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ON FINITE BASIC SETS IN METRIC SPACES

Dolores Alia de Saravia
Elda G. Canterle de Rodriguez

ABSTRACT. We prove thét for every noﬁ—finite, locally connected,
metrizable, topological space there exists a compatible distance
such that it is not possible to choose a finite subset B and uni-
quely determine the points of the space by their distances to the
points in B. The proof makes use of Cantor's function which is
shown to be subadditive.

1. INTRODUCTION.

Let (M,d) be a metric space. A subset B of M is called basic if and
only if every point in M is uniquely determined by its distances to
the points in B [1].

It has recently been shown [1] that: i) every compact connected
Riemannian manifold (M,g) with the distance d naturally associated
to g does admit a finite basic set; ii) a compact connected topolo-
gical space M can be imbedded in a finite dimensional Euclidean

space if and only if M is metrizable and admits a distance with a
finite basic set.

For a given topological space there may exist many different compat-
ible distances. We show that, under certain conditions, some of
them do not admit finite basic sets.

For example: Let M be the real interval [0,1]; M with the usual dis
tance admits {0} as a finite basic set; but no finite basic set
exists for M with distance d(x,y) = f(|x-y|), where f is the Cantor
function. Clearly d is not compatible with any Riemannian metric

on M; but d is compatible (Corollary 3.4) with the usual topology
[2].

2. DEFINITIONS.

Let K be the Cantor set:
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x; /3%, x; € {0,2}}
i=1
(that is, K € [0,1] is the set of the numbers admitting a ternary
representation without digits 1).

We shall call Cantor's function the followihg one:

£: [0,®) » [0,1] and if x = x5 + xi/3i with x; in {0,1,2}
i=1

for i > 0, x, in N U {0} then

0

i) if X, > 0 then f(x) = 1.

ii) if x, = 0 and for each i in N x, # 1, then f(x) = 'lei/Z/Zi.
iii) if Xy = 0 and for some i in N x; = 1, then
I-1 .
£(x) = ] x;/2/2% + 1/2%, where T = min {i: x, = 1}.
i=1

Note that we are using a ternary expansion for the fractional part
of x and a binary expansion for f(x). Whenever x admits two terna-
ry expansions, the above rule results in two expansions for f(x),
both with the same value.

3. PROPERTIES OF CANTOR'S FUNCTION.

(F1) £ is constant over every interval without points in K.
(F2) £(x) = 0 if and only if x = 6.

(F3) £ is non-decreasing.

(F4) £ is continuous.

(F5) f is subadditive.

The first four properties are well known. We shall prove the fifth
one. (Theorem 3.3).

LEMMA 3.1. For any X,y Zn K, f(x+y) < f(x) + f(y).

Proof. Let x = V x./31 , y =
i

I~18

i - .
, LK . yi/3 with x;,y; in {0,2}.
It follows that x; *y; € {0,2,4}.

1

We consider two complementary cases:

had .
Case 1: For each i in N, X; Yy # 4. In this case (xi+yi)/31
i=1
is a ternary expansion for x+y; therefore

Eeey) = 1 (xgeyy) /2020 = £G0+E0).

i=



Case 2: For some i in N, x; + y, = 4. Let J and I be:

J

n
N
-

min {j € N: x; =y
I

=0, 1i<J}vu{oh.

n
~<

max({i € N: X,

It follows that 0 S I <J<we , x; =y, =0, x; =y, =2,

i<I= X;*+y5 <2 , I<Ki<JI= X;*y; = 2.

(For example: x=0.002000202022020202......
y=0.20020 g 0202002 % 2000 ......
—_ e
I1=6;J=14; xi+yi<2 I xi+yi—2 J )
I-1 . 1 ' I-1 i 1
Therefore x < ) x./3%+1/3 , y< } y./3" +1/3
i=1 * i=1 *
Iol i 1
and x+y < ¥ (x;+y)/37 + 2/37.
i=1

Using the definition of f and the fact that f is non-decreasing,
I-1 . 1
f(x+y) < ) (xi+yi)/2/21 +1/2° .
i=1

On the other hand,

o«

. I-1 ' .

£(x) + £(y) = I (xg+y;)/2/2% > ] (xg+y)/2/2% + R,

= . i=1

J .
where R= 7 (xi+yi)/2/21.

: Lo
I Il i 3 I
But R = (0+0)/2/2° + § 2/2/2% + (2+2)/2/2° = 1/2
. i=I+1

Hence fix+y) < f(x) + £(y).

