Revista de la Unión Matemática Argentina Volumen 31, 1984.

THE UNIQUENESS OF THE COVARIANT DERIVATIVE

Ricardo J. Noriega

1. INTRODUCTION.

It is very well known that with the components u_i of a covector, its partial derivatives $u_{i,j}$ and the components of a linear connection Γ_{jk}^{i} we can form a 2-covariant tensor, the covariant derivative of the covector relative to the connection, whose components are:

$$u_{i|j} = u_{i,j} - \Gamma_{ij}^{s} u_{s}$$
(1.1)

It is also known (for instance, see [4], pp.308-312) that the assump tion of the product rule and (1.1) define univocally the covariant derivative of any tensor of any type. In the classical tensor analy sis, the covariant derivative is motivated by the requirement that it must be linear in u_i and $u_{i,j}$, and the transformation rule for the connection is derived from the assumption that the covariant d<u>e</u> rivative is a tensor of type (1.1).

In this paper we prove a sort of a reciprocal. We show that, assuming linearity in the partial derivatives only and up to the order of the indices, the covariant derivative is the only 2-covariant tensor concomitant of a covector, its first partial derivatives and a symmetric connection. We do this essentially by working out the invariance identities [3] that tensorial concomitants must satisfy.

2. CONCOMITANTS OF A COVECTOR.

2. a) SCALARS

Let L be a scalar concomitant of a covector, i.e., $L = L(u_i)$. Then for any change of coordinates

$$x^{i} = x^{i}(\overline{x}^{j}) \tag{2.1}$$

it must be:

$$L(B_{p}^{i} u_{i}) = L(u_{p})$$

$$(2.2)$$

where $B_p^i = \partial x^i / \partial \overline{x}^p$. Differentiating (2.2) with respect to B_b^a and evaluating at $B_b^a = \delta_b^a$ we have $L^{;b} u_a = 0$, where $L^{;b} = \partial L / \partial u_b$, and since it must be satisfied for every covector, we deduce $L^{;b} = 0$. But then:

$$L^{,h} = \frac{\partial L}{\partial x^{h}} = \frac{\partial L}{\partial u_{b}} \cdot \frac{\partial u_{b}}{\partial x^{h}} = L^{;b} \cdot u_{b,h} = 0$$

and so L is a constant.

2. b) TENSORS OF TYPE (1.1) Let L_k^h be a concomitant of a covector, i.e., $L_k^h = L_k^h(u_i)$. Then for the change (2.1) it must be:

$$L_{k}^{h}(B_{s}^{p} u_{p}) = B_{k}^{i} A_{j}^{h} L_{i}^{j} (u_{s})$$
 (2.3)

where A_j^h is the inverse matrix of B_j^h , i.e., $B_j^h A_p^j = \delta_p^h$. For the change of coordinates given by $\overline{x}^i = \lambda x^i$ ($\lambda \neq 0$) we have from (2.3):

$$L_{k}^{h} (\lambda u_{i}) = L_{k}^{h} (u_{i})$$
(2.4)

Making $\lambda \rightarrow 0$ en (2.4) we see that $L_k^h(u_s) = L_k^h(0)$, and so:

$$L_{k}^{h;i} = \frac{\partial L_{k}^{h}}{\partial u_{i}} = 0$$
 (2.5)

Now we differentiate (2.3) with respect to B_b^a and set $B_b^a = \delta_b^a$ to obtain, from (2.5):

$$0 = \delta_{i}^{b} L_{a}^{h} - \delta_{a}^{h} L_{i}^{b}$$

Contracting b = i, we have:

$$n L_a^h = \delta_a^h L_b^b = \alpha \delta_a^h ,$$

where α is a scalar concomitant of u_i and so it is a constant, i.e., α is a real number. Making $\beta = \alpha/n$ we see that it must be, for any (1,1)-tensor concomitant of a covector:

$$L_{a}^{h} = \beta \delta_{a}^{b}$$
(2.6)

2. c) TENSORS OF TYPE (2.2)

Let L_{ij}^{hk} be a concomitant of a covector u_i , i.e., $L_{ij}^{hk} = L_{ij}^{hk} (u_i)$. Then, for the change (2.1), it must be:

$$L_{ij}^{hk} \begin{pmatrix} B_s^p & u \\ s & p \end{pmatrix} = B_i^p B_j^m A_s^h A_t^k L_{pm}^{st} (u_i)$$
(2.7)

$$L_{ij}^{hk} (\lambda u_p) = L_{ij}^{hk} (u_p)$$
(2.8)

Making $\lambda \rightarrow 0$ in (2.8), we see that $L_{ij}^{hk}(u_p) = L_{ij}^{hk}(0)$, and so:

$$L_{ij}^{hk;p} = \frac{\partial L_{ij}^{hk}}{\partial u_p} = 0$$
 (2.9)

Now we differentiate (2.7) with respect to B_b^a and evaluate at B_b^a = δ_b^a to obtain, from (2.9):

$$0 = \delta_{i}^{b} L_{aj}^{hk} + \delta_{j}^{bk} L_{ia}^{hk} - \delta_{a}^{h} L_{ij}^{bk} - \delta_{a}^{k} L_{ij}^{hb}$$

