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TNO-DIMENSIONAL REAL DIVISION ALGEBRAS

Ana Lucia Cali and Michael Josephy

ABSTRACT. We classify completely non-associative real division alge-
bras of dimension two with left identity. Each algebra of this type
is isomorphic to exactly one member of four infinite families. '

In this paper we take "algebra' to mean a non-associative algebra
over the field of real numbers R, that is, a real vector space A,
with a product which is distributive vis-d-vis addition, and satis-
fies (ax)y = x(ay) =oa(xy) for all o € R, x,y € A. An algebra is call-
ed a division algebra if the equation in A ax = b (resp., xa = b)
has a unique solution whenever a # 0.

The fundamental work of Milnor and Bott [6], as well as Kervaire [4],
showed that all such finite-dimensional division algebras have di-
mension 1, 2, 4 or 8. Here we classify completely those of dimension
two which have a left identity.

The classification of associative algebras of low dimension has been

studied for over a century. See [3] for a historical overview. Re-

cently associative unitary algebras of dimension 5 [2,5] have been

classified successfully. The corresponding problem in higher dimen-
sions gives rise to combinatorial difficulties.

In the general non-associative case, less has been accomplished. An
algebra A is called flexible if (xy)x = x(yx) for all x,y € A. Fini-
te-dimensional flexible division algebras are classified in [1].

First we would like to consider the general situation of an algebra
A of dimension two. Let [xl,le be a basis of A. The product in A is

determined by the multiplication table

X X

1

4D) X, a'x, + B'x

2
1 1
2 | Y'X 8y

X

ax, + sz Yx; + 6x2_

2 1

THEOREM 1. The algebra A determined by (1) is a division algebra if
and only if
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(2)  4(a's' - B'y')(ab - BY) > (a8' + a'é - By' - g'y)?
and  (3)  4(a'B - aB')(Y'S - y8') > (ad' - a'6 - By' + B'y)2

Proof. Indeed A is a division algebra iff the maps T(x) = ax and

U(x) = xa are non-singular for all 0 # a € A. If a = mx. + ox

i 2

then ax, = (a'm + ac)x1 + (B'm + Ba)x2 and
ax, = (y'm + yo)x) + (8'm + 80)x,. Now T is non-singular iff

{axl,axz} is a basis, i.e.

(a'8' - B'y")7” + (ab' + '8 - By' - B'y)m0 + (ab - By)o? =

= (a'm + ao)(8'm + 80) - (B'm + Bo)(y3w + yg) # 0.

By the theory of quadratic forms, this is true for all 0 # a € A when
ever (2) is satisfied. Similarly, the invertibility of U guaran-
tees (3).

We note that a division algebra A can have at most one left identity.
Moreover, if the division algebras A and A' have left identities X
and yl(resp.) and T : A > A' is an isomorphism then T(xi) =y

THEOREM 2. Suppose that the algebra A determined by (1) Zs a divi-
siton algebra. Then it has left tdentity if and only if

~ B v B' .yt
) aB - oB" T yE - yer " G apt T iy -

Proof. Let e and

TX; + 0x, be the left identity. Then ex, = x

1 1

ex, = Xx, result in the systems
a'm + a0 .= 1 Y'm + yo =0
B'm + Bo = 0 §'m + 8o =1 ..

Now (3) assures that a'B - aB' # 0 and Y'§ - y§'" # 0. Hence both
systems have a unique solution, namely

R . o '
(5) TE-oE T " T yeeyer and gy < 9 % gl

Conversely, if = and o are defined by (5), then e = 7x., + ox, is
the left identity.

From now on we consider only real algebras A of dimension two with

left identity. Let us take a basis {xl,xz} of A where X, is the

left identity. Hencé the multiplication table has the form
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X X2

(6) Xl xl X9

X, ox; + sz X, *+ 6x2

Let A(o,B,Y,8) be the algebra with this multiplication table. By
Theorem 1, it is a division algebra iff -4By > (o - 6)2. Our princi-
pal theorem follows.

THEOREM 3. Let A be a real division algebra of dimension two with
left identity. Then A is isomorphic to precisely one of the follo-
wing algebras:

(class I) A(0,B,-1,0) for some B >0
or (clas II) A(0,B,1,0) for some B <0 .
or (class III) A(1,B,Y,0) for some B # -1 and vy with By < -%
or (class IV) A(1,-1,y,1) for some y >0

Clearly an analogous theorem can be formulated for real division al-
gebras of dimension two with right identity. Note that C, the alge-
bra of complex numbers, appears in class I with B = 1. It is the
only algebra-in our list with a two-sided identity. In addition, C
is the only associative algebra - indeed, the only flexible algebra -
to appear. '

We prove Theorem 3 in three steps. First we show, in Lemmata 5 and
6, that any algebra A(u,B,y,8) is isomorphic to an algebra in our
list. Then we show that no two algebras in the same class are (non-
trivially) isomorphic (Lemma 7). Finally we show that an algebra of
one class cannot be isomorphic to an algebra of another class (Lemma 8).

