Revista de la Unión Matemática Argentina Volumen 32, 1986.

A GENERALIZATION OF THE FUNDAMENTAL FORMULA FOR CYLINDERS

Ursula M. Molter

1. ABSTRACT.

Using the G_n -invariant measure on the set of the convex infinite cylinders congruent to Z_q that touch a convex body K, we can generalize the fundamental kinematic formula for cylinders in the sense of Hadwiger in [2].

We obtain a bilinear combination of the "Quermassintegrale" of K and $\mathbf{Z_q}$, with coefficients depending on the first n moments of a non-negative Borel measurable function.

2. INTRODUCTION.

Hadwiger, [2], found a generalization of the kinematic fundamental formula for convex bodies, extending the domain of integration to the whole group of motions in E_n , G_n . He proved that this integral is again a bilinear combination of the "Quermassintegrale" of the convex bodies.

On the other hand, in [1] we find the definition of n+1 functionals on convex bodies, which include the "Quermassintegrale" as particular cases.

In this paper we generalize the fundamental kinematic formula for cylinders in the same sense that Hadwiger in [2]. We show that we obtain a bilinear combination of the "Quermassintegrale" of the convex body and the infinite convex cylinder. This generalization includes [1] and [2] as particular cases.

The proof is essentially based on the existence of a tangential measure on the set of infinite convex cylinders congruent to a fixed one Z_{σ} ([3]) and results much easier.

3. NOTATION.

Let E_n be the n-dimensional euclidean space with unit sphere Ω_n . λ_n is the Lebesgue-measure in E_n and $\omega_n = \lambda_n(\Omega_n)$. We denote by K_n the set of all convex, compact and non-empty subsets K in E_n , $K \in K_n$ is called a convex body. For $K \in K_n$, $W_i^n(K)$ are the "Quermassintegrale" of K (i = 0,...,n). If $\delta \geqslant 0$, K_δ is the parallel body in the distance δ of K, and the following Steiner formula holds ([4], p.220-221):

$$\lambda_{n}(K_{\delta}) = \sum_{j=0}^{n} {n \choose j} W_{j}^{n}(K) \delta^{j}$$

$$W_{i}^{n}(K_{\delta}) = \sum_{j=0}^{n-i} {n-i \choose j} W_{i+j}^{n}(K) \delta^{j} .$$

Now we define infinite convex cylinders as in [4], p.270. Let 0 be a fixed point in E_n and let L_{n-q} be a (n-q)-plane through 0. Let D be a bounded convex body in L_{n-q} . For each point x in D we consider the q-plane orthogonal to L_{n-q} through x. The union of all such L_q is the cylinder Z_q . The q-planes L_q are the generators and D a normal cross section of Z_q . As in [4], p.272, we take

(3.2)
$$W_{i}^{n}(Z_{q}) = \begin{cases} W_{i}^{n-q}(D) & 0 \leq i \leq n-q \\ 0 & n-q < i \leq n \end{cases}$$

We will now explain briefly the fundamental kinematic formula for cylinders ([4], p.272). Let $Z(D)_q$ be the set of all cylinders congruent to Z_q and let Y_D be the normalized G_n -invariant measure on $Z(D)_q$ ([5], p.106). If $K \in K_n$, A is the set of cylinders of $Z(D)_q$ that intersect K, that is $A = \{Z \in Z(D)_q \mid Z \cap K \neq \emptyset\}$.

We denote with $\gamma_D(K)$, the measure of A in the sense of γ_D , $\gamma_D(K)$ = = $\int_A d\gamma_D$, and the fundamental formula for cylinders ([4], p.272) holds:

(3.3)
$$\gamma_{D}(K) = \frac{1}{\omega_{n}} \sum_{t=0}^{n-q} {n-q \choose t} W_{t+q}^{n}(K) W_{n-t-q}^{n}(Z_{q})$$

4. GENERALIZATION OF THE FUNDAMENTAL FORMULA (3.3).

Let $f: (0,\infty) \to [0,\infty)$ be an arbitrary Borel measurable function for which holds:

- i) $f(0) \neq 0$
- ii) The first n moments

(4.1)
$$M_k(f) = \int_0^\infty f(r) r^k dr \quad (k = 0,...,n-1)$$

are finite.

If we denote with r = d(K,Z) the distance between the convex body K and the cylinder Z, we make the following integral

(4.2)
$$R_{q}(f,K,Z_{q}) = \frac{\omega_{n}}{\omega_{n-q}} \int f(r) d\gamma_{D},$$

where we integrate over the whole space $Z(D)_{a}$.

The existence of this integral is assured by the existence of the moments of f (4.1).

PROPOSITION. If $R_q(f,K,Z_q)$ is as in (4.2), the following fundamental formula holds

$$(4.3) \quad R_{q}(f,K,Z_{q}) = \frac{1}{\omega_{n-q}} \sum_{t=0}^{n-q} \sum_{s=0}^{t} C_{s}(f) \left(\substack{n-q \\ t-s} \right) \left(\substack{s+n-t-q \\ t-s} \right) W_{t+q}^{n}(K) W_{s+n-t-q}^{n}(Z_{q})$$

$$\text{with } C_{0}(f) = f(0) \quad , \quad C_{s}(f) = s M_{s-1}(f) \quad (s=1,\ldots,n).$$

That means that $R_q(f,K,Z_q)$ is a bilinear combination of the "Quermassintegrale" of K and Z_q . The moments of f appear in the coefficients.

