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ABSTRACT. We classify completely non-associative real division alge­
bras of dimension two with left identity. Each algebra of this type 
is isomorphic to exactly one member of four infinite families. 

In this paper we take "algebra" to mean a non-associative algebra 
over the field of real numbersR, that is, a real vector space A, 
with a product which is distributive vis-a-vis addition, and satis­

fies (ax)y = x(ay) = a (xy) for all a E R, x,y E A. An algebra is call­
ed a division algebra if the equation in A ax = b (resp., xa = b) 

has a unique solution whenever a f O. 

The fundamental work of Milnor and Bott [6], as well as Kervaire [4], 

showed that all such finite-dimensional division algebras have di­
mension 1, 2,4 or 8. Here we classify completely those of dimension 
two which have a left identity. 

The classification of associative algebras of low dimension has been 
studied for over a century. See [3] for a historical overview. Re­
cently associative unitary algebras of dimension 5 [2,5] have been 
classified successfully. The corresponding problem in higher dimen­
sions gives rise to combinatorial difficulties. 

In the general non-associative case, less has been accomplished. An 
algebra A is called flexible if (xy)x = x(yx) for all x,y E A.Fini­
te-dimensional flexible division algebras ar~ classified in [1]. 

Firs~ we would like to consider the general situation of an algebra 

A of dimension two. Let [x 1 ,x2] be a basis of A. The product in A is 

determined by the multiplication table 

(1) 

THEOREM 1. The aZgebra A determined by (1) is a division aZgebra if 

and onZy if 
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and 

(2) 

(3) 

4(a'eS' - a'y')(aeS - ay) > (aeS' + a'eS - ay' - a'y)2 

4(a'a - as')(y'eS - yeS') > (a<5' - a'eS - Sy' + a'y)2 

Proof. Indeed A is a division algebra.iff the maps T(x) = ax and 
U(x) xa are non-singular for all 0 ~ a E A. If a = rrx I + ox 2 

then aX I = (a'rr + aa)x I + Ca'rr + aa)x2 and 

aX 2 = (y'rr + ya)x I + (eS'rr + eSa)x 2 . Now T is non-singular iff 

{axl ,ax2} is a basis, i.e. 

(a'rr + aa)(eS'rr + eSa) - (a'rr + 130) (y'rr + yo) ~ o. 

By the theory of quadratic forms, this is true for all 0 ,; a E A when 
ever (2) is satisfied. Similarly, the invertibility of U guaran­
tees (3). 

We note that a division algebra A can have at most one left identity. 
Moreover, if the division algebras A and A' have left identities xl 

and YI (resp.) and T : A ~ A' is an isomorphism then T(x l ) = YI' 

THEOREM 2. Suppose that the aZgebra A determined by (1) is a divi-

sion aZgebra. Then it has Zeft identity if and onZy if 

(4) S -y 
and S' -X' 

a'S - as' y'eS - yeS' a.' a - as' y'eS - yeS' 

Proof. Let e = rrx i + aX 2 be the left identity. Then eX I 

eX2 = x2 result in the systems 

Xl and 

a'rr + aa y'rr + yo o 

S'rr + 130 o 

Now (3) assures that a'S - as' ,; 0 and y'eS - yeS' ,; O. Hence both 

systems have a unique solution, namely 

(5) a = rr 
a'a - as' 

-y and a'S - as' 
- S' a " X' y'eS - yeS' y'eS - yeS' 

Conversely, if rr and a are defined by (5), then e= rrx i + aX 2 is 
the left identity. 

From now on we consider only real algebras A of dimension two with 
left identity. Let us take a basis {x l ,x2} of A where Xl is the 

left identity. Hence the multiplication table has the form 
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(6) X2 

Let A(a,8,y,cS) be the algebra with this multiplication table. By 
Theorem 1, it is a division algebra iff ~A8y > (a - cS)2. Our princi­
pal theorem follows. 

THEOREM 3. Let A be a reaZ division aZgebra of dimension two with 

Zeft identity. Then A is isomorphia to pre~iseZy one of the foZZo-

wing aZgebras: 

(class I) A(0,8,-1jO) for some 8 >0 

or (c1as II) A(0,S,1,0) for some 8 < ° 
(class III) A(1,8,y,0) for 8 t- -1 and y with 8y 1 or some < -4 

or (class IV) A(1,-1,y,1) for some y > ° 
Clearly an analogous theorem can be formulated for real division al­
gebras of dimension two with right identity. Note that C, the alge­
bra of complex numbers, appears in class I with 8 = 1. It is the 
oq1y a1gebr~~n our list with a two-sided identity. In addition, C 
is the only associative algebra - indeed, the only flexible algebra -
to appear. 

We pr'ove Theorem 3 in three steps. First we show, in Lemmata 5 and 

6, that any algebra A(a,8,y,cS) is isomorphic to an algebra in our 
list. Then we show that no two algebras in t,he same class are (non­
trivially) isomorphic (Lemma 7). Finally we show that an algebra of 
one class cannot be isomorphic to an algebra of another class (Lenuna 8). 

