Revista de 1la 192

Unidn Matemitica Argentina
Volumen 31, 1984.

THE UNIQUENESS OF THE COVARIANT DERIVATIVE

Ricardo J. Noriega

1. INTRODUCTION.

It is very well, known that with the components u of a covector, its

partial derivatives u, j and the components of a linear connection
£

i

ij

the covector relative to the connection, whose components are:

we can form a 2-covariant tensor, the covariant derivative of

AP rjj u, (1.1)
It is also known (for instance, see [4], pp.308-312) that the assump
tion of the product rule and (1.1) define univocally the covariant
derivative of any tensor of any type. In the classical tensor analy
sis, the covariant derivative is motivated by the requirement that
it must be linear in ug and ui,j’ and the transformation rule for

the connection is derived from the assumption that the covariant de

rivative is a tensor of type'(1.1).

In this paper we prove a sort of a reciprocal. We show that, assu-
ming linearity in the partial derivatives only and up to the order
of the indices, the covariant derivative is the only 2-covariant
tensor concomitant of a covector, its first partial derivatives and
a symmetric connection. We do this essentially by working out the
invariance identities [3] that tensorial concomitants must satisfy.

2. CONCOMITANTS OF A COVECTOR.

2. a) SCALARS

Let L be a scalar concomitant of a covector, i.e., L = L(uj). Then
for any change of coordinates

xi = xixd) (z.1y
it must be:

L(B; u) = L(up) (2.2)
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where Bi = Bxi/aiP. Differentiating (2.2) with respect to BZ and

evaluating at Bﬁ = Gg we have L;b u, = 0, where L = BL/aub, and since it

must be satisfied for every covector, we deduce L3P = 0. But then:
oL oL Ju
axh ou .»ax

and so L is a constant.

2. b) TENSORS OF TYPE (1.1)

Let LE be a concomitant of a.covector, i.e., L: Lﬁ(ui). Then for

the change (2.1) it must be:
h . .p = gl ph ]
Lk(BS up) Bk Aj Li (us) (2.3)

h

where A? is the inverse matrix of B?, i.e., B? Ag = 6p. For the chan

ge of coordinates given by xt = Axt (A # 0) we have from (2.3):

h _ .h
Lk (a ui) = Lk (ui) (2.4)
Making A » 0 en (2.4) we see that Lt (u)) = Lt (0), and so:
. .
. oL
Lpit = £ = . (2.5)
ou,

1
Now we differentiate (2.3) with respect to By and set By = &3 to ob
tain, from (2.5):
h 6h b

Contracting b = i, we have:

h
a

- sh (b _ _h
nlL - Ga Lb uGa s

where o is a scalar concomitant of u, and so it is a constant, i.e.,
a is a real number. Making B = a/n we see that it must be, for any
(1,1)-tensor concomitant of a covector:

h _ ,.b '
L, = BS, (2.6)

2. c) TENSORS OF TYPE (2.2)

hk . . hk _ ,hk
Let Lij be a concomitant of a covector u;, i.e., Lij = Lij (ui).

Then, for the change (2.1), it must be:

hk P - pP gl ,h ,k st
Lij (Bs up) Bi Bj'As At me (ui) (2.7)
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For the change of coordinates given by ¥ o= axt (A # 0), we have
from (2.7):

Bk (u ) (2.8)

LBk (A u ) = LBK
1] P 1] P

Making A - 0 in (2.8), we see that L?? (up) = L?? (0), and so:

aLhk

phksp o 33 - (2.9)
1] au
P

Now we differentiate (2.7) with respect to B; and evaluate at Bz =

= 6: to obtain, from (2.9):
0 = &% 1Pk 4, gbk phk _ gh Pk gk yhd
i 7aj j ia a ij a ij
Contracting b = i we have:
n LhE 4 phk o b ik, gkl
aj Jja a 1ij a 1ij

Since L;? and L?; are tensors of type (1,1) concomitants of a covec-
tor, they must satisfy (2.6). Then:

n LBE 4 pBE _ g gh gk oy gk 6B

aj ja a j a j°’ (2.10)

o and B being numbers. Changing h and a, we have a similar equation.
Multiplying (2.10) by n and substracting y the latter, we obtain

2 hk _ ) k sh N h k-
(n°-1) Laj = (na-1) Sj Ga + (nB-1) 6j 6a s

and so, for n # 1, the concomitant LZ? must be of the form:

Lhk

. 8
aj

_ .k .h k .k
= aéj Ga + ij a (2.11)

’

with o and B8 real numbers. From (2.10), the same is true for n = 1.

Others concomitants of a covector have been studied elsewhere [2],
but we will only need (2.11).

3. THE COVARIANT DERIVATIVE.

Let Lij be a 2-covariant tensor concomitant of a covector, its first

partial derivatives and a symmetric connection, i.e.,

= . i
Lij = Lij (uk’uk,h ’rkh) (3.1)

If we assume that Lij is linear in u then it must be:

k,h’
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) oL, | . )
bk o 43 o q shk o o opiy
ij 3u ij s st
: h,k

It is known (see [1], Theorem A.2) that then it is: Lk o Ié?k (u),

and so from (2.11) we see that

LiBk = geh s% 4 g &0 oK
ij i 73 j i
Integrating we obtain:
= h
ij = o ui,j + B uj,i + Tij (uh, sz) (3.2)

From the transformation rule for Lij it is easy to obtain:

i i i ;s i xp pM oS =
(a+B) By uy + Ty (Bg uy, Ay By, + A By B T )
= B} Bi T, (u,, TL) , (3.3)

ij‘’s

where B, = 32xi/axh axk. Differentiating (3.3) with respect to B 2
hk bc

and setting B; = 67, we have:

k|
1 ;b .c c b ; be _
(a+B) 7 (6h Gk + Gh Gk) u, + Thk a = 0, (3.4)
) '3 be _ a " .
where T, = 8T, /3Ty . From (3.4) we see that, if {b,c} # {h,k},
then it is Thi b: = 0. Also from (3.4) we have:
; hk _ ; kh _ _1
Tae’ 2 = T’ a2 = "7 (0*B) u,

(no summation convention here for h and k). Integrating and taking
into account the symmetry of the connection:

Ty, = -(a+8) TL u

hk * S (uy) (3.5)

i
Replacing (3.5) in (3.3) we obtain the following:

_ . iy . ,
THEOREM. If Lij = Lij(ui’ui Fhk) 18 a concomitant of a covector,

P
sJ
its first partial derivatives and a symmetric connection, and if it

18 linear in the u.

i then 1t must be
’

= + + . u.
Lij = Q uilj B ujli Y uy u. ,

J

where the vertical bar stands for the covariant derivative relative
to the given connection.
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