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ON THE £-SUBDIFFERENTIAL OF A CONVEX FUNCTION 

Telma Caputti 

1. I NTRODUCT I ON. 
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The £-subdifferential of a convex function has been proved to be a 
useful tool in convex analysis, from the theoretical viewpoint as 

well as for practical purposes. 

Throughout this paper, f is a lower-semicontinuous convex function 

from Rn (the usual vector space of real n-tuples) into (_00,+00]. 

Given such a function and £ > 0 the £-subdifferential of f at 
Xo E domf (domf is the set where f is finite) is denoted by d£ f(xo) 

and defined by 

wher<e f* designates the Frenchel conjugate of f defined by 

f*(x) = sup (~xo,x> - f(x o)} [1] 

Xo 

and <xo,x> is the usual inner product of two vectors xo'x. 

Let p be a non null vector in Rn; throughout the sequel we shall as 

sume that Xo E int(domf) (int(domf) is the interior of domf). Then 

it is well known that d£f(xo) is a nonempty compact convex set so 

that we can denote 

sup <p,x> 
x£d£f(xO) 

f(xO +Ap) - f(x o) + £ 
inf 
A>O A 

Moreover a major aim of research is to define a concept of second 
derivative for a nondifferentiable function. In this respect Nur

minski [2] proved that the set-valued mapping d£f(.) is locally 

Lipschitz when f is real-valued. More recently, Hiriart-Urruty [3, 

Corollary 3.4] proved that this last assumption could be omitted 
and that d£f(.) is locally Lipschitz on int(domf). 

Hence v is locally Lipschitz on int(domf) and following Clarke [4] 

the generalized directional derivative of v at Xo in direction d, 

denoted vO(xo;d) is given by 
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v(xO+h+Ad) - v(xo+h) 
lim sup 

h+O A 
A+O+ 

It follows from a fundamental theorem of Clarke [4, Proposition 1.4] 

that 

vO(xO;d) = sup <z,d> 
ZEdV(X O) 

where (since v has at almost all points a derivative) dV(X O) is the 

convex hull of the set of limits of the form Vv(xo + hn) when 

hn -+ 0 as n -+ +00; dV(X O) is called the generalized gradient of v 

at xo. We always have v'(.,.) ';;;VO(.,.). 

In the first part (Section 2) some properties of v(xo) and v' (x6;d) 

are proved and in the second part (Section 3) p will be considered as 
a variable. We shall denote 

f~(xO;p;d) = v'(xo,;d) 

and we shall study the properties of the functions 

p -+ f~(xo;p;p) 

p -+ f~(xo;p) + t f~(xo;p;p) 
since one of the possible applications of the formula giving 

f~(xo;p;p) would be to define a Newton type method for minimizing a 

nondifferentiable convex function. Following this idea we propose a 
convergent algorithm similar to defined by Bertsekas-Mitter [5]. In 

this section we shall describe a descent algorithm for the minimiz~ 
tion of a convex function subject to convex constraints. Rather than 
considering explicity the constraints, however, we shall allow the 

function to be minimized to take the value +00. 

Thus the problem of finding the minimum of a function g over a set 
X is equivalent to finding the minimum of the extended real-valued 

function f(x) = g(x) + c(x/X) where ce./X) is the indicator function 
of X, i.e., c(x/X) = 0 for x in X; c(x/X) = 00 for x ~ X. 

Stating the problem formally: Find inf f(x) where f: Rn -+ (-00,+00] 
x 

is a convex function which is lower semicontinuous with inf f{x) >-00 
x 

and f(x) < +00 for at least one x in Rn. With this assumption, the 

function f is a closed proper convex function as defined in [1]. 

A basic concept for the algorithm that we shall present is the no
tion of E-subgradient. This notion was introduced in [6], [7] in 

connection with investigations related to the existence and charac
terization of subgradients of con~ex functions. 
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PRELIMINARIES AND NOTATIONS. 

If we consider the optimization problem 

v(xo) = sup <p,x> 
Xe:de:f(Xo) 

(P) 

we can associate the usual dual problem 

(D) 

where 

with 

a(xo) = inf 9(XO;U) 
u~O 

9(xO;U) = sup L(x;xo;u) 
xe:Rn 

= {<p,x> - u(f(xo) + f"'(x) - <xo,x> - e:) if x E dornf'" 
L(x;xO;U) 

_00 otherwise 

(1.1) 

(1 .2) 

(1 .3) 

Denote by U(xo) the set of optimal solutions of (D), that is, 

U(xo) = {u > 0: a(xo) 9(xO;u)} and let M(xo) be the set of opti

mal solutions of (P) 

M(xo) = {x E de:f(Xo): v(xo) = <p,x>}. 

