
Revista de la 
Union MatemStica Argentina 
Volumen 31, 1984. 

A NOTE ON THE EXTENSION OF LIPSCHITZ FUNCTIONS 
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1. I NTRODUCT ION. 
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In many areas including optimization problems as well as some impo£ 
tant questions of analysis, we have to deal with functions F satis
fying a Lipschitz property only on a subset S. of the whole space E. 
It is important to know whether F can be extended to E preserving 
such a property, that is whether there exists a function Fs ' defi
ned and possessing a Lipschitz property on all of E, which coinci

des with F on S. For such a problem, an explicit formula for the e~ 
tension was given forty - five years ago by E.J .McShane [11 but one 
can propose here an alternative extension obtained by performing 
the infima I convolution of two functions associated with the data 
of the problem. Although conceptually identical to McShane's proce
dure, the extension by infimai convolution is more suitable for mi
nimization problems. The difference will also appear to be relevant 
when comparing generalized gradients of the respective functions. 

The first section is introductory; the second section deals with 
the definition and basic properties of the space of Lipschitz func
tions on a subset. In Section III we introduce the extension pro
cess. Section IV is devoted to comparison results between the gene
ralized gradient of th.e extended function and that of the initial 
function. I~ view of applications, we consider in Section V pro
blems dealing with optimization of the extended function. In parti
cular, it will be proved that the search for a global or local mini 
ma of F on S is equivalent to the same problem on E with the exten

sion as objective function. 

2. LIPSCHITZ FUNCTIONS. 

Let E be a real Banach space and let 11.11 denote the norm of E. 

Given a nonempty subset S of E, F: E -+R (the extended reals) is 
said to be Lipschitz on S with Lipschitz constant r ~ 0 if F is fi
nite on S and if 

IF(x) - F(y) I < r IIx-yO for all x,y in S (2.1) 
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The class of all such functions is denoted by Lip(S). The class of 
r 

all Lip(s) for r ~ 0 is the class of Lipschitz functions on Sand 
r 

is denoted by Lip(S). It is evident that FE LiP(S) only in the ca

se where 

IIIFIll = sup{ ·1 F (x) -F (y) 1 
IIx-yll 

y,x in S x -F y} < a> 

III Fill is the least number r such that (1.1) holds for F. 

Suppose that xES and define 

IIIFIII- = IF(x) 1 + IIIFIll for all F E Lip(S). 
x 

Then (Lip (S) ,111.111_) is a Banach space [2]. 
x 

(2.2) 

Sinte only the values of F on S are relevant for our purpose, we 
will make a constant use of F defined on E by 

F(x) = F(x) if xES +00 if not (2.3) 

In particular, the Lipschitz property of F on S may be expressed in 

tenns of the infimal convolution Fs which appears as the result of a 
, r 

sort of regularization as follows: 

Let F be non identically (+ 00) or (- 00) on S; then F E LiP(S) if 
r 

and only if 

fer 11.11 = F on S (2.4) 

which is, furthermore, equivalent to 

F IJ r 11.11 ~F on S (2.5) 

where the symbol IJ denotes infimal convolution defined by: Let g 
and h be two functions from E into R, the infimal convolution of g 
and h is a function, denoted by g IJ h, which assigns to x E E the 
value 

inf {g(u) + h(x-u)} . 
ue:E 

The general properties of this binary operation, particularly tho
se related to convex analysis are dev.eloped in [3]. 

3. EXTENSION OF THE RANGE OF A LIPSCHITZ FUNCTION. 

Let S be a nonempty subset of & and letF E L~P(S). In 1934, 

McShane showed that such a function F could be extended to the who
le space E by preserving a Li~schitz condition. Actually, his pro-

cedure yielded an explicit formula for the extension FS ' r which was' 



124 

FS,r(x) = sup {F(u) - r IIx-ull} 
UES 

(3.1) 

S r F' turns out to be Lipschitz on E with r as Lipschitz constant 
and coincides with F on S. 

We define another extension which is conceptually related to 
McShane's one [1]. The definition of the extended function F co-S,r 
mes na~vtally from paragraph 2 as 

F = For II .11 S,r 

In more explicit way 

inf {F (u) + r lIx-ull} for all x in E . 
UES 

(3.2) 

Clearly if F E Lip(S) then F E LiPCS) arid ~oincides with F on S. r S,r r 

4. THE GENERALIZED GRADIENT OF THE EXTENDED FUNCTION. 

Given a function F Lipschitz in a neighborhood of Xo E E, the gene

ralized gradient of F at Xo in Clarke's sense [5] is a subset of E* 
(topological dual space of E) denoted by aF(xo) and defined as fol
lows: 

where 

{x* E E*: <x*,d> < FO(xo;d) for all dEE} 

Lim sup F(x+Ad) - F(x) 
A 

(4.1) 