Contracting b = i we have:

n
$$L_{aj}^{hk} + L_{ja}^{hk} = \delta_a^h L_{ij}^{ik} + \delta_a^k L_{ij}^{hi}$$

Since L_{ij}^{ik} and L_{ij}^{hi} are tensors of type (1,1) concomitants of a covector, they must satisfy (2.6). Then:

$$n L_{aj}^{hk} + L_{ja}^{hk} = \alpha \delta_{a}^{h} \delta_{j}^{k} + \beta \delta_{a}^{k} \delta_{j}^{h} , \qquad (2.10)$$

 α and β being numbers. Changing h and a, we have a similar equation. Multiplying (2.10) by n and substracting y the latter, we obtain

$$(n^{2}-1) L_{aj}^{hk} = (n\alpha-1) \delta_{j}^{k} \delta_{a}^{h} + (n\beta-1) \delta_{j}^{h} \delta_{a}^{k},$$

and so, for n \neq 1, the concomitant L_{aj}^{hk} must be of the form:

$$L_{aj}^{hk} = \alpha \delta_{j}^{k} \delta_{a}^{h} + \beta \delta_{j}^{k} \delta_{a}^{k} , \qquad (2.11)$$

with α and β real numbers. From (2.10), the same is true for n = 1. Others concomitants of a covector have been studied elsewhere [2], but we will only need (2.11).

3. THE COVARIANT DERIVATIVE.

Let L_{ij} be a 2-covariant tensor concomitant of a covector, its first partial derivatives and a symmetric connection, i.e.,

$$L_{ij} = L_{ij} (u_k; u_{k,h}; \Gamma_{kh}^i)$$
 (3.1)

If we assume that L_{ii} is linear in $u_{k,h}$, then it must be:

$$L_{ij}^{;hk} = \frac{\partial L_{ij}}{\partial u_{h,k}} = L_{ij}^{;hk} (u_s, \Gamma_{st}^i)$$

It is known (see [1], Theorem A.2) that then it is: $L^{;hk} = L^{;hk}_{ij} (u_s)$, and so from (2.11) we see that

$$L_{ij}^{jhk} = \alpha \delta_{i}^{h} \delta_{j}^{k} + \beta \delta_{j}^{h} \delta_{i}^{k}$$

Integrating we obtain:

$$L_{ij} = \alpha u_{i,j} + \beta u_{j,i} + T_{ij} (u_h, \Gamma_{kl}^h)$$
 (3.2)

From the transformation rule for L_{ii} it is easy to obtain:

$$(\alpha+\beta) B^{i}_{hk} u_{i} + T_{hk} (B^{i}_{s} u_{i}, A^{i}_{s} B^{s}_{jt} + A^{i}_{s} B^{p}_{j} B^{m}_{t} \Gamma^{s}_{pm}) =$$
$$= B^{i}_{h} B^{j}_{k} T_{ij}(u_{s}, \Gamma^{i}_{st}) , \qquad (3.3)$$

where $B_{hk}^{i} = \partial^{2}x^{i}/\partial \overline{x}^{h} \partial \overline{x}^{k}$. Differentiating (3.3) with respect to B_{bc}^{a} and setting $B_{i}^{i} = \delta_{i}^{i}$, we have:

$$\alpha+\beta) \frac{1}{2} \left(\delta_{h}^{b} \delta_{k}^{c} + \delta_{h}^{c} \delta_{k}^{b}\right) u_{a} + T_{hk}^{; bc} = 0 , \qquad (3.4)$$

where $T_{hk}^{; bc} = \partial T_{hk}^{} / \partial \Gamma_{bc}^{a}$. From (3.4) we see that, if {b,c} \neq {h,k}, then it is $T_{hk}^{; bc} = 0$. Also from (3.4) we have:

$$T_{hk}^{; hk} = T_{hk}^{; kh} = -\frac{1}{2} (\alpha + \beta) u_{a}$$

(no summation convention here for h and k). Integrating and taking into account the symmetry of the connection:

$$T_{hk} = -(\alpha + \beta) \Gamma_{hk}^{i} u_{i} + S_{hk}^{i} (u_{i})$$
(3.5)

Replacing (3.5) in (3.3) we obtain the following:

THEOREM. If $L_{ij} = L_{ij}(u_i; u_{i,j}; \Gamma_{hk}^i)$ is a concomitant of a covector, its first partial derivatives and a symmetric connection, and if it is linear in the $u_{i,j}$, then it must be

$$L_{ij} = \alpha u_{i|j} + \beta u_{j|i} + \gamma u_{i} u_{j},$$

where the vertical bar stands for the covariant derivative relative to the given connection.

REFERENCES

- [1] Mc KELLAR, A connection approach to the Einstein-Maxwell field equations, Gen.Rel.Grav., vol.6, pp.467-488, 1979.
- [2] NORIEGA, R.J., Tensores deducidos de otros tensores y de sus derivadas ordinarias, Rev. Univ. Nac. Tucumán, A, mat.fís.teor., vol.25, n°1-2, pp.89-112, 1975.
- RUND, H., Variational problems involving combined tensor fields, Abh.Math.Sem.Univ. Hamburg, 29, pp.243-262, 1966.
- [4] SANTALO,L.A., Vectores y tensores con sus aplicaciones, EUDEBA, Buenos Aires, 1961.

Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires.

Recibido en abril de 1982.