NOTE ON THE WEIGHTED POINTWISE ERGODIC THEOREM

Maria Elena Becker

ABSTRACT. In this paper we exhibit a class of complex sequences for which the Weighted Pointwise Ergodic Theorem holds.

1. INTRODUCTION.

Let (Ω,A,μ) be a probability space and let C be the group of automorphisms of (Ω,A,μ) ; $T\in C$ if $T\colon \Omega \to \Omega$ is a bijection which is bimeasurable and preserves μ . For each $T\in C$ and $1\leqslant p\leqslant \infty$ we denote U_T the operator on $L^p(\Omega)=L^p(\Omega,A,\mu)$, $U_Tf=f\circ T$, for $f\in L^p(\Omega)$. We denote by N the set of all nonnegative integers. Now let T be a continuous linear operator on $L^p(\Omega)$ for some $1\leqslant p\leqslant \infty$. Let $\alpha=(a_n)$ be a sequence of complex numbers.

DEFINITION 1.1. We say that $a = (a_n)$ is a good weight in L^p for T (relative to the Weighted Pointwise Ergodic Theorem) if for every

$$f \in L^{p}(\Omega)$$

$$\lim_{n} \frac{1}{n} \sum_{j=0}^{n-1} a_{j} T^{j} f(\omega) \text{ exists } \mu\text{-a.e.}$$

In the case $T \in C$, we say that a is a good weight for T in L^1 , or simply that a is a good weight for T if a is a good weight in L^1 for the operator U_T induced by T. We have (see [1] and [4])

THEOREM 1.2. Let $a=(a_n)$ be a bounded complex sequence. The following assertions are equivalent:

- (i) a is a good weight in L^1 for every ergodic $T \in C$.
- (ii) a is a good weight in L^1 for every $T \in C$.
- (iii) a is a good weight in L^1 for every Dunford-Schwartz operator.

DEFINITION 1.3. A bounded complex sequence $a = (a_n)$ is said to be a good universal weight if a is a good weight in L^1 for every Dunford-Schwartz operator (equivalently, by Theorem 1.2, for every $T \in C$ ergodic).

DEFINITION 1.4. Let $a = (a_n)$ be a complex sequence. For $1 \le p < \infty$ define ||a|| by

 $||a||_{p}^{p} = \lim_{n} \sup_{n} \frac{1}{n} \sum_{k=0}^{n-1} |a_{k}|^{p}$,

and let $\ell(p) = \{a/\|a\|_p < \infty\}$. We also define $\ell(\infty)$ as the space of all bounded complex sequences and $\|a\|_{\infty} = \sup |a_k|$ for $a \in \ell(\infty)$.

We also say that $\alpha = (a_n)$ has a mean if $\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} a_i$ exists. We have (see [1])

1.5. Let a(k), $k \in \mathbb{N}$, and a be complex sequences such that each a(k) has a mean. Suppose that $||a(k)-a||_1 \rightarrow 0$ as $k \rightarrow \infty$. Then a has a mean.

Finally, we consider the space S of complex sequences $a = (a_n)$ such that

 $\gamma_a(k) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} a_{j+k} \cdot \overline{a_j}$

exists for each $k \in N$.

For all the information that we shall need about S, we refer to [2]. A.Bellow and V.Losert proved (see [2]) the following result

THEOREM 1.6. Let D be the set of all $a \in S \cap l(\infty)$ satisfying the following conditions:

- (1) The spectral measure σ_a corresponding to a is discrete.
- (2) The amplitude $\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} a_j \overline{z}^j$ exists for all complex number z such that |z| = 1.

Then every $a \in D$ is a good universal weight.

In fact more is true. Let $T\in C$ ergodic. For each $f\in L^1(\Omega)$ there exists a set $\Omega_{\rm f} \subset \Omega$ of probability one such that

$$\lim \frac{1}{n} \int_{j=0}^{n-1} a_j \overline{f}(T^j w) \text{ exists for any } a \in D \text{ and any } w \in \Omega_f.$$

Throughout this paper we will denote by D_1 the class of all bounded complex sequences $a = (a_n)$ satisfying the following properties:

- (1) a has a mean.
- (2) The sequence $b = (b_n)$ such that $b_n = a_n a_{n+1}$ is in D, where D is the class of Theorem 1.6.

In the next section we shall prove that D_1 is strictly larger than D and that every $a \in D_1$ is a good universal weight.

2. STATEMENTS AND PROOFS.

We start with the following lemma

LEMMA 2.1. Let a be a complex sequence. If $a \in D$ then $a \in D_1$. The proof is easy and we omit it.

The following example shows that D is strictly contained into \mathbf{D}_1 .

EXAMPLE. Let α and β be two real and nonnegative numbers.