LEMMA 3.2. For any X in [0,1] there exists x' in K such that
x <x' and £(x) = £(x") .-

Proof. Of course, if x € K we choose x' = x; if x € K any ternary
expansion of x will have some 1's. Let I = min {i € N: x; = 1}.
. I-1 . 1
We choose x' = [ x./3% + 2/3".
i=1

THEOREM 3.3. (Subadditivity of Cantor's function). For any X,y in
[0,2) , £(x+y) <£f(x) + £(y).

Proof. We consider two cases.

Case I: x,y in [0,1]. Let x',y' € K such that (Lemma 3.2):
|
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x <x', £(x) = £(x"), y <y' , £(y) = £(y'). Then f(x+y) <

< f(x'+y') < f(x') + f(y') = £(x) + f(y). (The first inequality
holds because f is non decreasing; the second one because of Lemma
3.2).

Case II: x > 1 or y > 1. It follows f(x) =1 or f(y) = 1; also
x+y > 1. Hence 1 = f(xty) < f(x) + f(y). '

Properties (F2) to (F5) allow us to claim that:

N

~.

COROLLARY 3.4, If (M,d) is a metric space so is (M,fed) and both
distances d and fod induce the same topology on M. (See for example
[3], page 153).

L, SOME PROPERTIES OF METRIZABLE AND LOCALLY CONNECTED SPACES.

Let (M,d) be a locally connected metric space and f the Cantor func
tion as defined above.

We know that finite subsets of metrizable spaces are closed; and
connected components of open subsets of locally connected spaces
are open. Therefore, '

(M1) Every connected component of an open subset of M is either
unitary or infinite.

(M2) 1f C c M is infinite and connected then any non-empty open
subset of C is infinite.

LEMMA 4.1. If C 2s a connected, open and infinite subset of M and
P Zs a point of M then there exists a connected, open and infinite
subset C' of C such that for any two X,y <n C', f(d(x,p)) =

= £(d(y,p)).

Proof. Let dp(x) = d(p,x); dp: M »> [0,») is a continuous function,
then the image dp(C) is a connected subset of [0,») and (by M1) it
is either a unitary set or a non degenerate interval.

If dp(C) is unitary so 1is f(dp(C)) and we can take C' = C.

If dP(C) is a non degenerate interval it wili be possible to select
a,b in R with a < b and (a,b) C d_(C) - K (for K is closed and
null); thus f(a) = £f(x) = f£(b) for any x in (a,b).

Let A = d;l((a,b)) N C. It holds: A is open, dp(A) = (a,b) C

C [0,»)-K and f(dp(A)) is unitary. Let C' be one of the connected

components of A; C' is open (for M is locally connected), infinite
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(because of M2) and connected.

LEMMA 4.2. If C C M <s connected, open and infinite and
B = {pl,pz,...,pn} C M then there exists an infinite C' C M such

that for any two q,q' iZn C' and any p; in B, f(d(pi,q)) =
= £(d(p;,9").

(In other words, no finite basic set exists for (M,fod)).
Proof. It suffices to apply n times Lemma 4.1.

THEOREM 4.3. For any metrizable, connected and infinite space the-

re exists a compatible distance such that any basic set is infinite.

Proof. We shall give a method to select an appropriate distance d'.
Let M be the space and d one of the compatible distances. By M,
connected components of M can be either unitary or infinite. If eve-
ry component is unitary we select d'(x,y) = 1 for any two differ-
ent x,y in M, and d'(x,x) = 0 for any x in M. (In this case the
only basic set will be M). On the contrary if some components are
infinite, we select d' = fod, By applying Lemma 4.2 to one of the
infinite components of M we conclude that no finite basic set
exists for (M,d').

We gratefully acknowledge Dr.C.Sdnchez for suggesting this problem
and for his constant encouragement.

REFERENCES

[1] c.Sdnchez, The distance in compact Riemannian manifolds, Revis-
ta Unidn Matemdtica Argentina, 32 (1985), 79-86.

[2] D.Alfa de Saravia and E.G.Canterle de Rodriguez, Sobre conjun-
tos bdsicos finitos en espacios métnicos, Communication to the
Unidn Matemdtica Argentina, 1985.

[3] J.L.KRelley, Topofogla general, (EUDEBA, 1962).

Facultad de Ciencias Exactas
Universidad Nacional de Salta
Buenos Aires 177

4400 - Salta - Argentina

Recibido en octubre de 1986.