LEMMA 4. B and sgn Y are invariants among division algebras, that
is, Zf A = A(0,B,Y,8) and A' = A(a',B',y',8') are isomorphic divi-
sion algebras, them B = B' and sgn y = sgn y'.

Proof. Suppose T: A » A' is an isomorphism. Then the image of the
left identity; X of A is the left identity, Yi» of A'. Let

T(x,) = my, *+ oy, (o # 0). Then
(o + BTy, *+ Boy, = T(X,x;) = T(x,)T(x;) = (v + a'o)y; + B'oy,,

whence Bo = B‘c‘ and B = B'. Moreover, since BY,B'y' < 0, then
sgn y = sgn y'. ‘

LEMMA 5. If B # -1 the divieion algebra A(a,B,v,8) s isomorphic to
either

(class 1) A(0,B,-1,0) with B >0
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or (class II-A) A(0,8,1,0) with B<O0 and B # -1
or  (class III)  A(1,8,v',0) with B # -1 and v' with By' < -1 .

Proof. Withqut loss of generality we can take 6 = 0. For if & #0,
the change of basis to Y =X 5 ¥, =X *oex, (e = 5 ) gives a

new multiplication table with § = 0. This works because

yg = (1 + ae + ysz)xl +e(1 + 8 + ae)x2 and 1 + B + 8¢ = 0.

Now, if o # 0, then the transformation T defined by T(xl) =¥
T(xz) = ay, yields an isomorphism A(a,B,y,0) = A(1,B,y',0) (with

y' = i%). This T preserves products because
o

T(xle) = ay, + aBy, = T(xz)T(xl),and T(xg) =Yy, - aZY'y1= Usz)){
On the other hand; if a = 0, then the transformation T given by
T(xl) =y, T(x,) = /T?Tyz produces an isomorphism

A(0,B,Yy,0) = A(0,B,x1,0).

LEMMA 6. The division algebra A(a,-1,v,8) Zs isomorphic to either

(class II-B) A(0,-1,1,0)
or (class 1IV) A(1,-1,v',1) for some ' > 0.

Proof. If 8§ # 0, the transformation T given by T(xl) =¥ T(xz) =
= Gyz produces an isomorphism A(a,-1,y,8) = A(a',-1,y",1) (with ap-
propriate o' and y"). Furthermore, if a' # 1, A(a',-1,y",1) =
= A(1,-1,y',1), using the transformation given by T(xlj =y
T(xz) = %(u' - 1)yl Y, Finally, if § = 0, then the transforma-
tion defined by T(xl) =Y T(x2) = %-ayl + % Y4y - a? ¥, produces
an isomorphism A(a,-1,y,0) == A(0,-1,1,0).

LEMMA 7. |
(class I)  If 8,8' > 0, then A(0,8,-1,0) = A(0,B',-1,0) Zff B = B'.
(class II) If B,B' < 0, then A(0,8,1,0) = A(0,8',1,0) iff B = B'.
(class III) If B,B' # -1 andBy,B'Y' < '% , then

A(1,B,Y,0) = A(1,B',Y',0) <ff B = B' and Y = y'.

(ClaSS IV) If Y’Y' > 0: then A(1,'1:Y’1) = A(T,'1,Y':1) 7’ff Y = Y"

Proof. In classes I and II, this is a consequence of Lemma 4. Now

let us consider class III. Suppose we have an isomorphism
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T: A(1,8,Y,0) » A(1,8',Y',0) with T(x;) =y,, T(x,) = 7y, + 0¥y
(o0 # 0). Then

(1 + Bm)y, + Boy, = T(xle) = T(XZ)T(XI) = (m+ a)y, + B'oy,,

Yyp = TGx2) = (T(x,))2 = (v + 70 + y'o?)y, + (n0 + B'mO)y,.

Hence 1. + Bm = m + g, Bo = B'0 , ¥ = "2 + Mo+ Y‘qz , 0 = mo + B'mo.

Since o # 0, 8 = B' and 0 = m + Bw. Since B # -1, m=0,and 0 = 1,
and. y = y'. Class IV is similar.

LEMMA 8. 4n algebra A in the class J cannot be isomorphic to any
algebra A' in the class K (J #K; J,K=1,II,III,IV).

Proof. Half the cases follow immediately from Lemma 4. The cases
which need a separate argument are (J,X) = (I,I111), (II,III),
(I1,IV). Here we shall consider just the last one. If

T: A(0,8,1,0) ~ A(1,-1,vy,1) is an isomorphism with T(xl) =y
T(xz) =Ty, 0y, then

2

2 2
y, = T3 = (Ta)? = (1 + w0+ oy + o'y,

Hence ¢ = 0, a contradiction.
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