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ABSTRACT. We prove that for every non-finite, locally connected, 

metrizable, topological space there exists a compatible distance 

such that it is not possible to choose a finite subset B and uni­

quely determine the points of the space by their distances to the 

points in B. The proof makes use of Cantor's function which is 

shown to be subadditive. 

1. INTRODUCTION. 

Let (M,d) be a metric space. A subset B of M is called basic if and 

only if every point in M is uniquely determined by its distances to 

the points in B [1]. 

It has recently been shown [1] that: i) every compact connected 

Riemannian manifold (M,g) with the distance d naturally associated 

to g does admit a finite basic set; ii) a compact connected topolo­

gical space M can be imbedded in a finite dimensional Euclidean 

space if and only if M is metrizable and admits a distance with a 
finite basic set. 

For a given topological space there may exist many different compat­

ible distances. We show that, under certain conditions, some of 

them do not admit finite basic sets. 

For example: Let M be the real interval [0,11; M wi th the usual dis 

tance admits {OJ as a finite basic set; but no finite basic set 
exists for M with distance d(x,y) = fCjx-yj), where f is the Cantor 
function. Clearly d is not compatible with any Riemannian metric 

on M; but d is compatible (Corollary 3.4) with the usual topology 
. [2] • 

2. DEFINITIONS. 

Let K be the Cantor set: 



ZSO 

00 

K = {X: X = I xi/3i 
i=1 

x. E {O,Z}} 
l. 

(that is, K C [0,1] is the set of the number~ admitting a ternary 
representation without digits 1). 

We shall call Cantor's function the following one: 

f: [0,(0) ... [0,1] and 

for i > 0, Xo in N U {O} then 

i) if Xo > ° then f(x) = 1. 

ii) if Xo ° and for each i in 

iii) if Xo ° and for some i in 
I-I 

f(x) = I x./z/z i + 1/ZI, 
i=1 l. 

N x. ,; 
.l. 

N x. = 
l. 

where I = 

1 , 

1, 

with x. in {0,1,Z} 
l. 

<Xl 

then f(x) L x./Z/Z i . 
i=1 l. 

then 

min Ii: x. n. 
l. 

Note that we are using a ternary expansion for the fractional part 
of x and a binary expansion for f(x). Whenever x admits two terna­
ry expansions, the above rule results in two expansions for f(x), 
both with the same value. 

3. PROPERTIES OF CANTOR'S FUNCTION. 

(Fl) f is constant over every interval without points in K. 

(FZ). f(x) = ° if and only if x = 0. 

(F3) f is non-decreasing. 

(F4) f is continuous. 

(FS) f is subadditive. 

The first four properties are well known. We shall prove the fifth 
one. (Theorem 3.3). 

LEMMA 3.1. For any x,y in K, f(x+y) ..;; f(x) + fey) . 

00 00 

Proof· Let x = I X/3 i Y = L Yi/3i with xi'Yi in {O,Z}. 
i=1 i=1 

It follows that x. + Yi E {0,Z,4}. 
l. 

We consider two complementary cases: 
<Xl 

Case 1: For each i in N, x. + y. ,; 4. In this case I (x.+y.)/3 i 
l. l. i=1 l. l. 

is a ternary expansion for x+y; therefore 
<Xl 

f(x+y) = I (x.+y.)/Z/Zi = f(x)+f(y). 
i=1 l. l. 
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Case 2 : For some i in N, x. + Yi = 4. Let J and I be: 
~ 

J min {j E N: x. Yj 2} , 
J 

I max({i E N: x. Yi 0 , i < J} u {On. 
~ 

It follows that 0 0;;; I <J<oo xI YI 0, x J YJ 

i < I .. xi+Y i 0;;; 2 I <i<J .. xi+Yi 2. 

(For example : x = 0 . 0 0 2 0 0 0 2 0 2 0 2 2 0 2 0 2 0 2 

Y = 0 .2 0 0 2 0 0 0.2 0 2 002 2 2 000 
-------- f ~ f I = 6 J = 14; . xi+Yi 0;;;2 I xi+Yi - 2 J 

Therefore 

and 

I-I 
x 0;;; L x./3 i + 1/31 

i=1 ~ 

I-I 
x+Y 0;;; L (x.+y.)/3 i + 2/3 1 . 

i=1 ~ ~ 

= 2 

) . 

