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1. INTRODUCTION. 
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It is very well, known that with the components u i of a covector, its 

partial derivatives u .. and the components of a linear connection 
1.,J 

i r jk we can form a 2-covariant tensor, the covariant derivative of 

the covector relative to the connection, whose components are: 

s u.l. = u .. - r .. u 
1. J 1. ,J 1.J S 

(1. 1) 

It is also known (for instance, see [4J, pp.308-312) that the assUffi£ 
tion of the product rule and (1.1) define univocally the covariant 
derivative of any tensor of any type. In the classical ~ensor analr 
sis, the covariant derivative is motivated by the requirement that 
it must be linear in u. and u .. , and the transformation rule for 

1. 1. ,J 

the connection is derived from the assumption that the covariant de 
rivative is a tensor of type (1.1). 

In this paper we prove a sort of a reciprocal. We show that, assu­
.ming linearity in the partial derivatives only and up to the order 
of the indices, the covariant derivative is the only 2-covariant 
tensor concomitant of a covector, its first partial derivatives and 
a symmetric connection. We do this essentially by working out the 

invariance identities [3) that tensorial concomitants must satisfy. 

2. CONCOMITANTS OF A COVECTOR. 

2. a) SCALARS 

Let L be a scalar concomitant of a covector, i.e., L 
for any change of coordinates 

it must be: 

L(u ) 
p 

(2.1:1' 

(2.2) 
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where Bi 
p 

axi/axp • Differentiating (2.2) with respect to B: and 

1 · Ba..,a h'b 'b / l't eva uat1ng at b = U b we ave L' ua = 0, where L' = aL a~, and since 

must be satisfied for every covector, we deduce L;b = O. But then: 

'b 
L' . u b ,h = 0 

and so L is a constant. 

2. b) TENSORS OF TYPE (1.1) 

Let L~ be a concomitant of a"covector, i.e., L~ 

the change (2.1) it must be: 

(2.3) 

where A~ is the inverse matrix of Bh i e B~ Aj ah . For the chan J j' .. , J P P 

ge of coordinates given by xi = Axi (A # 0) we have from (2.3): 

Making A + 0 en (2.4) we see that L~ (us) 

aLh 
k 

au. 
1 

o 

L~ (0), and so: 

No1" we differe"ntiate (2.3) with respect to B: and set B: 
tain, from (2.5): 

Contracting b i, we have: 

(2.4) 

(2.5) 

\Sa to ob 
b 

where a is a scalar concomitant of ui and so it is a constant, i.e., 

a is a real number. Making a = a/n we see that it must be, for any 

(l,l)-tensor concomitant of a covector: 

2. c) TENSORS OF TYPE (2.2) 

Let L~~ be a concomitant of a covector u1" 1J 

Then, for the change (2.1), it must be: 

i. e. , 

L~~ (BP U ) = B~ B~ Ah Ak Lst (u1") 
1J s P 1 J s t pm 

(2.6) 

L~~ 
1J 

L ~~ (u 1"). 
1J 

(2.7) 
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-i For the change of coordinates given by x Axi (A # 0), we have 
from (2.7): 

(2.8) 

hk Making A + 0 in (2.8), we see that Lij (up) L~l; (0), and so: 1J 

eL~~ 
~ 
au 

p 

o (2.9) 

Now we differentiate (2.7) with respect to Ba 
b and evaluate at Ba 

b 
oa 

b 
to obtain, from (2.9) : 

0 o~ Lh~ + o~k L~k oh L~~ ok L~~ 1 aJ J 1a a 1J a 1J 

Contracting b i we have: 

·k hi Since L:. and L .. are tensors of type (1,1) concomitants of a covec-
1J 1J 

tor, they must satisfy (2.6). Then: 

n Lh~ + L~k = ao h o~ + Sok oh 
aJ Ja a J a j , 

(2.10) 

a and S being numbers. Changing h and a, we have a similar equation. 

Multiplying (2.10) by nand substracting y the latter, we obtain 

and so, for n # 1, the concomitant Lhl; must be of the form: aJ 

(2.11) 

with a and S real numbers. From (2.10), the same is true for n = 1. 

Others concomitants of a covector have been studied elsewhere [2], 

but we will only need (2.11). 

3. THE COVARIANT DERIVATIVE. 

Let L .. be a 2-covariant tensor concomitant of a covector, its first 
1J 

partial derivatives and a symmetric connection, i. e. , 

(3 . 1 ) 

If .we assume that L .. is linear in uk h' then it must be: 1J , 
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L. ~hk (us' ri ) l.J S t 

It is known (see [1], Theorem A.2) that then it is: L;hk 

and so from (2.11) we see that 

a,O~ o~ + S o~ o~ l. J J l. 

Integrating we obtain: 

h L .. = a, u .. + S u .. + Tl.. J. (uh , r kn ) l.J l.,J J,l. ~ 

From the transformation rule for Lij it is easy to obtain: 

(a,+S) B!k u i + Thk (B! u i ' A! Bj t + A! B~ B~ r:m) = 

= B! B~ Tij(us ' r!t) , 

(3.2) 

(3.3) 

where B~k 

and setting 

a2x i /oxh oxk . Differentiating (3.3) with respect to Bb~ 
i i 

Bj = OJ' we have: 

(a,+S) i (o~ o~ + o~ o~) u a + Thk b~ = 0 , (3.4) 

where T~~ b~ = aThk/ar~e. From (3.4) we see that, if {b,c} , {h,k}, 

then it is . be 
Thk a = O. Also from (3.4) we have: 

(no summation convention here for hand k). Integrating and taking 
.into account the symmetry of the connection: 

Replacing (3.5) in (3.3) we obtain the following: 

THEOREM. If L .. l.J 

(;3.5) 

its first partiaZ derivatives and a symmetric connection, and if it 

is Zinear in the u. ., then it must be l.,J 

where the verticaZ bar stands for the covariant derivative reZative 

to the given connection. 



196 

REFERENCES 

[1] Mc KELLAR, A eonnee~ion ~pp~o~eh ~o ~he Ein¢~ein-M~xwell 6ield 
equ~~ion¢, Gen.Rel.Grav., vol.6, pp.467-488, 1979. 

[2] NORIEGA,R.J., Ten¢o~e¢ dedueido¢ de o~~o¢ ~en¢o~e¢ y de ¢u¢ d~ 
~iv~da¢ o~dina~i~¢, Rev. Univ. Nac. Tucumin, A, mat.fis;teor., 
vol.25, nOl-2, pp.89-112, 1975. 

[3] RUND,H., Va~i~~ional p~oblem¢ involving eombined ~en¢o~ 6ield4, 
Abh.Math.Sem.Univ. Hamburg, 29, pp.243-262, 1966. 

[4] SANTALO,LiA., Vee~o~e4 y ~en¢o~e¢ eon ¢u¢ aplie~eione¢, EUDEBA, 
Buenos Aires, 1961. 

Departamento de Matemitica 
Facultad de Ciencias Exactas y Naturales 
Universidad de Buenos Aires. 

Recibido en abril de 1982. 


