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A NOTE ABOUT THE CONSISTENCY OF AN INFINITE 

LINEAR INEQUALITY SYSTEM 

M.A .. Goberna, M.A. L6pez and J. Pastor 

ABSTRACT. The consistency of an infinite linear inequality system 

is formulated through an optimization problem which, in some parti­
cular cases, is a simple nonlinear programming problem. 

1. I NTRODUCT I ON. 

Let {a~x ~ St' t E T} be a system, generally infinite, of linear 

inequalities over Rn (at ERn, St E R). Let us denote by S the set 

of solutions of this system. If S # 0, the system is said to be 
consistent. 

A relation a' x ~ S is a "consequence" of the system {a~x ~ St' t E T} 

if it is satisfied for all XES. 

We have proved the following characterization of the consequence r~ 
lations: "a'x ~ S is a consequence of the consistent 

{a~x ~ St' t E T} if and only if [~] E cl Ke", where 

Yt > St' t E T} denotes the convex cone generated by 

system 

Ke = K { [~~] , 
such vectors, 

cl Ke being its closure. Different proofs of the last statement 
are given in [2] and [3]. 

We have also obtained, for the homogeneous case, the following cha­
racterization: "a'x ~ 0 is a consequence of the system {a~x ~ 0 , 

t E T} if and only if a E c1K{a t , t E T}". 

We shall consider sets included in some space RP, II xII being the cor 

responding euclidean norm of x, i.e., II xII = [ I (x.)2]1/2. 
i=1 l. 

Given a non empty set T c RP, we shall denote by int T, ri T and 

bdry T the topological interior of T, the relative interior of T 

and the boundary set of T, respectively. 
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2. THE CONSISTENCY AS AN OPTIMIZATION PROBLEM~ 

LEMMA 1. The system {a~x ~ Bt , t E T} is consistent if and onZy if 

[~lJ ft cl Kc' 

Proof· Let us suppose that [~~J belongs to cl Kc' This means that 

the relation O~x ~ -1 is a consequence of the given system, if we 

assume S # 0. But this constitutes a contradiction. 

Let us suppose now S = 0. Then, the system {a~x+BtXn+l ~ 0 • t E T} 

xn+1 < 0 

is not consistent. Therefore -xn+1 ~ 0 is a consequence relation of 

{a~x+Btxn+l ~ O. t E T}. or equivalently. [~lJ E cl K {r::J. t E T} c 

c cl Kc' 

REMARK. By means of this result. it is possible to give simpler 
proofs of some properties of inconsistent systems already known. 
such as a theorem due to Blair [1] and the lemma 1 of Jeroslow and 
Kortanek [4]. 

THEOREM 1. Let a be defined as inf{xn+1 ; x 

Then S # 0 if and onZy if a > 

[ X ] E Kc' II xII 
xn+l 

n. 

Proof. If a = _00. then there is a sequence xr , r = 1.2 •...• inclu 

ded in Kc' such that IIxrll = 1 and l~m x~+1 = _00 

We can admit, with no loss of generality, that x~+1 < 0, r = 1,2, ... 

. I r 1-1 -r d Slnce xn+l x, r = 1.2 •... is also contained in Kc an conver-

ges to [~~J, we can assert that [~lJ E cl Kc. i.e .• the system is not 

consistent: 

Let us suppose now that [~~J E cl Kc' The set ri (cl Kc) is non­

vacuous. If the given system is not trivial there is a point 

y E ri (cl Kc) such that y # On' 

Since AY + (1-A) [~lJ E Kc for all real number A, 0 < A ~ 1 (lemma 

ofaccesibility), we have xr:= lIyH- 1[y+ (r_1)fOn]1 EK. r=1,2, .•. L-1 c 

But IIx~1I = 1 and xn+l = lIyll-l(Yn+l+1-r), r = 1.2, ... Hence a = 

REMARK. We can take K { [:~J, t E TJ instead of Kc in lemma 1 and Th. 1 . 
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2 2 2 1/2 2 EXAMPLE. Let 5 := {x E R ; (1+(t 1) +(t 2)) x1+t1x2 ~ t 2 , t E R }. 

It can be easily seen that K{[:~J, t E R2} = 
= {x E R3; _(X1)2+(x2)2+(X3)2 ~ A}. Then IIxll- 1x3 ;;.. -1 for all 

i E K{[::J, t E R2} , x ~ °2 , Hence cr ;;.. -1 and 5 ~ 0. 

In some cases the 
near Program (P): 

optimization problem can be reduced to a Nonli-

Inf. at } 
S.t. at = On' t E T 

Let. v be the value of P. As usually, v = +00 if P has not a feasible 
point. 