Using the definition of f and the fact that f is non-decreasing, 

I-I . 
f(x+y) 0;;; L (x.+y.)/2/2~ + 1/21 . 

i=1 ~ ~ 

On the other hand, 
00 

f(x) + fey) = L (X.+y.)/2/2 i ;;;. 
~ 1. 

where 

But R 

Hence 

i=1 

J 

L 
i=I 

(x.+y.)/2/2 i . 
~ ~ 

R 

(0+0)/2/2 1 + 
J-l 
L 2/2/2i + (2+2)/2/2 J 

i=I+l 

f(x+y) 0;;; f(x) + fey). 

LEMMA 3.2. For any x in [0,11 there exists x' in K such that 

x 0;;; x' and f(x) = f(x'). 

Proof. Of course, if x E K we choose x' = x; if x ~ K any ternary 

expansion of x will have some 1 's. Let I = min {i E N: xi = 1}. 

I-I 
We choose x' = L x./3 i + 2/31 . 

i=1 ~ 

THEOREM 3.3. (Subadditivity of Cantor's function). For any x,y in 

[0,00) • f(x+y) 0;;; f(x) + fey). 

Proof. We consider two cases. 

Case I: x,y in [0,1]. Let x',y' E K such that (Lemma 3.2): 
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x ~ x' , f(x) = {(x'), y ~. y' , fey) = f(y'). Then f(x+y) ~ 
~ f{x'+y') ~ f(x') + f(y') = f(x) + f(y). (The firit inequality 
holds because f is non decreasing; the second one because of Lemma 
3.2) . 

Case II: x > 1 or y > 1. It follows f(x) = 1 or fey) 1; also 
x+y> 1. Hence = f(x+y) ~ f(x) + fey). 

Properti~s (F2) to (FS) allow us to claim that: 
'-, 

COROLLARY 3.4. If (M,d) is a metric space so is (M,fod) and both 
distances d and fod induce the same'topology on M. (See for example 
[3], page,1S3). 

4. SOME PROPERTIES OF METRIZABLE 'AND LOCALLY CONNECTED SPACES. 

Let (M,d) be a locally connected metric space and f the Cantor func 
tion as defined above. 

We know that finite subsets of metrizable spaces are closed; and 
connected components of open subsets of locally connected spaces 
are open. Therefore, 

(M1) Every connected component of an open subset of M is either 
unitary or infinite. 

(M2) If C C M is infinite and connected then any non-empty open 
subset of C is infinite. 

LEMMA 4.1. If Cis a connected, open and infinite subset of ~ and 

p is a point of M then there e:cists a connected, open and infinite 

subset C' of C such that for any two x,y in C', f(d'(x,p)) = 
= f(d(y,pH. 

Proof. Let d (x) = d(p,x); d: M + [0,(0) is a continuous function, 
p p 

then 'the image d (C) is a connected subset of [0,(0) and (by M1) it 
p 

is either a unitary set or a non degenerate interval. 

If d (C) is unitary so is fed (C)) and we can take C' ~ C. 
P P, 

If d (C) is a non degenerate interval it will be possible to select 
p 

a,b in R with a < band (a,b) C d (C) - K (for K is closed and p , 

nuil); thus f(a) = f(x) = feb) for any x in (a, b). 

Let A = d-1((a,b)) n C. It holds: A is open, d (A) = (a,b) C 
p P 

C [O,oo)-K and fed (A)) is unitary. Let C' be one of the connected 
p 

components of A; C' is open (for M is locally connected), infinite 
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(because of M2) and connected. 

LEMMA 4.2. If C C M is connected, open and infinite and 

B = {Pl,P2' ... ,Pn} eM then there exists an.infinite C' eM such 

that for any two q,q' in C' and any Pi in B, f(d(Pi,q)) = 

= f(d(Pi,q'))· 

(In other words, no finite basic set exists for (M,fod)). 

Froof. It suffices to apply n times Lemma 4.1. 

THEOREM 4.3. For any metrizabZe, connected and infinite space the­

re exists a compatibZe distance such that any basic set is infinite. 

Proof. We shall give a method to. select an appropriate distance d'. 

LetM be the space and d one of the compatible distances. By MI , 
connected components of M can be either unitary or infinite. If eve­
ry component is unitary we select d'(x,y) = 1 for any two differ­
ent x,y in M, and d' (x,x) = 0 for any x in M. (In this case the 

only basic set will be M). On the contrary if some components are 
infinite, we select d' fod. By applying Lemma 4.2 to one of the 
infinite components of M we conclude that no finite basic set 

exists for (M,d'). 

We gratefully acknowledge Dr.C.Sanchez for suggesting this problem 

and for his constant encouragement. 
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