For each $k \in N$ let I_k be the integer interval

 $I_k = \{n \in \mathbb{N}/4^k \leqslant n < 4^{k+1}\}. \mbox{ We consider the family } \{I_k^{(j)}\} \mbox{ of subintervals of } I_k, \mbox{ where}$

$$I_k^{(j)} = \{n \in N/4^k + 3j2^k \le n < 4^k + 3(j+1)2^k\}, 0 \le j \le 2^k - 1.$$

We define the sequence $a = (a_n)$ in the following way:

$$a_{n} = \begin{cases} (-1)^{j} \alpha & \text{if } n \in I_{k}^{(j)}, \text{ k even} \\ \\ (-1)^{j} \beta & \text{if } n \in I_{k}^{(j)}, \text{ k odd.} \end{cases}$$

It is easy to see that α has a mean. In fact, let $n \in N$ and let k such that $n \in I_k$. Thus,

$$\left|\sum_{j=1}^{n} a_{j}\right| \leq 3.2^{k}.\max\{\alpha,\beta\}$$
) and therefore $\lim_{n} \frac{1}{n} \sum_{j=1}^{n} a_{j} = 0$.

Now let $b = (b_j)$ such that $b_j = a_j - a_{j+1}$. If $j \in I_k$, then $b_j \neq 0$ only for 2^k values of j. It follows that

$$\lim_{n} \frac{1}{n} \sum_{j=1}^{n} |b_{j}| = 0.$$

From this we immediately obtain that $b \in D$.

We shall prove that $a \notin D$ by showing that $\frac{1}{n} \sum_{j=1}^{n} |a_{j}|^{2}$ is not convergent. In fact, we have

$$|a_j|^2 = \begin{cases} \alpha^2 & \text{if } j \in I_k, & \text{k even} \\ \beta^2 & \text{otherwise.} \end{cases}$$

A simple calculus shows that the sequence $|a|^2 = (|a_j|^2)$ has not a mean and therefore $a \notin D$.

THEOREM 1.2. Every $a \in D_1$ is a good universal weight. Furthermore, let $T \in C$ ergodic. For each $f \in L^1(\Omega)$ there exists a set $\Omega_f \subset \Omega$

of probability one such that

$$\lim_{n} \frac{1}{n} \sum_{j=0}^{n-1} a_{j} \overline{f}(T^{j}w) \quad exists \ for \ any \ a \in D_{1} \ and \ any \ w \in \Omega_{f}.$$

Proof. Let $T \in C$ ergodic. Let us consider the set of all functions $h \in L^1(\Omega)$ which can be represented in the form

(1)
$$h(w) = g(w) - g(T^{-1}w)$$

where g is a bounded function.

For any function h of this form, we have

$$\frac{1}{n} \sum_{j=0}^{n-1} a_j \ \overline{h}(T^j w) = \frac{1}{n} \sum_{j=0}^{n-1} b_j \ \overline{g}(T^j w) + \frac{c}{n}$$

where c is a constant depending only on $\|a\|_{\infty}$ and $\|g\|_{L^{\infty}(\Omega)}$.

By Theorem 1.6 for each g there exists a set $\boldsymbol{\Omega}_{\mathbf{g}}$ of probability one such that

$$\lim_{n} \frac{1}{n} \sum_{j=0}^{n-1} b_{j} \overline{g}(T^{j}w) \text{ exists for any } b \in D \text{ and any } w \in \Omega_{g}.$$

We conclude that for each f in the linear span V of the functions h and 1, there is a set $\Omega_{\rm f}$ of full measure such that

(2)
$$\lim_{n} \frac{1}{n} \sum_{j=0}^{n-1} a_j \overline{f}(T^j w)$$
 exists for any $a \in D_1$ and any $w \in \Omega_f$.

It is not hard to prove that V is dense in $L^1(\Omega)$. (see [3, pp.39]). Now let $f \in L^1(\Omega)$. Let $f_k \in V$ be such that $f_k \xrightarrow{L^1} f$. By (2) and the Individual Ergodic Theorem, we can find for each k a set $\Omega_k \subset \Omega$ of probability one with the following properties:

i)
$$w \in \Omega_k \Rightarrow \lim_{n \to \infty} \sum_{j=0}^{n-1} a_j \overline{f}_k(T^j w)$$
 exists for all $a \in D_1$.

ii)
$$w \in \Omega_k \Rightarrow \lim_{n} \frac{1}{n} \sum_{j=0}^{n-1} |f(T^j w) - f_k(T^j w)| = ||f - f_k||_{L^1(\Omega)}$$

Let $\Omega_f = \bigcap_k \Omega_k$. For fixed $w \in \Omega_f$ we consider the sequences $c(k,w) = (a_j \overline{f}_k(T^j w))$ and $c(w) = (a_j \overline{f}(T^j w))$.

We have $\|c(k,w) - c(w)\|_1 \le \|a\|_{\infty} \|f-f_k\|_{L^1(\Omega)}$, and by lemma 1.5 we deduce

$$\lim_{n} \frac{1}{n} \sum_{j=0}^{n-1} a_{j} \overline{f}(T^{j}w) \text{ exists for each } a \in D_{1}.$$

An application of Theorem 1.2 concludes the proof.

REFERENCES

- [1] J.R.Baxter and J.H.Olsen, Weighted and subsequential ergodic theorems, Canad. J.Math. 35 (1983), 145-166.
- [2] A.Bellow and V.Losert, The Weighted Pointwise Ergodic Theorem and the Individual Ergodic Theorem along subsequences, Trans. Amer. Math. Soc. 288 (1985), 307-345.
- [3] A.Garsia, Topics in almost everywhere convergence, Markham, Chicago, 1970.
- [4] V.A.Rohlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Transl., Vol.10, N°1 (1962), 1-54.

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Argentina,