LEMMA 4. 8 and sgn yare invariants among division aZgebras, that 

is, if A =A(a,8,y,cS) and A' = A(a',8',y',cS') are isomorphia divi­

sion aZgebras, then 8 = 8' and sgn y = sgn y'. 

Proof. Suppose T: A + A' is an isomorphism. Then the image of the 

1efi identity, xl' of A is the left identity, Yl' of A'. Let 

T(x2) = nYl + aY2 (a t- 0). Then 

(a + 81T)Yl + 8aY2 = T(~2xl) =T(x2)T(x1) = (1T + o.'a)Yl + 8' aY2' 

whence 8a = 8' a and 8 = 8'. Moreover, since 8y, 8 ' y' < 0, the,n 
s gn y = s gn y'. 

LEMMA S. If 8 t- -1 the division aZgebra A,(a,8,y,cS) is'isomorphia to 

either 

(class I) A(0,8,-1,0) with 8 > ° 
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or (class II-A) A(0,a,1,0) with a ~ 0 and a # -1 
or (class III) A(1 ,a,y' ,0) with a # -1 and y' with ay' < -} 

Proof· Without loss of generality we can take 0 = O. For if 0 # 0, 

the change of basis to (e: -1 - a gives YI = Xl , Y = Xl + e:x 2 = -0-) 2 
new multiplication table with 0 = O. This works because 

2 2 Y2 = (1 + ae: + ye: )X I + e:(1 +a + oe:)x 2 and 1 + a + oe: O. 

Now, if a # 0, then the transformation T defined by T(x l ) = YI' 

T(x2) ~ aY 2 yields an isomorphism A(a,a,y,O) ~ A(1,a,y',0) (with 

y' = ~). This T preserves products because 
a 

a 

T(x 2x l ) = aY I + aaY 2 = T(x 2)T(x l ) and T(X;) = YY I - a 2Y'YI = (T(x2))2. 

On the other hand; if a = 0, then the transformation T given by 

T(x l ) = YI ' T(x 2) = /fYTY 2 produces an isomorphism 

A(O,a,y,O) ~ A(0,a,±1,0). 

LEMMA 6. The division aZgebra A(a,-1,y,0) is isomorphic to either 

(class II-B) A(0,-1,1,0) 

or (class IV) A(1 ,-1 ,y', 1) for some y' > O. 

Proof. If 0 # 0, the transformation T given by T(x l ) = YI , T(x2) = 

= oY2 produces an isomorphism A(a,-1,y,0) ~ A(a',-1,y",1) (with ap­

propriate a' and y"). Furthermore, if a' # 1, A(a',-1,y",1) ~ 

~ A(1,-1 ,y' ,1), using the transformation given by T(x l ) = Yl ' 
1 T(x2) = Z(a' - 1)Y I + Y2 · Finally, if 0 = 0, then the transforma-

tion defined by T(x l ) = Yl' T(x2) taYI + t/4Y - a 2 Y2 produces 

an isomorphism A(a,-1 ,y,O) ~ A(0,-1,1,0). 

LEMMA 7. 

(class I) If a, a' > 0, then A(0,a,-1,0) ~ A(O,a' ,-1 ,0) iff a = a' . 

(class II) If a, a' < 0, then A(0,a,1,0) ~ A(0,a'.1,0) iff a = a' . 

(class I II) If a, a' # -1 1 
and' ay, a' y' < -4 ' then 

A(1,a,y,0) ~ A(1 ,a' ,y' ,0) iff a = a' and y = y' . 

(class IV) If y,y' > 0, then A(1 ,-1 ,y, 1) ~ A(1,-1,y',1) iff y = 

Proof. In classes I and II, this is a consequence of Lemma 4. Now 

let us consider class III. Suppose we have an isomorphism 

y' . 
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T: A(l,B,y,O) + A(l,B',y',O) with T(x l ) = YI , T(x2) = nY I + 0Y 2 
(0 ,. 0). Then 

(1 + Bn)YI + BOY2 = T(x2x I) = T(x2)T(x l ) = (n + o)YI + B'oY2' 

YYI T(x~) = (T(x2))2 = (n2 + no + Y'a2)Y I + (na + B' na)Y2' 

Hence 1· + Bn 2 2 n + a, Ba = B'a , Y = n + na + y'a 

Since a ,. 0, B B' and 0 = n + Bn. Since B ,. -1, n 

and y y'. Class IV is similar. 

o = na + B'na. 

0, and 0 = 1, 

LEMMA 8. An a'lgebra A in the o'lass J aannot ,be isomorphia to any 

a'lgebr~ A' in the a'lass K (J ,. K ; J,K = I,II,III,IV). 

Proof. Half the cases follow immediately from Lemma 4. The cases 

which need a separate argument are (J,K) = (1,111), (11,111), 
(II,IV). Here we shall consider just the last one. If 

T: A(O,B,l,O) + A(l,-l,y,l) is an isomorphism with Tex 1) = Y1 ' 

T(x2} = nY 1 + aY 2 ' then 

Hence a 0, a contradiction. 
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