(4.2) 

The definition of the generalized gradient for an arbitrary function 
requires some preliminary definitions. Let E be a real Banach space, 
let A be a subset of E and let u E cl(A) (closure of A) . 

a 

DEFINITION 4.3. 15 is tangent direction to A at Uo if arid only if for every se

quencetu } c A converging to u and for every sequence {A } C R: 
", non 

converging to 0, there exists a sequence {on} converging to 0 such 

that u + A,O E A for all n. n n n 
Th~ cone of all tangent directions to A at Uo is the tangent cone to 

A at u and will be denoted by TA(uo)' Its polar cone, i.e. the set 
a 

of n in E* such that <n,o> < 0 for all o E TA(uo) is called the nor 

mal- cone to A at u and will be denoted by NA(uo)' 
a 

Let F: E ...,..... R be finite at x and Lipschitz around x Starting from 
a a 
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the geometric concept of tangent cone, the generalized directional de 

rivative of F at Xo is defined by 

(4.4) 

The relationship with the normal cone is given as follows: 

(4.5) 

For the indicator function of a. subse.t 5 . 

c(x/5) = 0 if x E 5 15 (x/5) = +00 if x fl. 5 

one has c(xo/5) N(5;xo)' For more details on what has been recal

led above, see [3). 

Concerning the generalized gradients of f and FS,r such as defined 

in the previous paragraph 3, we have a general comparison result: 

THEOREM 4.6. Let x in 5. Then, 
o 

a) for aZZ r ~ mFW, af(x )c aFs (x) + N(5;xo)' o ,r 0 

b) for aZZ r ~ III F III , aFs (x) caf(x ) n rB* where B* denotes the ,r 0 0 

aZosed unit baZZ in E*: 

Proof. a) 5ince.FS,r coincides with F on S, we have that 

f = Fs r + 15(./5). Then the announced result follows from thecalcu-, 
Ius rule giving an estimate of the generalized gradient of the sum 

of two functions [6, Theorem 2) . 

b) FS,r is Lipschitz with constant r, therefore 

FS,r(xo;d) ..; rll dll for all d and aFs,r(xo) 

If Xo is in int(5) , FS,r = Ii" =. F in a neighborhood 

Let now, Xo in 5 nbd(5); we have Fs,r(Xo);" f(xo) 

clusion 

is then equivalent to the following one 

T 'r(x ,F(x )) c T OF (x ,F(x )) 
ep1 0 0 ep1 S,r 0 0 

c rB* 

of xo; thus 

(4.7) 

Let (d,~) in T o-F(x ,F(x )). We consider a sequence {xn·} converging 
ep1 0 0 . 

to x and a sequence {).} c R*+ converging to O. With {x } and {A } 
on· n n 

we associate a sequence {x} c 5 such that X E M().2,x ) for all n 
n n. n 
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where M(.,.) is gliven as in Theorem 5.1. b) . 

Since r > III Fill , , fiC } converges to x , therefore the sequence 
n· 0 

{(xn,F(xn))}converges to (xo,F(xo )) in epiF. Since (d,].!) E 

E T .-F(x ,F(x )), there exists a sequence {(dn'].!n).} converging to 
ep~ 0 . 0 

(d,].!) such that xn + Andxi E Sand 

F(x • Ad)' < F(x ) + A].! for all n. n n- n n n n 

Due to the Lipschitz property of FS,r' we .get that 

FS (x + Ad) < F(x ) + r IIxn-xnll + An].!n ,r n n n n 

Since x E M(A 2 ,x ), we have that 
n n n. " 

FS (x + Ad) < Fs (x) + A (].! + An)' Hence, since ,r n n n . ,r n n n 

(dn,An+].!n) -+ .cd,].!), (d,].!) ETepiFs (xo,F(xo)) and the inclusion 
,r 

(4.7) is proved. (q.e.d.) 

5. OPTIMIZATION OF LIPSCHITZ FUNCTIONS. 

Given S a nonempty subset of E and F E L!P we consider the problem 

of minimizing (at least locally) F on S,: (P) minimize F on S. 

A device for converting the constrained optimization problem (P) 

into an unconstrained one is to consider 

(P*) minimize F on E. 

Of course, Xo is a local minimum of F on S if and only if Xo is a 

local minimum of Fon E. 