Since de:f(Xo) is compact convex and nonempty, M(xO) is a nonempty 

convex compact set. Furthermore, since de:f(.) is locally Lipschitz 

on int(domf) M(.) is closed and locally bounded on int(domf) (the 
set-valued mapping M(.) is said to be 

re exists a neighborhood V of Xo such 

locally bounded at Xo if the

that U M(z) is bounded) . 
ze:V 

Also, U(xo) is a nonempty convex and compact set and since f = f ...... 

it follows that 

= iU(f(Xo + 

sup <p,x> 
xe:domf*' 

if u > 0 (1 .4) . 

if u = 0 (1 .5) 

Now, using the methodology of Hogan [8, Theorem 2] we use the fol
lowing theorem, the Lemarechal-Nurminski theorem [9], deleting the 

coercivity assumption. 

THEOREM 1.1. [9]. The direational derivative of v at Xo in the di

reation d is given as 

min - u(f'(xO;d) - <x,d» 
ue:U(xO) 

and the operators max-min aommute. 

(1 .6) 
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2. PROPERTIES OF THE FUNCTIONS V(XO) AND v'(xO;d). 

According to the expression of v'(xO;d) in the Lemarechal-Nurminski 

theorem and considering p as a variable, we set 

We can study very interesting properties of the following functions 

is valid. 

U(Xo). Then for all ~ > 0 the 'relation 

Ue(xO;~p) = ~Ue(xQ;p) 

(2.1) 

(2.2) 

(2.3) 

According to (1.4) the following statements are equivalent for 
u > 0: 

iii) ~ u(f(xo + ~) - f(xol + e) = f~(xO;p) iv) ~u E Ue·(xO ;p) . 
~u 

PROPOSITION 2.1. a) f~(xu;p;p) ;> o fol' aU p. (2.4) 

b) f~(xo ;~p; ~p) = ~2 f~(xo;p;p) fol' an ~ > O. (2.5) 

Pl'oof· From (1 .6) in Theorem 1.1 we have 

min - u(fl(xo;p) 
ueue(xO;p) 

(2.6) 

from which we obtain inequality (2.4) since u ;> 0 and since f~.;> f'. 

The relation (b) is an immediate consequence of the above proposition 
and formula (2.6). (q.e.d.) 

Throughout the sequel we shall assume henceforth that f is real-va 
lued. 

Suppose now that f is strongly convex, that is, there exists 0 > 0 
such that for each x, y and ~ E [0,1] we have 

f(~x + (l-~)y) < Xf(x) + (l-~)f(y) - ~(1-~)ollx-YIl2 

where II. II denotes the usual Eucl idean norm in Rn. 

It is very easy to establish the following property: If the func
tion ~ -+ ~(~) = f(xo + ~p) is strictly convex on R+, then U(xo) is 

reduced to a single point u(xo). 
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This property is an iinmedia te consequen'ce of the convexi ty of f and 
the properties of the subgradient of S(u) with Xo fixed. Then f is 

strictly convex and Ue(xo;p) is reduced to a single point ue(xo;p). 

Moreover ue (.,.) is strictly positive. So if we define ue(xo) = 

= min {ue(xO;p): IIpll = 1} we have ue (.) > O. 

The set aef(xo) has some interesting properties from the algorith

mic point of view as shown by the following two propositions: 

PROPOSITION 2.2. Let Xo be a veator 8uah that f(xo) < "". Then 

o < f(xO) - inf fez) < e if and onZy if 0 E aef(xO). 
z 

Proof· By definition of e-subdifferential of f at xO' that 

x E Rn is said to be an e-subgradient of f at Xo if 

fez) ;;;. f(xo) - e + <z - xO,x> for all z in Rn. 

is, 

In consequence, 0 E aef(xO) if and only if fez) ;;;. f(x) - e for all 

z in Rn which is equivalent to the desired relation. (q.e.d.) 

PROPOSITION 2.3. Let Xo be a point 8uah that f(xo) < "" and 

o e aef(xO). Let p be any veator 8uah that 

sup <p,x> < O. 
xeaef(xo) 

Then we have f(xO) - inf fexo + Ap) > e. 
A>O 

(2.7) 

(2.8) 

Proof. Assume'the contrary, i.e., inf f(xo + Ap) - f(xo) + e ;;;. 0 , 
A~O 

then we have 

for all A > O. 

Using the definition of v(xo) this implies that 

sup <p,x> 
xeaef(xo) 

f(xO + Ap) - f(xo) 
inf --~----------~~--- ;;;. 0 . 
A>O A 

+ e 

Since aefexo) is closed this implies that 0 E aef(xo) which contra-

dicts the hypotesis. (q.e.d.) 

In the case 0 e aef(xO), a possible method for finding a vector 

y(xo) in Rn such that sup <y(xo) ,x> < 0 is the following: 
xeaef(xO) 

Let x*(xo) be the unique vector of minimum norm in aef(xO). Then 
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the vector ~(xo) = -x:(xo)/~x:(xo)~ (2.9) 

sup <~(xo)'x> = -~x:(xo)~ < o. 
Xe:de:f(x O) 

satisfies 

Propositions 2.2 and 2.3 form the basis for the algorithm that we 
shall present later. 