Proof. We need some previous results. Let $Z(D,K)_q$ be the set of all cylinders congruent to Z_q that touch K (they have non-empty intersection with K, but can be separated weakly by an hyperplane). If A_δ is the set of cylinders congruent to Z_q that intersect K_δ and not K, $A_\delta = \{Z \in Z(D)_q \ / \ Z \cap K_\delta \neq \emptyset \ \text{and} \ Z \cap K = \emptyset \}$, then we have $Z(D,K)_q = \lim_{\delta \to 0} A_\delta$.

In [3] we defined a G_n -invariant measure ϕ_D on $Z(D,K)_q$ which results natural as it verifies $\phi_D(Z(D,K)_q) = \lim_{\delta \to 0} \frac{1}{\delta} \gamma_D(A_{\delta})$.

We also showed in [3] that $\phi_D(Z(D,K)_q)$ is a bilinear combination of the "Quermassintegrale" of K and Z_q :

$$\phi_{D}(Z(D,K)_{q}) = \sum_{j=0}^{n-q-1} {n-q \choose j+1} \frac{j+1}{\omega_{n}} W_{n-j}^{n}(K) W_{j+1}^{n}(Z_{q})$$

Now we may prove (4.3). Following (4.2),

$$R_q(f,K,Z_q) = \frac{\omega_n}{\omega_{n-q}} \int f(r) d\gamma_0$$

With an obvious reformulation we reach to

(4.5)
$$R_q(f,K,Z_q) = \frac{\omega_n}{\omega_{n-q}}[f(0) \gamma_D(K) + \int_0^\infty (f(r) \phi_D(Z(D,K_r)_q) dr]$$

where $Z(D, K_r)_q$ denotes the set of cylinders congruent to Z_q that touch K_r (with K_r the parallel body to K in the distance r).

Using (4.4) we obtain

$$\phi_{D}(Z(D,K_{r})_{q}) = \sum_{j=0}^{n-q-1} {n-q \choose j+1} \frac{j+1}{\omega_{n}} W_{n-j}^{n}(K_{r}) W_{j+1}^{n}(Z_{q})$$

and taking (3.1) into account, it is

$$\phi_{D}(Z(D,K_{r})_{q}) = \sum_{j=0}^{n-q-1} \sum_{k=0}^{j} \frac{j+1}{\omega_{n}} {n-q \choose j+1} {j \choose k} W_{j+1}^{n}(Z_{q}) W_{n-j+k}^{n}(K) r^{k}.$$

Now we take s = k+1, t = n+k-j-q, and get

$$\phi_{D}(Z(D,K_{r})_{q}) = \sum_{t=1}^{n-q} \sum_{s=1}^{t} \frac{s r^{s-1}}{\omega_{n}} \binom{n-q}{t-s} \binom{s+n-t-q}{s} W_{t+q}^{n}(K) W_{s+n-t-q}^{n}(Z_{q}).$$

Hence

$$(4.6) \qquad \int_{0}^{\infty} f(r) \phi_{D}(Z(D,K_{r})_{q}) dr =$$

$$= \sum_{t=1}^{n-q} \sum_{s=1}^{t} \frac{s M_{s-1}(f)}{\omega_{n}} {n-q \choose t-s} {s+n-t-q \choose s} W_{t+q}^{n}(K) W_{s+n-t-q}^{n}(Z_{q}).$$

If we now use formula (3.3) for γ_D and together with (4.6) replace them in (4.5), we reach the desired result.

- 5. SPECIAL CHOOSES FOR f, q AND D.
- 5.1 Special choose for f.

If we take f(0) = 1 and f(r) = 0 (r > 0) then from (4.3) we obtain (3.6) except an irrelevant constant

$$R_q(f,K,Z_q) = \frac{\omega_n}{\omega_{n-q}} \gamma_D(K)$$
.

5.2 Special choose for q.

In the case q=0, that means D is a convex body in E_n , by straightforward calculations we get

$$R_0(f,K,D) = \frac{1}{\omega_n} \sum_{t=0}^n \sum_{s=0}^t C_s(f) {n \choose t-s} {s+n-t \choose s} W_t^n(K) W_{s+n-t}^n(Z_q).$$

Hence $R_0(f,K,D) = J(f;K,D)$, where J(f;K,D) is the kinematic integral defined by Hadwiger in [2].

5.3 Special choose for D.

Finally, if we take D in L_{n-q} as a point P, Z_q results a q-plane in E_n and taking into account that $W_0^n(Z_q) = W_0^{n-q}(P) = \omega_{n-q}$ and $W_k^n(Z_q) = W_k^{n-q}(P) = 0$ $1 \le k \le n$, from (4.3) we obtain

$$R_q(f,K,P) = \sum_{t=0}^{n} C_t(f) {n-q \choose t} W_{t+q}^n(K).$$

That is $R_q(f,K,P) = P_q(f,K)$, where $P_q(f,K)$ are the functionals defined in [1].

REFERENCES

- [1] BOKOWSKY, J., HADWIGER, H und WILLS, J.M., Eine Erweiterung der Croftonschen Formeln für konvexe Körper, MATHEMATIKA 23 (1976), 212-219.
- [2] HADWIGER, H., Eine Erweiterung der kinematischen Hauptformel der Integralgeometrie, Abhandlungen aus dem Mathematischen Seminar der Univ. Hamburg, 44, Dezember 1975, 84-90.
- [3] MOLTER, U., Tangential measure on the set of convex infinite cylinders, Journal of Applied Probal. 23, 961-972 (1986).
- [4] SANTALO, L.A., Integral Geometry and Geometric Probability, Reading Mass.: Addison-Wesley (1976).
- [5] SCHNEIDER, R., Integralgeometrie, Vorlesungen an der Universität Freiburg im Sommersemester 1979 (1979).

Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 1428 Capital Federal, ARGENTINA.