Similar properties hold for the extended ftm.ction F with the advan-S,r 
tage that Fs is finite and Lipschitz over all E. ,r 

THEOREM 5.1. Let S be aZose.d in E. 

a) Xo is a gZobaZ minimum of F on S if and onZy ifxo is agZobaZ 

minimum of Fs on E (r > 0). ,r 
b) Xo is a ZoaaZ minimum of F on S if and onZy if Xo is a ZoaaZ 

minimum of Fs on E bJhenever r > IUPId. ,r 

Proof· a) Let x in S such that F(u) ;;;. F(x. ) for all u in S. Clear 
0 0 

ly, Fs (x) = 
, 

inf {F(u) + r IIx-ull} = F(x ) for all x in E. 
,r ue:S 0 

Conve;r:sely, let x be a global minimum of F on E. The only thing 
0 S,r 
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to prove is that Xo ,necessarily belongs to 5. For that, we suppose 
that ds(x~) ~> 0 (distance from Xo to 5). 

Let ~ in 5 be such that 

FS' '(x ) > F (~) ,r 0 
+ r 

-5ince F ,agrees with F on 5 .nd x E 5, we have ~h*t S,r 

F (~) ~ F, (x) and II ~-x II ;;;0 a 
S,r. 0 0 

(S.2) 

That is inconsistent with inequality (5.2); hence' a=O and since 5 

is dosed x e: 5. 
o 

b), Let·xo in 5 be a'local minimum of Fan 5. 50, there exists P > 0 

such that F(u) ~ F(x ) whenever u E 5 and lIu-x II.;; P .. 
o "0 

There existS Po > 0 and Eo > 0 such that 

II x-xcII .;; Po ; E .;; Eo .. "~-xo" .;; p for all x in M(E ,x) , where 

M(E,X). ~u E 5/F (u) + r il x-ull .;; Fs (x) ,r 

~ith £ ~ 0 afi~ x ift E and M(x) ~ M(O,x) . 

Clearly; M(E~x)is"nonempty fOT all x in'E and all E > O. Fur,ther
more, if x E 5, M(x} contains x and is reduced to {x} whenever 

r >IIIFIII. 

Generally speaking, ,computing Fs,r(x) gives rise to an abstract op

timization problem. It is important to know the behaviour of the 
set of solutions or of approximate solutions. 

Consequently, F (x) ~ F(x ) whenever IIx-xo" .;; p . Conversely, let s, r ,0 ' 0, 

us prove that x local minimum 0, f Fs' on E is in 5. Then exists 
o jr 

p > 0 such that F (x) ~ Fs (x) if Ux-x II .;; p. Let us suppose S,r ,r 0 0 

that ds(x o) = a > 0; we set E < r/2 mln{p,a} and We choose ~ in 5 

satisfying Fs (x) > F(x) t rll~-x II-E. 
,r 0 0 

Sf - x 
Let 9 = 1/2 min '{p,a} andx* = x 

o 
+ 9' --:,-__ -",0",-, . We have that 

FS (x*) > F(~) + r II~-x II-E. 5ince x* e 5 and II~-x II '" 1I~-x*1I :! 9 
,r 0, 0 

we deduce from (5.2) that r9 < E ; hence the contradictionfroni the 
choice of E. (q.e.d.) 

REMARK. Let f: 0 -+ R be aftmction defined on an open subset 0 of Rn 

and Lipschitz in a ne'ighborhood of x . Let B(x , E) be a closed ball 
o ' 0 

around Xo of' radius included in O. 

We denote by r the ~ipschitz constant of f on B(Xo,E) and we set 
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f*= f .j. 0 where 0 is the indicator function of B(x ,E) 
B(xO'£) B(XO'£) 0 . 

defined by 

{
Oif x is in B(xo '£) 

0B x £ (x) = 
( 0' ) + 00 otherwise. 

Now, we perform the infimal convolution of f* and the function rll.II. 
that is 

f(x) . 

It is easy to see that by performing this operation we produce a 
function f such that 

i) f is 

ii) f(x) 

Lipschitz on the whole space with Lipschitz constant r~ 

f(x) when x is in B(xo '£)' 

iii) lim f(x) +00. 

II xll .... oo 

Now, if Xo is a local minimum of f on S, Xo becomes a global minimum 
of f* on S. In order to isolate xo' we may substitute 

"'" f(x) lIx-x 112 f(x) f: x --+- + for 
0 

"'" In a neighborhood of xo ' f is differentiable at x whenever f is dif-
ferentiable at x. Thus, is no trouble in the calculation of the ge-

neralized jacobian matrix and if F = (f,f1, .. ~,fm)t and 

"'" "'" t F = (f,f1, ... ,fm) then 

[4] 

So, one can safely regard Xo as a unique and strong global minimum 
of f on S and suppose that lim f(x) + 00 • 

II xll .... oo 
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