PROPOSITION 2.4. If f is strongZy convex, then the functions 

p ->- f~(xO iP iP) and P ->- f' (x .p) + 1 f"(x .p.p) e: 0' 2 e: 0' , 

satisfy the foZZowing reZations 

f~(XOiPiP) = ke:(xo) ~p~2 for aZZ p 

(f~(xo;p) + ~ f~(XoiPiP)) ;;;'~p~ (-~x~(xo)1I + ~ ke:(xo)lIpll) 

Proof. We remark that 

min max <z,d> 
II dll::;1 Ze:de: f (xo) 

Mor~over, if f is strictly convex, we have 

(2.10) 

(2.11) 

f(xO+>..p)-f(xO)+e: 2 e: 
;;;. f'(xoiP) + >"lIpll 8 + X ' for all>" > O. 

This inequality implies 

inf 
>..>0 

f(xO + >..p) - f(xo) + e: 
---------,---- ;;;. f' (xo iP) + min {All pll2 + X} 

>.. >">0 

which is equivalent to 

f~ (xo ;p) - f' (xo;p) ;;;. ZI"E6 IIpll 

and since Ue:(xo;p) is homogenous in p and is reduced to a single 

point ue:(xo) we obtain the relations (2.10) and (2.11) respect-

ively. (q.e.d.) 

REMARK 2.1. If 0 E de:f(XO) then f~(xoiP) ;;;. 0 for each p and from 

( 2.4) we have f' (x .p) + 1 f"(x .p.p) ~ 0 for all p. 
e: 0' 2 e: 0" -

If 0 e de:f(XO), then there exists p such that f~(xo;p) < o. Conse-

quently, there exists p satisfying: 

II p~ ,;;; 1 (2.12) 

Therefore, 
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If f is strongly convex from Proposition 2.4 we obtain the follo

wing equivalence 

REMARK 2.2. One can prove that UE(xO;.) is locally bounded and clo

sed at each p F o. 
Then from (2.6) it follows that the function 

p -+ f~(xo;p) + t f~(xo;p;p) 
is lower semicontinuous. 

3. APPLICATIONS IN ALGORITHMS. 

In connection with Propositions 2.2 and 2.3 we can state that when
ever the value f(x) exceeds the optimal value by more than E, then 
by a descent along a vector x satisfying (2.7) in Proposition 2~3 
we can decrease the value of the cost by at least E. 

Consider the following descent algorithm for the minimization of a 

convex function subject to convex constraints which is a descent nu 
merical method for optimization problems with nondifferentiable cost 

functionals: 

STEP 1. Select a vector Xo such that f(xo) < 00, a scalar EO > 0 

and a scalar a, 0 <a < 1. 

STEP 2. Given xn and En > 0, set En+l ak E where k is the small n 

est non-negative integer such that 0 ~ a f(xn). 
En+l 

STEP 3. Choose a vector Yn that satisfies 

f' (x;y) + .1 fll (x;y;y) < 0 • En+1 n n 2 En+1 n n n 

From Remark 2.1, such a vector exists if 0 ~ a f(x) and (2 7) En+l n' . 

is valid. 

STEP 4. Set x = x + 
n+l n 

f(xn) - f(xn+1) > En+1 . Return to Step 2. 

REMARK 3.1. If xn is not a minimizing point of f there always exists 

a non-negative integer k such that 0 ~ a k f(xn) since by Proposi 
a En 
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tion 2.2 we have 

o ~ d f(x ) if and only if f(xn) - inf f(x) > cn+1 = ak C 
cn+1 n x n 

and by Proposition 2.3 there exists a scalar cn such that 

(3.1) 

thus showing that Step 4 can always be carried out. One way of fin

ding a scalar An satisfying (3.1) is by means of the one-dimensio-

nal minimization 

f(xn + AnYn) = min f(xn + AYn) 
A>O 

assuming the minimum is attained. This in turn can be guaranteed 

whenever the set of minimizing points of f is nonempty and compact, 
since in thls case all the level sets are compact [1]. 

REMARK 3.2. We note that Steps 2 and 3 of the algorithm can be car

ried out by means of the auxiliary minimization problem: 

min II xII . (3.2) 
xCdak c f(x n ) 

n 

Now clearly we have 0 E d kc f(xn) if and only if (3.2) has a zero 
a n 

optimal value and therefore Step 2 of the algorithm can be carried 
out by solving problem (3.2) successively for k = 0,1, .... There 

exists an integer k for which the problem (3.2) has a nonzero opti
mal value. Let x* be the optimal solution of problem (3.2) for the 

first such integer k. Then a suitable direction of descent Yn sati~ 

fying (2.7) in Step 3 of the algorithm is given by Yn = -x*/lIx*lI. 

REMARK 3.3. This algorithm is the same as defined by Bertsekas and 

Mitter in their paper but the kind of choice for Yn is different. 

However, the proof of convergence given in [5] is always valid with 

this kind of choice. Certainly, a good choice of Yn would be a vec
tor that minimizes the function 

1 p --->- fl . (x;p) + f" (xo iP ;p) 
cn+l 0 ~ cn+l 

on the unit ball. 

We are now attempting to implement such a choice. 

After the release of the preprint of this article, the author has 

been informed about the fact that a recent work along similar lines 
has been published by J.B.Hiriart-Urruty. Unfortunally she has not 
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been able to read it and verify the overlap between both papers. 
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