F'_{m+1} in $\bigcup_{n\in\mathbb{N}_m} \delta_{mn}$. Replace each of the arcs

41

 $\gamma_{m+1,n}$ by an arc of ellipse $\delta_{m+1,n}$ lying in the same angular sector as $\gamma_{m+1,n}$ and with the same extreme points, such that $\delta_{m+1,n}$ is tan gent to ∂M_m at those extreme points and $\delta_{m+1,n} \subset (1 + \sum_{n=1}^{m+1} \epsilon/2^n) D \setminus M_m$; then there exists an operator $T_{m+1,n}$ such that $W(T_{m+1,n}) = co(\delta_{m+1,n})$. Define $T_{m+1} = \bigoplus_{n \in N_{m+1}}^{\oplus} T_{m+1,n}$; then $W(\bigoplus_{n=0}^{m+1} T_n) = co[\bigcup_{n=0}^{m+1} W(T_n)]$ is a closed convex set M_{m+1} satisfying the conditions (i)_{m+1}, (ii)_{m+1}, (iii)_{m+1} and (iv)_{m+1} such that $\partial M_{m+1} \setminus \partial M_m = \bigcup_{n=1}^{m+1} F'_n$ is homeomorphic (via projection through the origin) to $\bigcup_{-1}^{m} F_{n} \subset \partial D$. Finally, we define $T = \bigoplus_{n=0}^{\infty} T_n$. Clearly, $W(T) = co[\overset{\circ}{\underset{n=0}{\overset{\circ}{\overset{\circ}}}} W(T_n)]$ satisfies: $D^{-} \subset W(T) \subset (1+\varepsilon)D;$ (i) ∂W(T) has a continuous tangent; (ii) (iii) $W(T) \setminus \partial W(T) = \bigcup_{n=1}^{\infty} F'_n$ (F'_1 is defined equal to F₁) is homeomorphic (via projection through the origin) to $\bigcup_{n=1}^{\infty} F_n = F$; and (iv) Each arc $\gamma \subset \partial W(T) \setminus W(T)$ is an arc of ellipse. Let $\rho = \rho(\theta)$ be the polar equation of $\partial W(T)$; property (i) implies that $1 \le \rho(\theta) < 1+\epsilon$ for all $\theta \in [0, 2\pi)$ and property (ii) says that ρ' is continuous. On the other hand, it is completely apparent that, by a clever choice of the arcs $\{\delta_{mn}\}_{n \in \mathbb{N}_{-}}$ (m = 1,2,...), we can also obtain $|\rho'(\theta)| < \varepsilon$, $0 \le \theta < 2\pi$, and (v) (vi) $|D^{\pm}[\rho'(\theta)]| < \varepsilon$ and $|D_{\pm}[\rho'(\theta)]| < \varepsilon$, where D^{+} and D^{-} , and D_{\pm} and D_ denote the right and, respectively, the left Darboux derivative numbers (of the continuous function $\rho'(\theta)$). THE GENERAL EXAMPLE. Ad hoc modifications of the previous construction show that, given an arbitrary bounded convex \mathtt{F}_σ subset H of C with nonempty interior and $\varepsilon > 0$, there exists an operator T = T(H, ε)

acting on a separable Hilbert space H such that W(T) satisfies the following conditions

(i) $H \subset W(T) \subset \{\lambda: dist[\lambda, H] < \varepsilon\},\$

(ii) Furthermore, given $\alpha \in$ interior H, T can be chosen so that there exists a continuous function $\rho = r(\theta)$ ($0 \le \theta \le 2\pi$) satisfying $1 \le r(\theta) < 1+\epsilon$, such that $W(T) = \{\alpha\} \cup \{\alpha + (\lambda-\alpha) \ r(\arg[\lambda-\alpha]) : \lambda \in H \setminus \{\alpha\}\}$. In particular, W(T) is homeomorphic to H, and $\partial W(T)$ is

homeomorphic to ∂H via projection through the point α .

REFERENCES

- J. AGLER, Geometric and topological properties of the numerical range, Indiana Univ. Math. J. (To appear).
- [2] P.R. HALMOS, A Hilbert space problem book, D. Van Nostrand, Princeton, New Jersey, 1967.
- [3] M. RADJABALIPOUR and H. RADJAVI, On the geometry of numerical ranges, Pac. J. Math. 61 (1975), 507-511.

Department of Mathematics Arizona State University Tempe, Az 85287 U.S.A.