LEMMA 2. If T is a c'losed convex set in Rm, bJith dim T > 0 , there 

are a convex function f and. a fami'ly of 'linear functions. 

{hi' i 1, ... ,p},p = m-dim T, such that: 

(1) T = {t E Rm; f(t) ~ 0 , hi(t) 

(2) fete) < 0 for some to E T. 

o , i 1 , 2 , ••• ,p}, and 

Proof. We shall distinguish two cases in the proof. 

(i) dim T m. We can suppose, with no loss of generality, that 
On E int T. Let us denote by q the Minkowsky functicmal of T. Then, 

by a well known property ofq, we have T = {t E Rm; q(t) ~ 1}. If 
we define f(t): q(t)-1, we obtain the desired representation of T. 

(ii) dim T = m-p, p > O. Choosing a point t 1 E ri T and denoting 

by L1 the linear subspace of Rm generated by T-t 1 we can write 

Rm L1 e L2 • By (i), there is a convex function g: L1 --+ R such 

that T-t 1 {t E L1 ; get) ~ O} and g(O ) < O. If we define m-p 
such that £(t) = g(t7), where t~ is the projection of 

t on L1, we can easily obtain the desired representation. 

THEOREM,2. Let {a~x ~ at' t E T} be a system such that: 

(i) T is a compact convex set in Rm. 

(ii) at is convex and continuous on T. 

(iii) at is 'linear. 

Then, the system is consistent if and on'ly if v ;;.. O. 

Proof. First we shall prove that v < 0 implies 5 .;. 0. Under the hy­
pothesis, there is some t E T such that a_t 0 and v = 6_ < O. If 

n t 

there is a point XO E 5, then a' XO = 0 ~ Q < O. 
t "t 
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For the converse statement, let us assume S = 0 or, equivalently, 

[~1] E cl Kc· Then, we can find a sequence (xk) C Kc with l~m xk 

being xk = L 
tET 

( Ak) E R(T) and 
t tET + 

Ilk ~ 0. It follows that lim{ I Ak[-a t ] + ('+Ilk ) [O,nJ}= ° Since 
k tiT t St n+l· 

S = 0 , S := min St < 0. For each E, ° < E <', there is a kE such 
tET 

that, for all k ~ k E, ( L Ak)S + , ~ L AkS +, + Ilk ~ E 
tET t tET t t . 

\ k '-E Hence t~TAt ~ TST > ° , for all k ~ kE ' and if we define 

and 

= 0n+l. Let us define 

, we have lim { L };'k[a t ] + a.k[O,nJ} 
k tET t St 

\ :;-k 
tk:= L AtE T. As a consequence of the 

tET t 

hypothesis on the functions, L ~ at = at and I};'k St = St +yk 
tET k tET t k 

for a certain yk ~ 0. 

Taking ok := a.k+yk > 0, we obtain 

Since (tk ) C T, let (t j ) be a subsequence converging to to E T, 

and, by continuity, l~m [::~] = [::oJ. 
J J ° 

Therefore (oj) ~s convergent. Let 0° lim oj, 0° ~O. It results 
j 

[:::J + 0° [~nJ = °n+l' i.e., a to On (to is a feasible point )f P) 

and St = _0°. 

° 
If 0° is greater than zero, then v ~ St < 0. If 0° = 0, then v ~ 0. 

° 
We have to consider just the case 0° = 0, v ~ 0. In this case, for 

t E T, at = On implies St ~ 0. By lemma 2, the feasible set of pro­

blem P can be represented as follows: {t E RID: f(t) ~ 0, at = On' 

h(t) ° } p 
where f is convex, h is linear and there is a feasible 

point t such that f(t) < ° (Slater's qualification). 

By the well known necessary optimality conditions for the non-diffe­

rentiable nonlinear programming problem, there are multipliers 
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y = (A ,x ,u ) ,-E Rl +n+p , A ;;. 0, such that (t ,y ) is a saddle 
0000000 

point for the lagrangean function ~(t,y) = St + Af(t) + x'a t + 

+ u'h(t). 

The right hand side inequality, together with the complementarity 

condition, give 0 Sto ..; St + Aof(t) + x'a + u~h(t), for all o t 

t E Rm. If t E T, it follows 0 ..; St + x~at' i. e. , -x 
0 

E S. This con 

tradiction completes the proof. 

ACKNOWLEDGEMENT. The authors are indebted to the referee for having 

suggested a shorter proof of lemma 2. 
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